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Abstract The generic method model assumes that
methods abound and method engineering and applica-
tion engineering is done in diverse areas. Therefore, it is
necessary to understand the notion of a method inde-
pendent of information systems and software engineer-
ing. The generic model presented here abstracts out from
product and process meta-models to define a system of
concepts that can be used in any domain. Additionally,
it integrates in it essential features of methods like
quality checking, guidance, backtracking, and trace-
ability. The proposed generic model looks upon a
method in two parts, the static and the dynamic parts.
The former provides the basic structure of a method
whereas the latter is the enactment support provided for
application development. The static part provides the
notion of method blocks and dependencies between
them. Method blocks can be enacted. The generic model
is a triple <M, D, E> where M is the set of method
blocks, D is the set of dependencies between method
blocks, and E is the enactment mechanism.

1 Introduction

A method has been described in various ways. The
Oxford dictionary [1] considers it to be (a) ‘a particular
way of doing’ and (b) ‘the quality of being well planned
and organized’. Both these attitudes have been adopted
in Software Engineering and Information Systems. The
first attitude is reflected in approaches [2–5] that are
based on the way of working adopted by the engineer to
carry out a task. The second attitude results in the view
that a method provides the means for well planned and
organized product development. Thus, [6] looks upon a
method as providing the necessary structure using which

a product is built. A method is a collection of tools and
techniques, product and process models, guidelines,
checklists, heuristics, etc. that help an application engi-
neer to build a suitable product.

For information systems development methods (IS-
DMs), the basic technique adopted to understand and
engineer methods is that of meta-modelling. Meta-mod-
els have been developed with different abstractions and
for highlighting different aspects of methods, the prod-
uct aspect [7, 8], the process aspect [9, 10], and integrated
product–process aspect [11, 12]. Considering the crucial
importance of guidance and tracing capabilities in
methods, a system of three meta-models was defined in
[13]. These are (a) ‘basic’ meta-model, (b) guidance
meta-model and (c) traceability meta-model. However,
quality issues, those of representing method constraints
and heuristics as well as of determining constraint and
heuristic satisfaction have remained unaddressed in
meta-models.

A formal definition of a method [9, 10] was made in
the early 1990s. Here a method was treated as an n-tuple
with n being around 10. Later, with the emergence of
situational method engineering, the notion of a method
fragment was formalized [14]. This formalization uses
ten sets and five predicates resulting in a fragment based
method being treated as a 15-tuple. Evidently, the
number of concepts used to represent a method is very
large and a method is a very complex artefact.

In the last few years we have seen the emergence of
generic models that abstract out the common properties
of meta-models. This results in a three-layer framework
consisting of the generic, meta-model and method layers
[12, 15]. This idea was tested in [16] and the benefits of
the generic layer were found to be as follows:

• The generic layer makes explicit nature of the domain.
Therefore, it promotes the development of methods
and processes specific to that domain. This improves
the chances of method acceptability.

• Again, by making explicit the nature of domain, it
helps in understanding and comparing different
domains.
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• The generic layer helps in meta-method engineering. It
was shown that meta-models of very diverse domains
could be engineered. Meta-models can be checked out
for consistency and completeness under the generic
view. This can be facilitated by constructing generic
computer aided method engineering (generic CAME)
tools.

• The generic layer can be used for simulating real
processes and systems before they are actually imple-
mented. For example, in the robotics domain, the
entire robot can be conceptualized, and a method
produced. Using computer aided systems engineering
(CASE) support, application processes can be built to
check that the robot does, in fact, handle the pro-
posed range of tasks. If not then the robot can be
re-conceptualized. Thus, before constructing the real
robot, its viability can be fully established.

Given this range of benefits of the generic layer, our
focus now is on the development of a generic model. Our
aim is to build a model that is

1. Simple. Simplicity is measured in terms of the arity of
the tuple required to formalize it. Thus, we are
looking for much less than the 10 to 15-tuple for-
malizations referred to above.

2. Complete. Completeness is to be seen in the range of
method features, guidelines, heuristics, etc. that can
be derived from the model.

The generic model developed here treats a method as a
triple, <M, DEP, E) where M is a set of method blocks,
DEP is a set of dependencies between method blocks,
and E is an enactment mechanism for method block
enactment. Clearly, this three tuple is relatively simpler
than the formalizations referred to above. Additionally,
instead of treating guidance, traceability and basic
method capabilities separately as in [13], we put them
together in a unified whole. The set, DEP, forms the basis
of this unification. Finally, our generic model addresses
quality issues as well. This happens in three parts. First,
constraints and heuristics are represented in a sub-class
of method blocks called quality checking method blocks.
Second, dependencies tell us which quality method
blocks are to be enacted when and finally, quality method
block enactment under the enactment mechanism
provides information on satisfaction. With this capabil-
ity, the proposed generic model provides a relatively
more complete representation of method features.

Our approach to generic model definition starts off,
in the next section, with building a classification
framework that helps us to define our notion of gene-
ricity. Thereafter, in Sect. 3, we identify the properties
that generic models should have. The implication of
these properties on generic model development is con-
sidered in Sect. 4. The generic model is presented in the
Sect. 5. This section is divided into two main parts, the
first dealing with the static part and the second with
the dynamic part. The underlying mechanisms for

backtracking, traceability, and guidance are explained
here. The section ends with our Enactment Mechanism.
Appendix 1 contains an example of use of the generic
model and Appendix 2 contains a glossary of terms.

2 The four-dimensional classification framework

Methods have been classified in different ways.

1. Methods are classified on the basis of their emphasis.
Those that emphasize the functional aspects are
process oriented; those that emphasize data base
construction are data oriented; those that emphasize
temporal aspects are behaviour-oriented methods.

2. Classification is based on the stages of the develop-
ment process addressed. Thus, we have methods for
requirements engineering, systems, design, construc-
tion design, etc.

3. Classification is done on the extent of use of mathe-
matical formalisms. This leads to formal and systemic
methods.

4. Classification is based on the nature of issues handled
in the method. Soft methods like Soft Systems
methodology [17] and SISTeM [18] make it possible
for different organizational actors to develop a view
of the organization and of the information systems
needed to support this view. In contrast, hard meth-
ods concentrate on the technical aspects of informa-
tion systems product development and ignore the
larger organizational roles played by them.

A number of other classification schemes exist [19–22]
and each has its own perspective of classification.

Looking now at meta-models, we find

1. Classification is based on the treatment given to the
product and process aspects of methods. This leads to
product meta-models, process meta-models, and
integrated product–process meta-models.

2. Classification is based on the method feature empha-
sized. This yields [13] basic meta-model, guidance
meta-model, traceability meta-models, etc.

The foregoing classification schemes aid our under-
standing of methods and meta-models, respectively.
However, we wish to exploit this body of work to help us
in arriving at the set of concepts that could go into defining
a generic model. Meta-model classification (1) tells us
that there are two aspects of methods, product and
process aspects. Looking at the product aspect, method
classification (1) says that products can have different
nature of concepts. Concepts can be for data, function,
event, etc. Classifications (1) and (2) also suggest that
method products vary in complexity. A final aspect of
the product concerns the nature of the real world phe-
nomena being captured. Information systems methods
are concerned with abstractions of the real world.
However, methods in some areas, particularly artificial
intelligence, deal with non-abstracted phenomena.
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Now consider the process aspect. Method classifi-
cation (2) suggests that in methods spanning a single
stage products are constructed. However, in moving
from one stage to the other, a product may have to be
transformed to assume another form. Thus, the pur-
pose or aim of the method, whether to construct a
product or to transform a product, is to be taken into
account because it determines the nature of the process
steps involved.

The foregoing analysis suggests that four factors of
methods are of importance in developing the generic
model. These constitute a four-dimensional space in
which methods can be placed. We consider these in
greater detail below:

• The complexity dimension: We postulate that the
complexity of a method is related to the complexity of
the product to be produced. If a product is more
complex than another, then the method to produce it
must also be more complex. We measure product
complexity in terms of product ‘facets’. A facet is the
set of tightly coupled concepts, whose instantiation
results in a product. As the number of facets of a
product increases, the complexity of the method
increases. The simplest method is the single-facetted
one, and we refer to it as atomic. Methods with higher
facets are compound. As an example, a method to
build an ER product is atomic whereas the Rational
method is compound.

• The aim dimension: This dimension considers the
purpose behind the method, what the method tries to
achieve. We express method aim in terms of the nature
of the product that is to be produced. A product can
be a new one, constructed from scratch, by reuse, etc.
or it can be a transformation of another product.
Thus, along the aim dimension, there can be con-
structional methods and transformational methods
having the purposes to construct a product and
transform a product, respectively.

• The domain dimension: Here, we consider the nature
of the phenomena dealt with in the method. We believe
that there are two kinds of phenomena of interest, real
and abstract. For example, the ER model provides
abstraction-based concepts. Thus, methods to build
ER products lie in the abstract domain. In contrast
real domains are of particular interest in artificial
intelligence. As an example consider playing with toy
blocks. The specific blocks are given and the player
manipulates these real blocks rather than abstractions
of these. A specific method for playing with the given
blocks can be devised. If the blocks are changed then a
new method has to be built and, as before, this
method is also specific to the new game.
Thus, we say that the nature of phenomena may be
either real or abstract and we get real domains or
abstract domains.

• The semantic dimension: This dimension deals with the
nature of concepts of the method. Along this dimension
we consider methods to use active or passive concepts.

Passive concepts capture passive, data-oriented aspects
of products whereas active concepts capture active,
process or dynamic, aspects of products.

3 Properties of the generic model

The foregoing suggests that a generic model should have
the following properties:

1. The generic model should be class independent. That
is, it should be possible to represent in the generic
model a method that occupies any position in our
four-dimensional space.

2. The generic model should be independent of any
meta-model. Essentially meta-model independence
calls for independence from product meta-models
and process meta-models. Interestingly, meta-model
independence facilitates class independence as shown
below.

Product meta-model independence makes it possible to
represent abstract or real domains and active or passive
concepts. Thus, it facilitates independence along the
domain and semantic dimensions. Similarly, it facilitates
coverage independence because products of any stage of
the life cycle can be instantiated. Independence along the
aim dimension is facilitated because the constructed or
transformed products can all be handled with product
meta-model independence. Product meta-model inde-
pendence facilitates the representation of one or more
sets of concepts to represent one or multiple facets.
Thus, independence along complexity is also facilitated.
Process meta-model independence facilitates indepen-
dence along aim and coverage dimensions. Along the aim
dimension, different process steps are followed in
building constructed or transformed products, respec-
tively, and process meta-model independence facilitates
this. Again, coverage independence is achieved because
process steps of any stage of the life cycle can be han-
dled. Similarly, it can be argued that domain and
semantic dimensions are also facilitated by process meta-
model independence.
The foregoing shows the close linkage between product
and process aspects of methods and the need to integrate
these two aspects together.

3. The three-layer generic framework suggests that the
generic model must provide an essential view of a
method. This view should abstract out the common
properties of meta-models. It should reveal the nature
of methods, what they are, what they do, and how
this capability is achieved.

4. Features of methods that are essential but treated as
‘add-ons’ today should be integrated in the method
and represented at a suitably high level of abstrac-
tion. Thus, it should be possible to express method
constraints, heuristics, guidelines, etc. in the generic
model.
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4 Towards the generic model

In this section we develop our approach to building the
generic model. We shall consider the implications of
each property identified in the previous section and
identify the basic concepts of the model and their inter-
relationships. These shall be put together in the next
section to form the generic model itself.

4.1 Class independence

Since class independence calls for meta-model indepen-
dence, the holistic structure of the artefact, its compo-
nent parts, and inter-relationships between these
components must be expressed in abstractions high
enough to instantiate a meta-model. These concepts of
the generic model, the generic concepts, must not be
technical artefacts, graphs, relationships, objects, frag-
ments, chunks and the like. Instead, generic concepts
should directly capture the notions of product and
process. We propose to do this through the notion of
product and process primitives.

A product primitive is an atomic product unit. It is the
smallest unit that can be operated upon. After a product
primitive has been manipulated, it may be mandatory or
optional to manipulate another related product primi-
tive. Correspondingly, a process primitive is the atomic
process step that can be enacted. After a process prim-
itive has been enacted, the enactment of some other
process primitive may become mandatory or optional.
The generic model should articulate all mandatory and
optional consequences of primitive enactment.

The inseparability of the product and process aspects
has been mentioned above. To handle this we integrate
process primitives and product primitives together in the
notion of method primitives. A method primitive is the
smallest meaningful process unit that can be enacted. It
specifies which process primitive manipulates which
product primitive to produce what result.

The application engineer uses the set of method
primitives to construct the development process. This
can be done in two ways, by

• Following a process model or
• Some ad hoc means

The former is a statement of ‘what is to be done
when’. Thus, the sequence of method primitives to be
enacted is pre-decided and any decision making re-
quired to determine what is to be done next is part of
the process model. In the ad hoc approach, the deci-
sion as to what to do next is taken by the application
engineer explicitly, as development proceeds. Thus, the
issues around process modelling are external to this
approach.

We believe that the ad hoc approach is suited to the
development of our generic model. First, it makes the
method independent of any process model. As discussed

earlier, this facilitates genericity. Second, the enactment
mechanism becomes simpler: since no decision making is
to be incorporated in it, only a mechanism for sequential
enactment of selected method primitives is required.

4.2 An essential view

We [12] view a method as an artefact that provides the
capability to construct a product. A method has two
aspects to it, its static and dynamic properties. Static
properties of interest, from a modelling point of view,
are those that describe the holistic structure of the
artefact, identify the component parts of the artefact,
and bring out the inter-relationships between these
components. The dynamic properties of artefacts are
those that describe the interaction of the artefact with its
environment. We believe that there are two kinds of
environments relevant to a method (see Fig. 1). The
technical environment highlights the technical behaviour
of the method: the technical input, technical response,
technical features to be supported, etc. This environment
consists of the product to be developed and the process
used to develop it. The usage environment looks to the
manner in which the method will be used. It deals with
its functional aspects: who uses the method, how is it
used, what functionality is needed, etc. The usage envi-
ronment is principally determined by two actors, the
application engineer and the method engineer.

The technical environment suggests that things that
flow across the artefact–environment boundary are

1. Process stimulus
2. The product under development
3. Product information, for example, product quality

metric values
4. Guidance information, what can or must be done

next
5. Trace information

It follows that the static aspect of methods must
contain generic concepts for these. Further, the dynamic
aspect is a mechanism that processes the process
stimulus and generates (2)–(5) above.

The Usage Environment
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Fig. 1 The two environments

224



It can be seen that the technical environment is useful
in developing the generic model. It provides knowledge
for defining the static and dynamic aspects of the generic
model.

The usage environment reveals the functional capa-
bility that should be built around a method. This
capability should include

1. For the method engineer: method instantiation. The
three-layer framework suggests that generic model
instantiation yields the meta-model whose instantia-
tion, in turn, yields the method. This is the traditional
approach to meta-modelling. However, given the
generic model, the existence of the meta-model makes
sense provided a number of methods can be instan-
tiated from it. When only one method is required,
then it would be best if the generic method could be
instantiated to directly yield the method. This latter
possibility arises, as mentioned above, in the domain
of real methods.
In other words, there should be features to instantiate
the method or the meta-model from the generic
model. It follows that we need to extend CAME
technology to include the former.

2. For the application engineer: capability should be
provided to decide the process stimulus, view the
product, and obtain all product information. Addi-
tionally, support for the development process is
needed: features for guidance in deciding what to do
next, tracing, backtracking, etc. Reuse of previous
experience must be catered to.

4.3 Integrating essential features

As mentioned earlier, there are some essential features of
methods like method constraints, heuristics, guidance,
tracing and backtracking, etc. Consider the first two of
these. First, we require a representation of the constraint
and heuristic to be satisfied and we express these as
product primitives. Second, we need to define appro-
priate process primitives for constraint or heuristic sat-
isfaction. We find two different ways in which these
primitives could act:

• Primitives check for constraint and heuristic satisfac-
tion.

• Primitives enforce constraints and heuristics.

Constraint and heuristic enforcement is essentially a
process model: the product is examined and appropriate
method primitives are enacted to modify it. In accor-
dance with the ad hoc approach adopted by us, we reject
this option. Thus, we shall define process primitives that
check constraint and heuristic satisfaction. Just as for
other primitives, the application engineer has to decide
when to enact these.

As discussed earlier, the enactment of certain method
primitives may imply mandatory or optional checking
for constraint and heuristic satisfaction. We need an

abstraction that models this successor-predecessor rela-
tionship. Similarly, to provide guidance we need this
abstraction to tell us which method primitives must or
can be enacted after which ones. Tracing and back-
tracking require that this abstraction be traversed in the
reverse direction.

5 The generic model

The generic model consists of two complementary parts,
the static and the dynamic parts. The static part deals
with (a) product, process and method primitives, (b)
dependencies between method primitives, (c) the rela-
tionship between method primitives and a method, and
(d) method typology. The dynamic part deals with
method primitive enactment and the role of dependen-
cies in process modelling, process guidance, tracing and
backtracking.

5.1 Generic method statics

In this section we provide an overview of generic statics.
Details can be found in [15]. As shown in Fig. 2, we view
a method as a collection of one or more method blocks.
This is shown by the M:N relationship between a method
and method block: a method block may belong to one or
more methods and a method may have one or more
method blocks in it. The specialization hierarchy of a
method shown in Fig. 2 models the complexity and aim
dimensions of our classification. In accordance with the
complexity dimension, a method can be atomic or
compound. An atomic method deals only with those
products that are expressed in exactly one product
model whereas a compound method is composed of
other simpler methods. It is possible to consider the type
of a method as constructional or transformational. This
is in accordance with the aim dimension. A construc-
tional method is used whenever a new product,
expressed in one or more product models, is to be
constructed. In contrast a transformational method is
used for transforming a product, expressed in or more
product models, into a product of other product
model(s).

A constructional method that builds products for the
ER model is atomic since the product is expressed in
exactly one model. Similarly, the transformational

ock
1,N1,N

#
Composed
of

Method Method block

ConstructionalCompound Atomic Transformational
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#
o

Method Method bl

ConstructionalCompound Atomic Transformational

Fig. 2 Generic method statics
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method for converting an ER product into a relational
product is atomic since the product to be transformed
and the resultant product are both expressed in one
product model each. Now consider examples of com-
pound methods. The constructional atomic methods to
construct products in accordance with the object model,
functional model, and dynamic model of OMT, compose
the constructional compound method of OMT. Similarly,
the constructional atomic methods to construct the use
case and object schema comprise the rational compound
constructional method. Transformational methods may
also be compound. For example, a method to convert the
rational product to an object-oriented design product is
compound: the transformation deals with multiple
product models as input even though there is only one
product model on its output side.

When expressed in terms of method blocks, compound
methods are composed of method blocks that belong to
several methods whereas all method blocks of an atomic
method belong to the atomic method only.

The different types of method blocks are shown in
Fig. 3. Broadly, these are of two kinds, product manip-
ulation method blocks do product development and
quality checking method blocks that check for and
provide information about the quality of the product.
The expectation is that application engineering is
a product development–quality checking–product
development cycle.

Figure 3 shows that there are three kinds of product
manipulation method blocks. The first, product life cycle
method blocks pertain to atomic methods. They can
(a) create instances of product primitives, (b) relate these
instances together, and (c) delete product instances. The
second, product mapping method blocks pertain to con-

structional methods and establish a mapping between
instances of one component method with those of the
other. Thus, for example, an object of an object model
can be mapped to a data flow of a functional model. The
last, namely, product transformation method blocks
pertain to transformational method and cause the
transformation of an instance of one model to those of
the other. For example, an entity of the ER model could
be transformed to a relation of the relational model.

Quality checking method blocks when enacted, sup-
ply information about the quality of the product. Heu-
ristic checking blocks tell the application engineer
whether a given heuristic has been satisfied or not
whereas constraint-checking blocks provide information
on the satisfaction of method constraints.

The structure of a method block is shown in Fig. 4.
When viewed structurally, it is possible to classify a
method block as a method primitive, an abstract method
block, or a complex method block. A method primitive is a
pair, <objective, approach>. The objective of a method
primitive tells us what it tries to achieve. The approach
tells us the technique that can be used to achieve the
objective of the block. An objective itself is a pair
<product primitive, process primitive>. Product
primitives belong to the product model. For each
product primitive of the product model, the process
primitives that act upon it are associated with it to yield
the objectives of the method.

Complex method blocks are composed from simpler
method blocks. For example, the complex method
block, build aggregate, can be defined to build an
aggregate entity from primitive method blocks to create
entities and to establish relationships between them.
Abstract method blocks are built to generalize method
blocks based on their common properties. For example,
two complex method blocks, build aggregate and build
ISA hierarchy can be abstracted into a method block,
build hierarchies based on the common property that
both these construct hierarchies, aggregate and ISA
hierarchies, respectively.

Method primitives exhibit dependencies among
themselves. This is shown by the Depends on relationship
in Fig. 4. Dependencies are statements about which
method primitives must or can be enacted after a given
method primitive is enacted. Clearly, dependencies get
carried over to complex and abstract method blocks and
therefore we can speak of dependencies between method
blocks and not just method primitives.

We will now consider the main concepts of Fig. 4 in
detail.

5.1.1 Product primitives

Methods have concentrated on producing products that
are well defined and well formed. As a consequence, a
method focuses on the concepts of the product model,
and ensuring that the product satisfies the tenets of the
model. From this perspective, one can find product
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primitives by a detailed examination of the product
model.

We classify product primitives into two, product
manipulation primitives and product quality primitives.
The former include concepts and their inter-relation-
ships whereas the latter include quality concepts like
method constraints and heuristics.

In an atomic method there is only one product
model and the foregoing suffices. However, in com-
pound methods, consistency across every pair of
product models has, additionally, to be ensured so that
the compound product is properly composed of
its simpler products. This composition requires prod-
uct composition primitives and composition quality
primitives.

It can be seen that our product primitives are at the
required level of abstraction. They are independent of
any product model or meta-model. A product primitive
may be instantiated to any product model or meta-
model concept, an abstract one (graph, an object, an
entity) or a real one (a sound clip, a block of a toy).
Thus, domain independence is protected. Product
primitives make no assumption about the nature of the
product that may belong to any stage of the life cycle.
Thus, the coverage dimension is promoted. As the
complexity of the method rises, the set of product
primitives becomes large. While a way of handling this
large number has to be found, product primitives do not
in any way inhibit the construction of methods of any
complexity or of different aims.

5.1.2 Process and method primitives

A process primitive is the smallest unit of process. It
operates on a product to cause a change in it thereby
producing a new product. Since constructional and
transformational methods perform different operations
on the product, process primitives for these are different
from one another. Consider atomic methods first. Con-
structional methods need to construct individual prod-
uct concepts, inter-relationships between these and
provide information about product quality. Thus, we
have three types of process primitives as follows:

1. Create or delete instances of product primitives.
2. Establish inter-relationships between instances of

product primitives.
3. Display product information on demand: is the

product complete? Is it consistent? Does it comply
with heuristics?

For a transformational method the process primitives
are those that transform from the source to the target
product model. Therefore we need essentially one kind of
process primitive to transform instances of different kinds

1. An instance of the source product primitive to the
target product primitive.

2. An instance of the source inter-relationship to the
target one.

3. An instance of the source quality primitive to the
target one.

Now consider compound methods. We need process
primitives for mapping. This yields the product com-
position class and the composition quality class of pro-
cess primitives.

It can be seen that the taxonomy of method blocks
shown in Fig. 3 draws heavily from the different kinds of
process primitives described above.

5.1.3 Dependencies

As shown in Fig. 4, method primitives are dependent
upon one another. We postulate that there are different
ways in which method primitives are dependent upon
one another. This is captured in the notion of a depen-
dency type. For example, in the meta-model of [15] there
are four dependency types called requirements, removal,
activate and inactivate, respectively.

A dependency shows up in two forms

1. The enactment of a primitive may call for the
enactment of another, or

2. Primitive enactment may call for another primitive
not to be enacted.

We refer to the former as an additive dependency
whereas the latter is a subtractive one. More formally, let
us be given a set of dependency types, DT={DT1,
DT2,...,DTn}. For an additive dependency we say that a
method primitive O2 is dependent upon a method prim-
itive O1 under a dependency type DTi if the enactment of
O1 is a pre-requisite for the enactment of O2 under that
dependency type. As an example, let there be a depen-
dency type, trigger. Then O1 fi O2 (O2 depends on O1)
says that for O2 to be triggered, the enactment of O1 is a
pre-requisite. In other words, the enactment of O1 makes
O2 available for enactment. For a subtractive dependency,
a method primitive O2 is dependent upon a method
primitive O1 under a dependency type DTi if the enact-
ment of O1 results in barring the enactment of O2 under
that dependency type. As an example, let there be a
dependency type, withdraw. Then O1 fi O2 says that
the enactment of O1 makes O2 unavailable for enactment.

Two attributes, urgency and necessity, are associated
with each dependency type. Urgency refers to the time at
which the dependent method primitive, O2, is to be
enacted. If O2 is to be enacted immediately after O1 is
enacted then this attribute takes on the value Immediate.
If O2 can be enacted any time, immediately or at any

Table 1 Nature of dependencies

Type Urgency Necessity

1 Immediate Must
2 Immediate Can
3 Deferred Must
4 Deferred Can
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moment, after O1 has been enacted, then urgency takes
on the value deferred. Necessity refers to whether or not
the dependent method primitive O2 is necessarily to be
enacted after O1 has been enacted. If it is necessary to
enact O2, then this attribute takes the value must
otherwise it has the value can.

These attributes provide the basic properties to be
satisfied by method primitives related to each other
under a dependency type. Four cases arise as shown in
Table 1.

Dependency type 1 of the table says that the depen-
dent method primitive O2 must be enacted immediately
after O1 has completed. Dependency type 2 says that O2

can be optionally enacted; and if it is in fact enacted,
then this must be done immediately upon the completion
of O1. A delayed enactment of O2 is disallowed.
Dependency type 3 says that O2 must be enacted after
O1 has been enacted but this may be done at any
moment after the completion of O1. Finally, dependency
type 4 says that O2 may be optionally enacted any time
after the completion of O1.

Consider the meta-model of [15]. In this meta-model
four dependency types have been defined, requirements
dependency, its inverse called removal, activate depen-
dency, and its inverse called inactivate. Requirements
dependency says that a dependent method primitive O2

must be enacted after O1 but it may be enacted any time
after O1 is completed. This corresponds to dependency
type 3. Its inverse dependency, removal is of type 1. It
says that O2 must be immediately removed from the set
of method primitives to be enacted after O1 is complete.
The activate dependency is of type 4. It says that O2 may
be optionally enacted at any later moment after the
enactment of O1 is over. Its inverse, inactivate depen-
dency is of type 1. The method primitive O2 must be
immediately inactivated if it was activated by an earlier
dependency. It can be seen that in the example meta-
model, there is no type 2 dependency.

It can be seen that requirements and activate are
additive dependency types whereas removal and inacti-
vate are subtractive ones.

5.1.3.1 The dependency graph It is possible to organize
method primitives in a directed dependency graph for
each dependency type. Thus, there are as many graphs
as the number of dependency types in a method. The
method primitives in a dependency graph that have no
edges entering them are particularly interesting. We refer
to these as ‘start’ method primitives. Let the set of start
method primitives under a dependency type DTi be
denoted by Si. We can compute the set of start method
primitives START, for the entire method by determining
the common start method primitives across all depen-
dency type graphs:

START ¼ \ Si for all i:

Similarly the dependency graph has nodes that have no
outgoing edges. Just as the former are start method

primitives, the latter are stop method primitives. After
their enactment, the development can halt. Just as for
start method primitives, the set of stop method primi-
tives is obtained by taking the intersection of the stop
method primitives of each of the dependency graphs. Let
this set be STOP.

START is interesting because it identifies those
method primitives that can be used to start off applica-
tion development. Thereafter, the dependency graphs
can be followed to select the method primitives to be
enacted. The development process can be halted when a
method primitive belonging to STOP has been enacted.

Consider a method with the set of method primitives
O={O1, O2,...,O14}. Let there be two dependency types
DT1 of type 1 and DT2 of type 2. Let the following
dependencies be defined:

DT1 dependencies

O1 ! O2 O1 ! O3 O1 ! O4 O1 ! O5

O6 ! O7 O6 ! O8

O9 ! O10 O9 ! O11 O9 ! O11

:

It can immediately be seen that method primitives with
no edge incident on them are O1, O6, O9. Therefore,
S1={O1, O6, O9}. The dependency graph is shown in
Fig. 5.

DT2 dependencies

O1 ! O6 O1 ! O9

O6 ! O13 O6 ! O14
:

Again, it can be seen that O1 is the only method primi-
tive with no edge incident on it. Therefore, S2={O1}.
The dependency graph is shown in Fig. 6 with this kind
of dependency being shown by a dotted arrow.

We can put the two graphs of Figs. 5 and 6 together
to yield the total dependency graph for our method as
shown in Fig. 7. The set of start method primitives,
START = S1 \ S2 = {O1}. It can also be seen
that STOP = {O2, O3, O4, O5, O7, O8, O10, O11, O12, O13,

O14}.

O1
O3

O2

O6
O8

O7

O4

O5

O9
O10

O11

O12

Fig. 5 The dependency graph under DT1

O1
O9

O6 O14

O13

Fig. 6 The dependency graph under DT2
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It is to be noted that whereas a dependency
graph highlights the dependency structure of method
primitives, it does not make explicit the additive–sub-
tractive or the necessity–urgency properties of a depen-
dency type. These are to be determined from the nature
of the dependency type itself.

In Sect. 5.2 we will see that dependency graphs can be
used to provide support for guidance, tracing, and
backtracking.

5.2 The generic model: the dynamic part

Whereas static aspects of a method deal with the struc-
ture of a method, method dynamics deals with the
behaviour of methods. It determines the response of a
method to stimuli provided by application engineers. In
this stimulus–response view, the development process is
a sequence of stimuli selected by the application engineer
for enactment. The algorithmic process, the enactment
algorithm, that responds to this sequence constitutes
method dynamics.

The stimuli of interest are

1. Requests for enactment of product manipulation
method blocks

2. Requests for enactment of product quality checking
method blocks

3. Requests for guidance [23] in method block selection
4. Requests for trace information
5. Backtracking requests

We summarize the stimulus and the corresponding
response in Table 2.

A stimulus has two components (a) a product part
and (b) a method block. It says that the product part
must be manipulated by the method block. The product
part is found in the product under development and is
that piece of the product that requires application pro-
grammer attention. The product part must have the
same number and type of arguments as the method
block. It is only when this match occurs that the method
block can operate upon the product part.

5.2.1 Product part

We define a product part as that part of the product,
which is the focus of attention for further exploration. It
is axiomatically defined as follows

• Every instance of a product primitive is a product part.
For example, in the ER model, an attribute, an entity
and a relationship type are product primitives. In-
stances of these like date_of_birth, employee, and
employs, respectively, are product parts.

• Every set of instances of product primitives partici-
pating in a method primitive is a product part. For
example, the set of entity type instances that are
arguments to the method primitive to construct a
relationship is a product part.

• Every set of instances of product primitives partici-
pating in a complex method block is a product part.
For example, the set of entity type instances that are
arguments to the complex method block, build
aggregate of Sect. 5.1, is a product part.

• Every set of instances of product primitives
participating in an abstract method block is a product
part. Again, the set of instances of entity types partici-
pating in build hierarchies of Sect. 5.1 constitute
a product part.

• There is a special product part called ‘don’t care’.
Every product has it. It says that irrespective of what
the product is (‘don’t care’ what the product is) some
process primitives can be used. For example, the
primitive create can be applied to ‘don’t care’ to create
new product parts.

5.2.2 The development process

The development process is a sequence of development
process constructs (DPC). A DPC represents the stim-
ulus and consists of a product part and a method block.
We define it as an objectified relationship between
product part and method block

DPC ¼ ð½pp�; mcÞ;

where pp is the product part, mc belongs to the set of
method blocks, and mc can manipulate pp. The fol-
lowing are examples of DPCs

O1
O3

O2

O4

O5

O9

O6 O14

O13

O8

O7

O10

O11

O12

Fig. 7 The dependency graph for the method

Table 2 Method dynamics

Stimulus Response

Product manipulation Product after enactment
Quality checking Quality metric value
Guidance seeking Menu of method blocks that

can be enacted next
Tracing up to N previous
enacted method blocks

Up to Nth previous enacted
method blocks in reverse
order of their enactment

Backtracking to Mth previously
enacted method block

Product at backtrack point
Enacted method
block at backtrack point
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ð½don’tcare�; < entity; create>Þ
ð½date of birth; employee�; < attribute; entity; couple>Þ:

The first says that the method block to create an entity
can be used on the product part don’t care to create a
new, named entity instance whereas the second says that
the method block to couple an attribute and entity can
be used to couple date_of_birth and employee to each
other. At the end of enactment of this DPC, employee
has an attribute, date_of_birth.

Our development process deals with instances of
method blocks. These must be in accordance with the
dependency graphs of a method. Initially, the applica-
tion engineer selects an instance of a method block from
START (see Sect. 5.1.3.1). The enactment algorithm
enacts it and the product is accordingly modified. The
next method block instance that can or must be enacted
is obtained by following the dependency links in the
various graphs. Since the type of the enacted method
block is known, the dependency graphs yield the set of
method block types whose instances can now be enacted.
In this way, it can be seen that any development process
is a route among the dependency graphs and that the
only processes that can be built are the ones defined
under the dependency graphs of the method.

Let us denote the jth instance of method block Oi by
oi,j and show the progress of a typical development
process. Let the development process start by enactment
of o1,1. Now, the dependency graph of Fig. 5 suggests
that instances of O2–O5 could be enacted under DT1

whereas, by Fig. 6, O6 and O9 could be enacted under
DT2. Let the application engineer enact o6,1. Following
Fig. 5, it is now possible to enact instances of O7 and O8

under DT1 as well as O13 and O14 under DT2. Let the
application engineer select o7,1 for enactment. The
dependency graph now suggests nothing. The applica-
tion engineer may choose to terminate the process at this
point or may start with another instance of O1.

Assuming that the process is terminated, we get the
following process

o1;1
o6;1
o7;1

:

Equivalently, the process (see Fig. 8) is the route taken
in the dependency graph of Fig. 7.

Supporting the development process To support the
development process outlined above, we develop an
enactment algorithm. This algorithm must provide
capability to handle

• Product manipulation primitives
• Quality checking primitives
• Guidance in selecting the next manipulation or quality
checking primitive to be enacted

• Tracing and backtracking

We first lay out our policy for guidance, backtracking,
traceability, and quality checking and then present the
full enactment algorithm.

5.2.3 Providing guidance

As is well known, there are two approaches to guidance,
the passive and the active. We adopt the former
approach here. This approach says that (a) upon
enactment of a method block the set of method blocks
that can be enacted next is calculated, (b) the application
engineer is provided this set to select the next method
block to be enacted.

We develop three kinds of guidance here

• Basic guidance
• Operational guidance
• Semantic guidance

The set of dependency graphs of a method defines the
entire basic guidance capability available in the generic
model. Since progression from one method block
instance to the next must follow the directed edges of
these graphs, the enactment of a method block should
initiate the determination of its successor nodes. Thus,
the method blocks that can be enacted next can be
determined and presented to the application engineer.
Operational guidance is built on top of basic guidance
(see Fig. 9) and considers operational behaviour patterns
of application engineers. These patterns form the basis of
partitioning the set of method blocks determined by basic
guidance into sets specific to a behaviour pattern. The
partitions can be presented to application engineers.

Semantic guidance is also built on top of basic
guidance (Fig. 9). However, the basis of classification is
now different from that of operational guidance. We are

o 7,1

o 6,1

o 1,1

Fig. 8 A dependency graph route

Basic Guidance

Semantic GuidanceOperational Guidance

Basic Guidance

Semantic GuidanceOperational Guidance

Fig. 9 Guidance levels
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now not looking for operational behaviour patterns but
for the intention that the application engineer has in
mind. The set of method blocks obtained through basic
guidance are partitioned according to the intention that
they help in fulfilling. Application engineers are then
presented with only those intentional sets that are rele-
vant to the task at hand.

We now consider each kind of guidance in detail.

5.2.3.1 Basic guidance level Consider that the develop-
ment process is just starting out. The application engi-
neer may want to know the objectives that can be
enacted to start off. The guidance mechanism must
display the set START to enable selection of an objec-
tive to be enacted. Once an objective has been selected,
guidance is provided by following the dependency
graphs. Given a node that has been enacted, the graphs
are traversed along the direction of the edges. The suc-
cessor nodes (those that are one edge removed in the
direction of traversal) of the given node for each graph
are determined, the additive–subtractive nature of
dependency types is taken into account and the set of
objectives available for enactment is calculated. This is
the menu from which the next objective to be enacted
can be selected.

Notice that we do not take into account the
urgency and necessity properties of dependencies. This
is because our intention is to present a menu that
identifies what can be done next rather than when it
must be done (urgency) or whether it must or can be
done (necessity).

We formalize the foregoing now. Let there be a set Gi,
called the choice set, which contains the set of method
blocks that can be enacted next after method block in-
stance di has been enacted. Under the passive guidance
approach, Gi is the set of method blocks that is to be
provided to the application engineer by the guidance
mechanism. Initially G0 = START. When di is enacted
then the guidance mechanism computes Gi as follows:

1. For each graph instance in which di occurs, find the
corresponding dependency graph type

2. For each such graph type

For each directed edge going out from the method block
type corresponding to di

Find the successor node, N.
If dependency is additive then Gi=Gi [ N but if it is
subtractive then

Gi ¼ Gi � N :

It can be seen that as each method block instance is
enacted, Gi is modified to reflect the new method blocks
that can possibly be selected.

Consider providing guidance for the process of
Fig. 8. At the start, the guidance mechanism presents O1

as the only objective from which development process is
to begin. After enactment of o1,1 the guidance mecha-

nism determines that its type is O1. The graphs DT1 and
DT2 are traversed from O1. The former yields the set
{O2, O3 O4, O5} and the latter yields {O6, O9}. Thus, the
guidance mechanism suggests the set {O2, O3 O4, O5, O6,

O9}. The application engineer now selects the objective
O6 and proceeds to enact its instance o6,1. The guidance
mechanism determines the sets {O7, O8} and {O13, O14}.
Additionally, taking into account the self-loop on O1,
the set presented is {O2, O3 O4, O5, O6, O7, O8, O9, O13,

O14}. The developer selects an instance o7,1 of O7 for
enactment. This enactment leads to no further addition
in the choice set and O7 is the terminating node in the
graph. Application development may now stop, if the
product meets application needs.

5.2.3.2 Operational guidance level The choice set G
contains all possible method blocks that can be enacted
after the enactment of a method block instance. From
the previous section it can be surmised that that the
choice set Gi grows very rapidly and can become
extremely large. It has been shown in [12] that this large
size makes it very difficult for the application engineer to
select a meaningful method block.

To obviate this difficulty, operational guidance
exploits typical patterns of an application engineer’s
operational behaviour. In computer science such oper-
ational behaviour patterns abound. For example, in
operating systems, page replacement algorithms use
LRU LFU patterns to determine the page to be dis-
carded. Similarly, in programming, it is assumed that
flow of control is sequential. Computers are organized to
increment the program counter by unity under the
assumption that the next sequential instruction shall be
executed. In a similar way, it is possible to postulate the
localization pattern: the application engineer may like to
concentrate on the most recently manipulated product
part. Localization is so named because attention is on
the development of a small, localized part of the prod-
uct.

Let the most recently enacted DPC be d. Two cases
arise as follows:

1. d is unary. Its enactment may result in either a
product part ‘p’ or a ‘don’t care’ being produced.
Localization says that the next DPC may be either
another unary DPC operating on p or ‘don’t care’, or
an n-ary method block having p as one of its argu-
ments.

2. If d is n-ary then the next DPC may have any one or
more arguments of d as its arguments, in addition to
‘don’t care’.

Case (1) continues to maintain focus on the products
of d whereas case (2) provides the possibility of a gradual
movement away from earlier products.

Consider operational guidance in a small part of a
development process as follows. An entity, employee, is
created by a unaryDPC, ([don’t care],<entity, create>).
The operational guidance mechanism computes the
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choice sets for, among other product parts, ‘don’t care’
and ‘employee’. The application engineer chooses to fo-
cus on employee, looks at the employee specific choice set
and decides to define an attribute for employee. A binary
DPC is used to define ‘name’ as an attribute of ‘employ-
ee’, ([name, employee],<entity, attribute, couple>). The
choice set is computed for all part parts including for
name and employee. By (2) above, it is possible to choose
either employee or name as the next product part to be
developed. Focusing on name causes a shift away from
employee. Notice how attentions shift from ‘don’t care’
initially, to ‘employee and then to ‘name’.

Of course, it is possible that an altogether different
product part becomes interesting suddenly, calling for a
clean break from the localization pattern. For example,
after making ‘name’ to be an attribute of ‘employee’, the
application engineer may want to create a new entity
type ‘department’. This is supported by the operational
guidance mechanism by the computation of the choice
set specific to ‘don’t care’.

Let us now consider the guidance mechanism to
support operational guidance. Basically, the mechanism
needs to determine the method blocks that are applica-
ble to each product part comprising the product. Recall
that ‘don’t care’ is a product part of every product. The
localization pattern implies that the guidance mecha-
nism must present only those method blocks that are
relevant to the localized task at hand. Thus, the choice
set Gi is to be partitioned product part wise. Given
product parts P1, P2,...,Pn, to obtain their localized
choice sets Gi1, Gi2,...,Gin, respectively, the following
action is taken

1. For unary di: Determine the product part produced
by di. This can be either ‘don’t care’ or an instance of
a product type, Pj. The application engineer chooses
the product part to be developed further. The choice
set corresponding to this is presented.

2. For n-ary di: Determine the product parts operated
upon, say P1, P2,...,Pn. Then any of Gi1, Gi2,...,Gin

may need to be presented.

Once the partitioned choice sets are available, it is
possible for the application engineer to select the prod-
uct part of interest through any operational pattern
(most recently manipulated, most frequently manipu-
lated) and ask for the appropriate partition.

Method dynamics can now be visualized as a
cycle shown in Fig. 10. At each turn of this cycle, the
enactment mechanism creates localized choice sets for
use by the operational guidance mechanism.

5.2.3.3 Semantic guidance Whereas operational guid-
ance makes assumptions about the operational behav-
iour of application engineers, semantic guidance takes
into account the developmental aim that the application
engineer wants to satisfy. Only that set of method blocks
which helps in achieving this aim is presented to the
application engineer. Thus, if the aim of the application
engineer is to assess the quality of the product, then only
the method blocks that help in quality assessment are
presented. On the other hand, if the aim is to develop the
product further then method blocks for product devel-
opment are presented.

Semantic guidance requires a classification of the set
of method block types according to the aim that each
class fulfils. Let us be given developmental aims A1,
A2,...,An. For each Ai we create a class of method blocks
such that each method block fulfils the aim Ai:

Ai ¼ fDjjDj fulfilsAig:

For example, a method may have the two basic aims
(among others), enforce method constraints and check
heuristics. Then, two classes of method block types
are produced, the former containing method block
types that enforce method constraints and the latter
containing method block types that check for heuristic
satisfaction.

Developmental aims may be aggregates of simpler
developmental aims. As before, there is a class of
method block types for the aggregate aim and it consists
of all those method block types that fulfil the aggregate
aim. The aggregate class is the union of the classes of the
simpler developmental aims. Formally, if AA is an
aggregate of simpler aims A1, A2,...,An then:

AA ¼ A1 [ A2 [ � � � [ An:

In case an aim is an aggregate of others then the
cycle corresponding to the aggregate aim can be
decomposed into a bundle of cycles of lower aims. This
allows the guidance mechanism to operate in a hierar-
chical manner: the developmental aims of the applica-
tion engineer can be ascertained starting from broad,
fuzzy, aggregate aims and going down to increasingly
precise aims. Once the most precise aim has been
obtained, the guidance mechanism presents the choice
set corresponding to this aim. Let there be an aim,
enforce product quality that is an aggregate of enforce
method constraints and check heuristics. Then the
method block types of both these have the aggregate
aim of enforcing product quality. The set of method
blocks for enforce product quality is the union of the
sets of these two.

Method dynamics can now be visualized as multiple
alternative cycles as shown in Fig. 11. Each cycle cor-
responds to a developmental aim of the method. After
the enactment of a method block the application engi-
neer has the choice of following one of several devel-
opmental aims. The various choice sets are computed
upon method block instance enactment. Thereafter,

Partitioned 
Choice Sets

Enact Decision
Compute
Partitioned Choice Sets

Fig. 10 The enactment mechanism

232



depending upon the developmental aim, the appropriate
choice set is presented to the application engineer.

5.2.4 Backtracking

Backtracking is the ability to go back to an earlier
process state. This can happen for two reasons

1. There is dissatisfaction with the product. However,
the product was good up to a DPC enacted earlier.
Therefore, the product and process has to be restored
to this state and a new development route is to be
followed. We refer to this as backtracking in the
jettison mode.

2. There is no real dissatisfaction with the product.
However, the application engineer wants to explore
another development option starting from some
earlier state. We refer to this as exploratory mode
backtracking.

In terms of dependency graphs, backtracking can be
understood to be the inverse of guidance: whereas
guidance deals with ‘next nodes’, backtracking is con-
cerned with ‘previous nodes’.

Let the most recently enacted DPC be DPCn =
([ppn], mbn). Let it be desired to backtrack to DPCk =
([ppk], mbk). Then, the enactment mechanism must
undoDPC starting from DPCn till DPCk is reached. The
mechanism to handle this is as follows:

Step 1: If backtracking is in the exploratory mode then
save the current product, process, and all
dependency graph data

Step 2: Repeat till DPCk is reached

Step 2(a): Restore to [ppn�1] by enacting the inverse of
mbn.

Step 2(b): Move back in dependency graphs to the
predecessor node mbn�1 of mbn.

Step 2(c): Discard the node DPCn from the process and
establish DPCn�1 as the last process node
enacted

As an example of backtracking consider the devel-
opment process of Fig. 8. Let backtracking occur in
exploratory mode after o7,1 has been enacted. First the
current product, dependency graph data, and the pro-
cess is saved. Now, let I(mbn) refer to the inverse of
method block mbn. Then, as per step 2(a) above, the

DPC ([ppn], I(o7,1)) is enacted. This restores the product
to [ppn�1].

5.2.5 Providing traceability

Traceability uncovers the process history that led to the
enactment of a DPC. Equivalently, it tells the applica-
tion engineer the evolution history of the product, that
is, how did the product evolve to reach its current form.
Traceability is similar to backtracking in that interest is
in previous nodes of dependency graphs. However,
traceability is different from backtracking in its purpose.
When backtracking, the aim is to restore development
status to a previous product and process state and to
proceed with the development process from this restored
point. On the other hand, when tracing, interest is in
knowing previous development steps. Thus, traceability
provides a re-run of the DPCs that were enacted in the
past. No restoring of the product or process to an earlier
development status is required.

The generic model provides traceability in two
modes, burst or decrement mode. Decrement mode
traceability assumes that the application engineer wants
to examine evolution step by step as it occurred. In burst
mode traceability, the application engineer wants to
examine evolution from some pth earlier DPC.

To provide traceability, the complete process is saved
as for backtracking. However, it is not required to save
dependency graph instances. Let the most recently en-
acted DPC be DPCn. In decrement mode, DPCn�1 is
displayed and position established at it for supporting
further traceability. Further invocation of decrement
mode traceability causes DPCn�2 to be displayed. In
burst mode, DPCn�1, DPCn�2,..., etc. are displayed until
the pth earlier DPC is reached.

In our example process of Fig. 8, decrement mode
traceability will cause o6,1 to be displayed. If asked for
again then o1,1 shall be displayed. If instead of decre-
ment mode traceability is used to trace back two steps,
then first o6,1 and then o1,1 shall be displayed.

5.2.6 Quality checking

In Sect. 5.2 we had postulated quality checking method
blocks. When these are enacted the application engineer
is provided information about product quality. The
basics of our quality checking approach are found in the
representation theory of measurement of software
engineering. According to this theory, entities have
quality attributes that are measured through metrics.
For example, a software product is an entity. It has
attributes size and complexity. The former is measured
using the lines of code metric. Similarly, the latter is
measured using the order O metric.

We extend this to include IS products and
their quality attributes. Consider for example the
generalization–specialization hierarchy. It has an attri-
bute called depth that can have an associated metric

Compute 
semantic 
choice sets

Compute 
semantic 
choice sets

Semantic 
choice 
sets

Enact DPC for A1

Enact DPC 
for A2

Compute 
semantic 
choice sets

Enact DPC 
for A2

Fig 11 The dependency cycle
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with it. The depth of the hierarchy is controlled though a
depth heuristic that, in the case of OMT, suggests that it
be restricted to about five levels deep. A number of
method constraints are specified in methods. There are
four [6] such: completeness, conformity, fidelity and
consistency. These are imposed on IS products and can
be treated as attributes of these products. Again, we
associate metrics with this.

The association of metrics with IS products makes it
possible for us [24] to compute the metric value and
return to the application an indication of whether the
product parts of interest satisfy or do not satisfy the
heuristic or constraint attributes. For this purpose we
define quality method primitives as indicated earlier. As
examples of these consider

\entity; check completeness >
\ISAhierarchy; check depth heuristic > :

These primitives participate in a dependency structure
with others. For example, since the creation of an entity,
employee, calls for its completeness check, we have

\entity; create >!\entity; check completeness > :

This is a type 3 dependency in terms of Table 1: it must
be checked that a created entity is complete but this
check can be deferred till an appropriate moment.

Since the enactment of a quality method primitive
gives information about whether the quality of the
product part is satisfactory or not, it is possible for the
application engineer to decide which method primitive
to enact next.

5.2.7 The enactment algorithm

At the heart of method dynamics is the enactment
algorithm that embodies in it support for process
enactment, guidance, backtracking and traceability.
Thus, it provides all the features that we have discussed
so far in this section.

The algorithm assumes that application engineers
have a number of different courses of action available
and select one of these. These courses of action are rep-
resented in the algorithm as the set, possibility. Possi-
bility contains in it the set of DPCs that are available for
enactment. Under the passive guidance scheme outlined
earlier, this set may be displayed depending upon the
guidance mode: basic, operational, semantic or hybrid.
The application engineer makes a selection from Possi-
bility and the selected DPC is enacted. This leads to a
modification of Possibility. In other words, given possi-
bilityi�1, a DPC is enacted and this results in possibilityi.

With each enacted DPC, three cases arise. The
application engineer

1. Makes a fresh selection from possibilityi
2. Desires to backtrack in either exploratory or jettison

mode, or
3. Wants to trace the development activity so far

In order to handle (2) and (3) above, we introduce
special method blocks as follows:

1. <‘don’t care’, jback> for backtracking in the jetti-
son mode

2. <‘don’t care’, eback> for backtracking in the
exploratory mode

3. <‘don’t care’, trace(P)> for tracing. P specifies the
size of the burst mode trace. By default, trace is
decrement mode only

Define possibility, Pi to be the set of all DPCs that are
available for selection at a given moment and Si is the
selected DPC from among these for enactment. Pi+1 is
computed by considering the instances of the depen-
dency graphs and by determining the contributions
made by the dependencies:

1. The additive–subtractive nature of dependencies tells
us the DPCs that become eligible or ineligible for
enactment. This suggests two sets ADD(Si) and
SUB(Si). The former identifies all the dependent
DPCs that become available on account of additive
dependencies, due to enactment Si. The latter iden-
tifies the dependent DPCs that must be made
unavailable on account of subtractive dependencies
due to Si.

2. The necessity property of dependencies tells us whe-
ther additive DPCs are to be mandatory or optionally
enacted. This suggests that we partition ADD(Si) into
two sets MAND(Si) and OPT(Si) such that

ADDðSiÞ ¼MANDðSiÞ [OPTðSiÞ:

3. The urgency property tells us the time of enactment
of a dependent DPC. Thus, it does not make a con-
tribution to Pi.

Let there be two sets, READY(Si) and PEN-
DING(Si). The former computes the set of optional
DPCs after the enactment of Si and the latter, the set of
mandatory ones. Then

READYðSiÞ ¼ READYðSi�1Þ [OPTðSiÞ � SUBðSiÞ
PENDINGðSiÞ
¼ PENDINGðSi�1Þ [MANDðSiÞ � SUBðSiÞ:

Putting together the various components, possibility,
Pi+1 is defined as

Piþ1 ¼ READYðSiÞ [ PENDINGðSiÞ:

Note that when the development process starts out then
the initial Pi = P0 = START. We start with a null
product. Consequently, the only product part available
is ‘don’t care’.

It can be seen that the enactment algorithm supports
the dynamic properties of our generic model. All three
kinds of guidance, namely, basic, operational, semantic,
and hybrid are supported by the foregoing algorithm as
follows:
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• The set Pi contains in it the set of all DPCs that can be
enacted after Si. This corresponds to the basic guid-
ance level introduced earlier.

• By partitioning Pi part-wise into APSETs we are able
to provide support for operational guidance. It the
application engineer determines the product part of
interest then it is possible to display all applicable
DPCs.

• The partitioning of Pi aim-wise makes available the set
of DPCs that meet a given aim. The partitioning of
each such set into AIMAPSETs provides support for
hybrid guidance.

Backtracking is supported naturally due to specific
method blocks for its different forms. Since these oper-
ate on the product part ‘don’t care’, backtracking can be
invoked anytime in the development process. Support
for backtracking is described in Sect. 5.2.5.

Traceability is supported through the introduction of
specific method blocks that operate on ‘don’t care’.
Traceability can be invoked any time in the development
process and the support needed for this is described in
Sect. 5.2.6.

6 Conclusion

We have shown in [16] that it is possible to use the
generic model to engineer meta-models. Additionally we
have shown in [25] that it can be used for engineering
‘application-centric’ methods as well. For reasons of
space, we shall deal with the meta-model and method
engineering mechanisms associated with the generic
model in a separate paper.

A prototype generic-CAME tool for the generic model
has been implemented by a group of students. A more
robust implementation is currently ongoing. This generic-
CAME tool shall provide an integrated environment for
meta-model and method engineering. We intend to use it
to do engineering of (a) meta-models like GOPRR (b)
methods for real businesses as well as (c) applications in
artificial intelligence like playing games with blocks.

Our work with the generic model has so far been
centred around ‘hard’ methods. We have been con-
cerned with the technical issue of building products and
have not considered ‘soft’ methods.

To our knowledge, the only other work that uses the
term ‘generic model’ in the context of methods is [26]. It
develops an assembly of ways of doing situational
method engineering and a selection from this assembly is

to be made. Genericity exists in the sense that the col-
lection of methods forming the assembly can all be used
to carry out the same common intention, that of doing
situational method engineering. Thus, the intention of
the assembly is shared by or is typical of a whole group
of methods. This meets the criterion for it to be generic.

It is to be seen that our generic model is not an
assembly of methods. It is a system of concepts and
inter-relationships, it is a model. It is not possible to
select a method in our case. Rather meta-models and
methods can be engineered from it. In the assembly
approach, the method has already been engineered and
is available, as part of the assembly, for selection.

Appendix 1

We show here an example of the use of the generic
model by instantiating it with the meta-model of [12].
For reasons of space, we assume knowledge of this
meta-model and shall not explain its concepts. The focus
shall be on giving a flavour of the way the generic model
can be instantiated to yield the meta-model. Thereafter
the CAME tool, MERU, reported in [25] can be used to
engineer the method itself.

The static part of the generic model is instantiated to
yield meta-model statics, instances of method blocks and
the set of dependencies between these. In our meta-
model, method blocks are instantiated to purposes,
product primitives to conceptual structures and fixed
structures, and process primitives to operations which
can be of two types, product manipulation and quality
checking. There are four dependency types, require-
ments, removal, activate and inactivate. The set of
dependencies is instantiated with dependencies between
purposes of different types.

Through the click and drag features of the generic-
CAME tool, the instantiations of product primitives with
conceptual and fixed structures shown in Figs. 12 and 13
are arrived at. As shown in Fig. 12, conceptual structures
can be partitioned into two clusters. The first cluster

conceptual 
structure

definitional constructional Linkconstraintsimple

complex

collection 
of 
concepts

##

Fig. 12 The conceptual
structure

Fixed Structure

Method 
Constraint

Heuristic Design 
Factor

Environmental 
Factor

Fig. 13 The fixed structure
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classifies them as either simple or complex. The second
cluster partitions conceptual structures into disjoint
classes of structures called constraint, definitional, con-
structional, link and collection of concepts, respectively.

Figure 13 shows the product primitive instances that
identify the criteria that must be met by a good quality
product. There are four kinds of fixed structures as
shown. Again, these are created by the drag and drop
facilities of the generic-CAME tool.

Operations identify the instances of process primitives
of the generic model that operate upon conceptual and
fixed structures to provide product manipulation and
quality checking capability to application engineers.
Again, the generic-CAME tool is used to produce
Fig. 14.

There are two operations in the basic life cycle class,
create and delete. The relational class of operations is
axiomatically defined and this definition can be found in
[15].

A purpose is an instance of the method block of the
generic model. It is a pair

Purpose ¼\structure; operation > :

Thus, the following are purposes

\simple constructional structure; create >

\simple constructional structure; method constraint;

method constraint enforcement > : ð30Þ

The definition of the set of meaningful purposes of the
meta-model is supported by the generic-CAME tool
which generates the cross product of structure and
operation. This cross product is presented and the
meaningful purposes are then selected. The complete set
of purposes can be found in [25].

Finally, the set of dependencies of different types are
instantiated and the generic-CAME tool keeps an
internal representation of the dependency graphs.

The enactment algorithm is inherited by the meta-
model. Therefore, its full enactment power including
guidance, tracing and backtracking is available. The meta-
model is validated using this algorithm to enact typical
purposes expected to be found in a method which, in turn,
shall be produced from the meta-model.

Appendix 2: Glossary
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