
ORIGINAL ARTICLE

Artem Katasonov Æ Markku Sakkinen

Requirements quality control: a unifying framework

Received: 15 November 2004 / Accepted: 9 September 2005 / Published online: 7 October 2005
� Springer-Verlag London Limited 2005

Abstract Literature tends to discuss software (and
system) requirements quality control, which includes
validation and verification, as a heterogeneous process
using a great variety of relatively independent tech-
niques. Also, process-oriented thinking prevails. In this
paper, we attempt to promote the point that this
important activity must be studied as a coherent entity.
It cannot be seen as a rather mechanical process of
checking documents either. Validation, especially, is
more an issue of communicating requirements, as
constructed by the analysts, back to the stakeholders
whose goals those requirements are supposed to meet,
and to all those other stakeholders, with whose goals
those requirements may conflict. The main problem,
therefore, is that of achieving a sufficient level of
understanding of the stated requirements by a partic-
ular stakeholder, which may be hindered by, for
example, lack of technical expertise. In this paper, we
develop a unifying framework for requirements quality
control. We reorganize the existing knowledge around
the issue of communicating requirements to all the
different stakeholders, instead of just focusing on some
techniques and processes. We hope that this frame-
work could clarify thinking in the area, and make
future research a little more focused.

1 Introduction

It is commonplace that errors in a software or a system
development project are costlier, the earlier they are
committed and the later they are detected. Glass states
as one of his 55 facts: Requirements errors are the most

expensive to fix when found during production but the
cheapest to fix early in development [1].

Boehm [2] claimed that savings up to 100:1 are pos-
sible by finding and fixing requirements problems early
rather than late in the life-cycle, and that besides the
savings there are also significant payoffs in improved
reliability, maintainability, and human engineering of
the resulting software product.

Rigorous Requirements Engineering (RE) [3] is
therefore considered to be the cornerstone for efficient
development of quality software and systems. It is
acknowledged that the requirements should be explicitly
elicited, negotiated and documented, and then followed
through in design and implementation.

Obviously, the quality of the developed software relies
on the quality of the requirements themselves. Therefore,
requirements quality control is recognized as a necessary
activity in RE. As quality control of any work product,
requirements quality control includes two parts: valida-
tion and verification. Although these are conceptually
different activities, in practice they are almost insepara-
ble. For this reason, also for the sake of brevity, and also
because requirements quality control as such mainly be-
longs to the validation side of the quality control process
for the software system being developed, most RE liter-
ature sources use the word ‘‘validation’’ to denote both
validation and verification, i.e., the whole requirements
quality control process. In Sect. 2 we will clarify the dis-
tinction between validation and verification, and com-
ment on the consequences of clubbing the two.

Requirements quality control is in the intersection of
two established research areas: RE and Software V&V
(verification and validation). In the latter, mainly soft-
ware testing is studied, but quality control in earlier
phases of the development is treated as well. Unfortu-
nately, as the literature review reveals, requirements
quality control seems to be somewhat marginal for both
areas. Some books on RE contain a single chapter
dedicated to it, but others only mention it occasionally.
In books on software V&V, it is rare to find a whole
chapter about requirements quality.

A. Katasonov (&) Æ M. Sakkinen
University of Jyväskylä, Jyväskylä, Finland
E-mail: artem.katasonov@titu.jyu.fi
E-mail: sakkinen@cs.jyu.fi

Requirements Eng (2006) 11: 42–57
DOI 10.1007/s00766-005-0018-1

Moreover, literature tends to discuss software (and
system) requirements quality control as a heterogeneous
process using a great variety of relatively independent
techniques, rather than treating it as a coherent activity.
Most books present some set of ‘‘good practices’’, whose
application may contribute to the quality of require-
ments and to one’s confidence in this quality. Good
practices for requirements validation and analysis listed
by Wiegers [4] include the following: inspect require-
ments documents, write test cases from the require-
ments, create user interface prototypes, model the
requirements with various diagrams, and analyze
requirements’ feasibility. The first edition of that book
[5] included also the practice of drafting a user manual.
Hetzel [6] names three possible ways of testing software
requirements: through understanding them, through
test-case design, and through prototypes. Bashir and
Goel [7] list the following ‘‘typical activities in require-
ments testing‘‘: comprehend requirements, mental test
requirements, define use cases, create test cases, test
completeness, test consistency, create or update proto-
type, and solicit feedback from users. Validation tech-
niques discussed by Kotonya and Sommerville [8] are:
requirements reviews, prototyping, validation of formal
models, and designing test cases. Each of these books,
explicitly or implicitly, recommends the application of
all (or most) of its listed good practices in a development
project. Also, none of these authors discusses the way
that different good practices in their lists might be con-
nected to each other.

It is also very rare to see a journal or conference
paper devoted to requirements quality control and dis-
cussing it as a whole. Recent research articles as a rule
discuss one of the known good practices, or even some
details of it. Some older articles can be found, such as
those by Boehm [2, 9], but they belong to the same
tradition as the books above. Boehm lists many different
practices for requirements validation classifying them
into simple manual techniques (reading, interviews,
checklists, simple scenarios, manual cross-referencing,
manual models), simple automated techniques (auto-
mated cross-referencing, simple automated models),
detailed manual techniques (detailed scenarios, mathe-
matical proofs), and detailed automated techniques
(detailed automated models, prototypes). It is notable
that this list and an earlier paper by Boehm [10] show
that 30 or 20 years ago people tended to be more opti-
mistic about the possibilities of automation in require-
ments quality control than today.

We believe that both phenomena—the limited atten-
tion to requirements quality control and not treating it
as a coherent entity—are consequences of the two key
assumptions that frame traditional RE [11]. The first one
is that requirements exist ‘out there’ in the minds of
stakeholders (users, customers, clients), and that they
only need to be elicited through various mechanisms.
The second is that the key stakeholders operate in a state
of goal congruence, in which there is widespread
agreement on the general goals of the system under

development. Under these assumptions, even validation
of requirements is nothing more than checking whether
the analysts have understood the stakeholders’ intention
correctly and have not introduced any errors when
writing the specification. Accordingly, Kotonya and
Sommerville [8] define requirements validation quite
narrowly as checking the requirements documents for
consistency, completeness and accuracy.

At present, it is increasingly acknowledged that the
above assumptions seldom hold true (e.g., [11]).
Requirements are not discovered but constructed, and
there is usually at least some goal incongruence between
stakeholders (see Sect. 2). If one agrees with that, one
must also realize that requirements validation has a
wider meaning than that explained above. It is not a
mechanical process of checking documents. It is more an
issue of communicating requirements, as constructed by
the analysts, back to the stakeholders whose goals those
requirements are supposed to meet, and to all those
other stakeholders, with whose goals those requirements
may conflict.

In this article, we develop a general framework for
requirements quality control. Our main goal is to pro-
mote the point that it must be studied as a coherent
entity. Also, the focus of attention must be moved from
the process to human communication issues, i.e., com-
munication between analysts and stakeholders. From a
practical perspective, we do not develop much new
prescriptive knowledge, but rather reorganize the exist-
ing body, in our opinion, in a more sensible way. Instead
of focusing on some techniques and processes, we focus
on the issue of achieving a sufficient level of under-
standing of the stated requirements by every stake-
holder. We hope that this framework could clarify
thinking in the area, and make future research a little
more focused.

2 The role of requirements validation

The first of the two key assumptions that frame tradi-
tional RE is that requirements exist ‘out there’ in the
minds of stakeholders and need only to be elicited from
there [11]. However, this assumption is generally false.

Fig. 1 depicts the model of Michael Jackson [12, 13].
When developing a system (machine), one needs to

answer three questions, one after another:

1. What is the effect on the environment that is desired?
2. What would the behavior of the machine on the

boundary (interface) be that would achieve the de-
sired effect on the environment?

3. What would the internal behavior and structure of
the machine be that would lead to the needed
behavior on the boundary?

When answering the first question, one defines the
outer requirements (in terms of [13]) for the system being
developed. When answering the second question, one
defines the inner requirements (which are usually meant

43

when one speaks of ‘‘requirements’’), and giving an
answer to the third one means designing the machine.

As can be seen, there are two problem-solution iter-
ations. The outer requirements pose a problem and the
inner requirements are proposed as satisfying them. In
turn, the inner requirements pose the next-level problem
to be addressed by the design. Requirements engineering
is mainly concerned with specifying the behavior of the
machine, as visible to the stakeholders, i.e., with defining
the inner requirements, and therefore should be seen
rather as a problem-solving process, not just a problem-
stating one.

The focus of attention of software end-users and
customers is on the outer requirements. One practical
implication of this fact is that when a customer says ‘‘I
want a software system that does that and that ...’’, he
means actually ‘‘I want a system that would have such
an effect on me and my organization. And I think that
such an effect would be achieved with a system doing
that and that ...’’. In other words, when a customer is
‘‘stating his requirements’’, he is actually just proposing
an answer to question 2 in the list given above.

To be able to answer that question in an effective and
feasible way, one obviously needs to possess not only
domain knowledge but also technical expertise. Software
end-users and customers are seldom experts in com-
puters and software. Therefore, the customer’s proposed
answer is seldom complete, and the requirements ana-
lysts need to elaborate it further. Also, the customer’s
original answer is seldom the best, and the analysts
should be critical about it (the customer is not always
right) and expect it to change as the customer’s under-
standing evolves.

Even while it may also not be absolutely true, one can
assume that a project’s customers will be able to state
properly their outer requirements, i.e., the effects they
expect. However, it is not wise to assume that they will

be able to resolve those outer requirements themselves
and specify what exactly the machine needs to do in
order to cause the desired effects. Therefore, the inner
requirements cannot be really discovered from the
stakeholders, but need to be actively constructed by the
requirements analysts.

For the present discussion, the most important con-
sequence of this fact is that there is an obvious need for
an information flow about requirements being con-
structed from the analysts to the stakeholders. Main-
taining this information flow is the core of the
requirements validation activity, the same way as
maintaining the flow from the stakeholders to the ana-
lysts is the core of the elicitation activity. The goal is to
give the stakeholders a chance to check early whether the
solution proposed will really solve their problem. In fact,
this is easier than to develop a solution oneself and re-
quires less technical expertise. However, some technical
expertise is still required just to understand the
requirements as stated. This makes requirements vali-
dation far from being a trivial task.

With the discussion above, we attempt to justify
requirements validation as a very important part of RE.
We also attempt to justify validation as a separable part
of RE, even while practical means used in the validation
may overlap, to a large extent, with the means used in
the other RE activities. While elicitation and analysis are
an attempt to cross the boundary from the domain
world to the machine world, validation is an attempt to
cross the same boundary but in the opposite direction, in
order to create a feedback cycle.

Actually, some technical expertise is required already
for knowing what environmental effects can, in princi-
ple, be caused by computers and software. Therefore,
customers are not always able to state even their outer
requirements satisfactorily right from the beginning
of a project. Existence of the validation feedback link

Environment

Machine

Environment
phenomena:

a. true regardless
of the machine

(Domain analysis)

Machine
phenomena

(Design)

Shared
phenomena,
interface

(Inner
requirements)

Environment
phenomena:

b. effect of the
machine

(Outer
requirements)

Fig. 1 Environment, machine, and boundary

44

stimulates the evolution of customers’ understanding
and therefore works also as a catalyst of the elicitation
process.

All the above holds true even in the simplest project
with a single customer. In more complex projects, with
many stakeholders, the situation is more complicated.
The second of the two key assumptions that frame tra-
ditional RE is that the key stakeholders operate in a
state of goal congruence, in which there is a widespread
agreement on the general goals of the system under
development [11]. However, in practice there is usually
at least some goal incongruence between stakeholders.
This increases the importance of requirements validation
even more, because requirements, as constructed, need
to be communicated not only to the stakeholders whose
goals those requirements are supposed to meet, but also
to all other stakeholders with whose goals those
requirements may conflict. This makes validation more
difficult. Since different stakeholders are likely to have
different backgrounds, in addition to lacking technical
expertise, validation needs to overcome any potential
lack of some special domain knowledge. As a result,
validation becomes a communication issue even more,
rather than a process-to-follow issue.

We need to clarify also the difference between vali-
dation and verification of requirements. The concept of
validation is often seen to answer the question ‘‘Am I
building the right product?’’. It is therefore checking a
work product (the final software or the output of a given
phase of the development cycle) against higher-level
work products or authorities that frame this particular
product. In contrast, verification is seen to answer the
question ‘‘Am I building the product right?’’. It is
therefore checking a work product against some stan-
dards and conditions imposed on this type of product
and the process of its development.

When considering a requirements specification as a
work product, we can say that only the system stake-
holders can validate the requirements. However,
requirements verification can be performed more or less
by the requirements analysts themselves. Validation re-
quires the domain and the problem knowledge, but for
verification one needs knowledge of RE, logic, language,
etc. The quality of requirements is usually measured
with a set of quality attributes (see Sect 4.1.2). Whether
one speaks of verification or validation depends actually
on which of the attributes are in question, as is shown in
Fig. 2.

Completeness, consistency and unambiguousness are
somewhere in the middle. This does not mean that it is
impossible to say whether we are validating or verifying
those attributes. It means that, generally, those attri-
butes have to be validated by the stakeholders; however,
also some verification is possible. Some omissions,
inconsistencies, and ambiguous statements can often be
identified without any knowledge of the specific domain
or the problem. It can be done ad hoc or with the help of
some simple verification techniques. An example is
CRUDL (Create-Read-Update-Delete-List) [4] for

identifying missing requirements. That technique
mechanically checks whether each data entity has at
least one use case in which it is created, at least one in
which it is used, and at least one in which it is deleted.

While requirements validation and verification are
conceptually different activities, in practice they are al-
most inseparable. When a person, for example, reviews a
requirements document, he uses all his knowledge
simultaneously, both the domain and the problem
knowledge needed for validation, and the knowledge
needed for verification, i.e., knowledge of RE, logic,
language, etc.

This inseparability seems to be one more reason for
limited attention to validation as the issue of commu-
nicating the requirements back to stakeholders. It is
because it is shaded by the more mechanical and pro-
cess-oriented nature of verification.

3 The unifying framework

As we discussed in Sect 2, the central problem in
requirements validation, and therefore in requirements
quality control in general, in our opinion is communi-
cating requirements, as constructed, back to the system
stakeholders. It is a problem because the customers and
end-users are likely to lack technical expertise. Also,
stakeholders are likely to have different backgrounds
and as a result lack each other’s special domain
knowledge. While elicitation and analysis are attempts
to cross the boundary from the domain world to the
machine world, validation is an attempt to cross the
same boundary in the opposite direction. The difficulty
of the former is well acknowledged, and the latter can be
almost as difficult.

The goal of the research reported in this article is not
to come up with an ultimate solution to this problem.
We attempt rather to lay the foundation for that by
reorganizing the existing body of prescriptive knowledge
in a way more appropriate for the task. As we already
discussed, the present RE literature treats requirements
quality control neither as an issue of communication,
nor as a coherent entity. Also, validation is somewhat
shaded by the more mechanical and process-oriented
nature of verification.

Most RE literature sources propose, for requirements
quality control, some unstructured sets of ‘‘good prac-
tices’’ of various kinds. By generalizing about the nature
of those practices, we can, however, distil several rele-
vant basic ideas. Given that the goal is to facilitate a
human’s understanding of some stated requirements for
a system (i.e., understanding of a proposed machine’s
behavior and effects in the environment that the
behavior will cause) and so give him a chance to validate
(and verify) them, one could:

– Present the requirements in a form that can be better
understood by this specific person.

– Give him an explicit task to accomplish. Based on
the ‘‘good practices’’ available we can identify two

45

possible tasks: looking for defects, i.e., review, and
translating requirements from one representation
form to another.

– Split the review problem into several smaller sub-
problems, by defining a set of attributes of the
requirements quality to consider.

– Split the review problem even more, by describing
some smaller steps to accomplish. Here, different ap-
proaches are possible leading to what is often called
reading techniques. The present literature does not
seem to propose much beyond that. Based on these
basic ideas, we developed a general framework for
requirements quality control. This framework covers
all the good practices we ever encountered in litera-
ture. It also covers both validation and verification.

The framework is depicted in Figs. 3 through 5.
Fig. 3 presents the structural view of the framework,
while Fig. 5 shows the procedural view of it, i.e., the set
of steps that need to be performed. Fig. 4 presents the
taxonomy of the framework, listing the set of possibili-
ties that the present literature provides for each of the
structural elements of the framework.

As can be seen, visualizations, test cases, prototypes,
etc., are interpreted as different representation forms, to
which requirements are translated and then, possibly,
reviewed. Scenario-based validation, which is popular in
research literature, is interpreted as a review based on
using scenario-based reading, as contrasted to ad hoc,
checklist, etc. reading.

In the center of the framework, there is the review
task. This is not a single event. A set of reviews is to be
conducted, some consecutively and some in parallel. For
each single review, some subsets from the four pools
need to be selected:

1. Stakeholders A stakeholder is a person, group, or
organization that is involved in the system develop-
ment, affected by the system, or can affect the system
[4]. This covers the development team, including the
requirements analysts. This pool will be discussed in
Sect 4.1.3.

2. Representation forms Requirements can be repre-
sented in a variety of different forms. However, be-
sides a natural language description, each form can
only provide a partial view of the requirements for a
system. This pool will be studied in Sect. 5.

3. Requirements quality criteria These criteria specify
what is to be considered as requirements defects. This
pool will be discussed in Sect 4.1

4. Reading technique There are different techniques to be
used during a review, mainly related to the type of
guidance the reviewers receive for accomplishing their
task. This pool will be studied in Sect 4.3.

Thus, in our framework, a requirements review is a
process in which a subset of the system stakeholders
investigates the requirements represented in one or more
of the available forms, using one or more of the avail-
able reading techniques, based on a subset of the quality

Requirements
Quality Criteria

Reading
Techniques

1. Review

Stakeholders

Representation Forms

se
le

ct
se

le
ct

selectselect

2. Translation

id
en

tif
y

m
is

si
ng

Fig. 3 The structural view of
the framework

Correct

Feasible

Necessary

Prioritized

Validation Verification

Complete

Consistent

Unambiguous

Concise

Traceable

Non-redundant

Organized

Conformant to
standards

Verifiable

Fig. 2 Requirements validation
and verification

46

criteria defined. These four determinants of the review
process will be studied in the rest of the paper, in sec-
tions referred to above. Also, the process itself will be
briefly discussed in Sect. 4.2.

Stakeholders are the ones whose goals the require-
ments are supposed to meet, and therefore, the ones who
should conduct the reviews. In practice, however, sur-
rogates for some stakeholders often need to be used, and
can be either representatives or experts. For example, a
project may need to hire an attorney to be a surrogate of
the stakeholder ‘‘government’’, i.e., to validate that the
system’s behavior will comply with existing laws and
regulations.

Also, if the requirements document or some part of it is
in a sufficiently formal language, some quality properties
can be automatically verified by software. In this paper,
we will not discuss much such automated checking. One
reason for this is that only a small part of requirements
quality control can be automated, even in theory, and
only in areas belonging to the verification side. Checking
for inconsistencies between requirements expressed in
suitable formalism is the main candidate for automation.
Some further reasons for not elaborating about
automated checking are given in the beginning of Sect 5.

Practice shows that it is quite easy to overlook a
specific type of stakeholder if they are not actively in-

Fig. 5 The procedural view of
the framework

Review Translation

Process Quality
Criteria

Stakeholders Reading
Techniques

Representation
Forms

Quality Control

General issues:
1. Separated from
domain model
2. Separated from
implementation
3. Specific

Statement level:
1. complete
2. correct
3. unambiguous
4. feasible
5. necessary
6. prioritized
7. verifiable
8. concise

As a whole:
1. complete
2. consistent
3. non-redundant
4. traceable
5. organized
6. conformant to
standards

Informal

Formal
Inspection

3-dimensional
model:

Life-cycle phase
System level

Goal vs. Means

Ad-hoc

Checklist-based

Defect-based

Perspective-based

Scenario-based

Pattern-based

Structured text

User manual

Visualizations

Lightweight
formal models

Prototype

Test cases

Fig. 4 The taxonomy of the
framework

47

volved in the project, and thus the corresponding
requirements. For example, Wiegers [4] warns against
overlooking indirect or secondary users of a software
system that might not use the application directly and
instead access its data or services through other appli-
cations or through reports. Therefore, one important
function of the reviewing activity is validating whether
all the relevant stakeholders are taken into account. A
review may thus identify some missing stakeholders,
which then will enrich the stakeholders pool.

In the framework, there is also the translation task. It
means that requirements are translated from one rep-
resentation form to another. This has two goals.

First, it is not considered feasible to maintain several
concurrent representations of requirements because of
modifiability problems. Therefore, usually only one
form is maintained, for example, a natural-language
structured requirements specification, while others are
created on demand for validation purposes. The idea is
that a specific form is believed to be better understood
by a specific group of reviewers. In addition, the new
form may be amenable to automated checking.

Second, some requirements defects can be found
during the translating process itself. The translation
process may fail (translation turns out to be partially
impossible), thereby pointing to some ambiguity, com-
pleteness, consistency defects etc. Also, if two or more
persons translate independently and the results are sig-
nificantly different, this also points to problems (mainly
ambiguity) in the document.

An issue here is that the result of translation could
deviate from the original, i.e., the translation process by
itself could introduce new defects or correct existing
ones. The former case is actually less problematic. An
error introduced can get spotted and as a result can lead
to identification of some ambiguity in the original doc-
ument. Otherwise, if it goes unnoticed, this can create a
problem only if the translated form is to be kept along
with the primary form and is to be used later in the
development process. Even so, the inconsistency be-
tween the two forms will probably be spotted later. A
more interesting situation is created when a person
performing translation inadvertently fixes a defect
present in the original. The new form gets validated, but
the defect stays in the primary representation form and
may finally appear in the implemented system. The lit-
erature does not discuss this issue much. At this stage,
we cannot provide specific recommendations either.

As can be seen in Fig. 5 presenting the procedural
view of the framework, there is a set of steps where some
choices are to be made. A list of some basic criteria that
could direct the selection process follows:

– The stakeholder’s domain knowledge. This obviously
affects the set of requirements that can be validated by
him/her, and also the set of quality attributes he/she
can evaluate.

– The stakeholder’s technical expertise. This is the main
criterion for choosing between requirements repre-

sentation forms. We could arrange them in the
ascending order of required technical expertise: pro-
totypes, user manual, test cases, structured text, dia-
grams, and formal models. Prototypes are probably
the best form for non-technical stakeholders such as
end users and customers, while diagrams and formal
models can be appropriate for technical stakeholders
such as developers or maintenance staff. The avail-
ability of technical expertise also defines whether the
stakeholder can evaluate some quality attributes such
as feasibility.

– The stakeholder’s knowledge of RE. This is relevant
for selecting reading techniques. An experienced per-
son could be left more or less on his own, i.e., to
perform an ad hoc review, while less experienced
stakeholders require some assistance to be provided,
i.e., checklists, procedures, scenarios, etc.

– The resources available. This is obviously a limiting
factor, since development of both reading assistance
tools and alternative representation forms requires
time and effort. Based on the schedule and/or budget
on the one hand, and on the project priorities
(whether quality is a project’s driver) on the other,
the choice may be limited to cheaper alternatives
only. In Sects. 4 and 5, we will tackle review and
translation tasks, correspondingly. As already said,
our goal was not to develop new prescriptive
knowledge but to reorganize the existing body.
Therefore, we only identify the set of possibilities
that the present literature provides for each of the
structural elements of our framework (as depicted in
Fig. 4) and discuss them, but do not attempt to
propose any novel ones.

4 Reviewing requirements

Every time someone other than the author of a software
work product examines the product for problems, a
technical review takes place [4]. Requirements review is
the basic activity in which requirements are validated, or
in which requirements defects are identified. At best, all
the stakeholders of the software system should partici-
pate in this activity. This is not always possible however,
and identifying all of them can be a difficult task in itself
(see Sect. 4.1.3). Requirements presented in different
forms can be reviewed.

The basic issues about requirements reviews are (1)
what to check for, (2) what process to follow, and (3)
what reading technique to use. These questions will be
discussed in the following subsections.

4.1 Requirements Quality

The straightforward answer to the question about what
to check for in the requirements documents during
review is simple: that the requirements are of high
quality. However, this does not explain much.

48

As mentioned in Sect 2, the quality of any software
engineering work product includes ‘‘being right’’, i.e.,
compliance with higher-level work products or author-
ities that frame this particular product, and ‘‘being built
right’’, i.e., compliance with the standards and condi-
tions imposed on these types of products and the process
of their development.

‘‘Being right’’ for a system design could be defined as
compliance with the stated requirements. In fact, the
question is about how well the requirements are fulfilled
if the implementation is made strictly according to the
design. Obviously, this is not easy to assess before
the working software has been built. ‘‘Being right’’ for
the requirements themselves can only be defined with
respect to the ‘‘highest authority’’, namely the stake-
holders’ opinion. In other words, this part of the quality
of the stated requirements is about how well the stake-
holders are satisfied if the requirements are fully met by
the implementation. This is clearly even more difficult to
assess in advance than the quality of artifacts at the
following levels in the development hierarchy. The
common situation when different stakeholders have
different, even contradictory, views on the system,
makes the situation even more unclear.

The above problems are a reason why the talk is
usually only about some aspects, factors, or attributes of
requirements quality, not about requirements quality as
a whole. Another reason is that ‘‘being built right’’
necessarily means compliance with different, usually
independent, standards and conditions.

As we already mentioned, defining a set of attributes
for the requirements quality also facilitates a reviewer’s
task. The review problem gets split into several smaller
sub-problems that are easier to handle as well as focus
upon.

4.1.1 General Problems

The first thing that must be kept in mind, and checked
in a review, is that requirements should not be mixed
with other types of information. Mixing would actually
not be a defect by itself; however, it easily creates
ambiguity and opens doors for many kinds of defects
to sneak in.

First, specifications should be explicit about causality,
which is often forgotten. This means that statements in
indicative mood and optative mood should be strictly sep-
arated [‘12]. The former ones specify things that are true in
the environment regardless of the software (e.g., laws of
physics). The latter ones specify things that the software
should do or cause. This distinction between statements in
indicative and optative mood is usually not made very
explicitly. Both are called ‘requirements’, although the
former ones could perhaps better be called ‘facts’, ‘asser-
tions’, or ‘statements’. In other words, requirements and
the domain analysismodel aremixed together (see Fig. 1).
Even many formal specification methods and languages,
such as Z and SCR (see Sect. 5.3), fail to make a clear

separation andhave insufficient capabilities for describing
the environment [14].

Second, a well-known common problem (also noted
in [12]) is that many things which should belong to the
design and implementation of the software tend to be
presented as requirements. On the other hand, things
that affect the environment and thus should be defined
in the requirements are decided only at the design or
implementation stage. One reason for these problems
may be a wrong belief in that requirements are just more
abstract and less detailed than design representation of
the system. Therefore, one may wish to state something
about the internal architecture of the software in the
requirements specification on the one hand, and sup-
press exact definitions of interactions on the other hand.
However, if you rely on too much abstraction in the
wrong places your specification will be about an abstract
problem, not about the real problem that your customer
expects you to solve [12].

Requirements are not much more abstract than de-
sign in the sense that they also describe concrete phe-
nomena; the actual difference is that requirements
describe the machine’s boundary while design describes
its internal structure and behavior (see Sect. 2).

We need to make a clarification. When saying that
requirements and design documents must be strictly
separated, we do not imply that their development
must be separated in time. Unfortunately, it is impos-
sible or unwise in most practical situations to first
explore the problem space completely and write the
requirements document, and only then go over to the
solution space and think about implementation. One
reason for this is that some desired requirements may
be unfeasible to implement (cf. Sect. 4.1.2). Another
factor that makes it necessary to take the implemen-
tation into account is the fact that most software
development projects today do not start from a clean
slate, but augment or modify some existing software.
The paper [14] briefly suggests that in such situations
the existing ‘‘legacy machine’’ should be regarded as
part of the environment in the new project. This looks
sensible to us only when one or more existing pieces of
software are used without modifications, with well-de-
fined interfaces to the new software. Recently, Nuse-
ibeh et al. have proposed a model called Twin Peaks, in
which the refinement of requirements (problem) and
software architecture (solution) are intertwined or
alternated [15, 16]. These two short papers do not
convey much more than the main ideas, but they seem
to make sense. The basic underlying observation that
specification and implementation affect each other both
ways is much older [17].

Jackson [12] notes as another common problem in
specifications that there can be confusion between things
in the software system and things in the environment.
One reason for such confusion is that many things in the
environment are also modeled (have their counterparts)
within the software. This mistake is thus particularly
easy to make in object-oriented specifications.

49

4.1.2 Requirements Quality Attributes

The quality attributes or aspects of a requirements
document (not to be confused with those quality attri-
butes that are nonfunctional requirements on the soft-
ware) can be classified in many ways.

Based on the books [4] and [8] as well as on the papers
[18] and [19] we can list the following requirements
quality attributes. Each individual statement in a
requirements specification should be complete, correct,
unambiguous, feasible, necessary, prioritized, verifiable,
and concise. Additionally, the requirements specification
document as a whole should be complete, consistent,
traceable, non-redundant, organized, and conformant to
standards. The list in [18] includes also ‘consistency
among parts of individual requirements’, but that seems
superfluous.

Some books, such as [7] and [20], mention com-
pleteness, correctness and consistency only; those are
probably the most important quality attributes.

The most risky quality factor of all is probably
completeness. According to Glass, missing requirements
are the hardest requirements errors to correct [1].

It might be even more to the point to say that they are
the hardest to detect. Glass adds a corollary to this fact:
The most persistent software errors—those that escape
the testing process and persist into the production ver-
sion of the software—are errors of omitted logic. Miss-
ing requirements result in omitted logic.

We discuss this important factor separately in
Sect. 4.1.3.

4.1.3 Validating completeness

Completeness is probably the most risky requirements
quality factor. At the same time, missing requirements
are obviously the hardest to detect during reviews. The
scenario-based approach (cf. Sect. 4.3) provides means
for detecting some omissions in requirements; however,
it is rather unsystematic. This subsection presents some
general considerations on requirements completeness
issues.

Roughly put, a requirements specification describes
the interface between the software system and its envi-
ronment. Carson [21] considers this interface to be
actually a combination of the interfaces between the
system and all the system stakeholders. Based on this, he
states that requirements are complete if and only if (1)
all stakeholder interfaces have been identified and
quantified for all applicable life-cycle phases and related
operating modes and then (2) all interface conditions over
all parameter spaces have been analyzed and captured in
the system requirements.

Carson’s first point presents the problem of identi-
fying different stakeholders of the software system. It is
quite easy in practice to overlook a specific type of
stakeholder and thus the corresponding requirements.
Wiegers [4] emphasizes the importance of considering

different user classes for a product, including indirect
users who are affected by the product in any way, for
example, through reports or other applications. This
already presents a demanding task; however, the list of
stakeholders is much broader.

Pohl [22] divides the context of RE for an informa-
tion system into four worlds. The subject world is the
domain about which the system is intended to maintain
information. The usage world comprises stakeholders
who are owners, or direct or indirect users of the system.
The system world comprises both the software/hardware
system and the people involved in its operation and
maintenance. The development world is where the infor-
mation system development process itself takes place.
Stakeholders arise from all four worlds. These four
worlds are not necessarily disjoint; for example, users
are quite often also subjects. However, even then it is
useful to differentiate between the worlds, and thus not
to overlook requirements that come from those stake-
holders as users (e.g., functionality, usability) and
requirements that come from them as subjects (e.g.,
privacy).

Another classification of stakeholders is presented by
Preiss and Wegmann [23]. It is an orthogonal classifi-
cation with the following dimensions:

– Domain of inquiry This means the life-cycle phase of
the system. The authors restrict consideration to the
development and operation domains.

– System or suprasystem For the operation domain,
‘system’ means the actual software system and ‘su-
prasystem’ means its environment (e.g., an organiza-
tion). For the development domain, ‘system’ means
the development project and ‘suprasystem’ means the
development company and other external factors
affecting the project.

– Goal or means Goal stakeholders are interested in the
perceived behavior of the system or suprasystem.
Means stakeholders are those responsible for how the
system or suprasystem achieves that behavior.

In comparison to Pohl’s classification, this model
refines the development and usage worlds; however, it
does not distinguish the subject world. The problem
actually is that only one level of ‘system-suprasystem’
relation is considered. It would be more appropriate to
allow not only two but multiple values for this dimen-
sion (e.g., ‘application’, ‘company’, ‘society’)—whatever
relevant levels may be defined. Then, subjects of a
software system will likely be classified as ‘‘goal stake-
holders for the society system’’. Also, requirements
coming from ‘‘means society stakeholders‘‘, for example,
government regulations, will naturally be taken into
account. With this modification, this classification seems
to be a useful means for systematic discovery of stake-
holders or for verifying whether all the stakeholders are
taken into account.

Carson’s second point (see above) presents the
problem of covering all the possible combinations of
conditions on all the stakeholder interfaces. It is quite

50

difficult to provide any useful recommendations here. It
should be mentioned that one of the easiest ways to miss
a condition is to use universal quantifier words such as
‘all’, ‘always’, ‘none’, and ‘never’ in requirements state-
ments. Berry and Kamsties [24] discuss this topic. They
conclude that universally quantified indicative state-
ments are usually not true and thus must be avoided or
at least very carefully investigated for exceptions. On the
other hand, they claim that universally quantified opta-
tive statements are not dangerous and that they often are
even desired. However, a statement like ‘the system must
always do this’ will very often need exceptions. If there
are many such statements coming from different origins,
there may very probably be logical conflicts between
them. Our general recommendation is that any appear-
ance of universally quantified statements should be
carefully reviewed and validated.

Another tricky issue is that of exclusive or negative
requirements, i.e., what the system must not do. Those
are not very often stated explicitly. Even the literature
does not seem to say much about them. This seems to be
an important open problem in requirements quality and
validation. When some exclusive requirements have been
stated, their verification in system or acceptance testing
can be very difficult as well—especially if they are uni-
versally quantified (cf. Sect. 5.5).

4.2 Review process

Reviews can be informal or formal. Examples of infor-
mal approaches are distribution of the work product to
several peers to look through, and a walk-through in
which the author describes the product in front of an
audience and solicits comments [4]. When the work
product is examined by inexperienced reviewers, such as
software end users, rather than asking them to review
the product on their own and provide feedback, it may
be better to watch them examining it and ‘‘looking for
the furrowed brow that indicates a puzzled user’’ [4]. The
above quote is actually about evaluating prototypes (cf.
Sect. 5.4); but, in our opinion, it is also relevant to the
reviewing of any other work products by end users.

The best-known type of formal review is called soft-
ware inspection. It was developed by Fagan at IBM [25].
A description of the technique and a survey of recent
developments to it may be found in [26]. Wiegers [4]
describes it as well. Probably the best known full book
about inspections is that of Gilb and Graham [27].

The technique involves creating a team of inspectors
that should represent different perspectives. In general,
the team should include the author of the inspected
document, the author of any predecessor document or
specification, and people who have to do work based on
the document [4]. Therefore, a requirements inspection
team should include requirements engineers (authors),
design engineers, and various other stakeholders (sour-
ces of requirements), at least representatives of cus-
tomers and end users.

The inspection process then proceeds in a sequence of
well-defined stages. In the planning stage, the inspection
team is created and the number of inspection meetings is
defined. In the overview meeting, the authors inform the
team about the background of the material they will be
inspecting, any assumptions made, and specific inspec-
tion objectives. In the preparation stage, each inspector
(except the authors) examines the document on his own
to identify possible defects and issues to be raised; this is
the stage where most the defects are discovered. In the
inspection meeting, the team meets to discuss discoveries
made during the preparation stage, decides on required
actions, and goes once again through the document to
reveal additional defects. In the rework stage, the au-
thors fix the defects identified. And finally, in the follow-
up, a designated individual follows up on the rework
that the authors performed.

Reviews involve a lot of time and expense so it makes
sense to minimize the work of the reviewers. Errors
which are avoidable and which can be detected without
a full review should be removed from the requirements
document before it is circulated to the review team [8].
Such a pre-review checking should be the responsibility
of one person and include straightforward activities such
as checking the document for obviously missing infor-
mation, checking it against standards, and running
automatic checkers if available (e.g., for spelling mis-
takes or cross-reference errors). In other words, the re-
views should ideally be only concerned with validation
of requirements, while all the possible verification should
be done prior to that.

One suggested way to reduce the large amount of
time and labor that inspections tend to require is to omit
most or all of the meetings. Several authors have claimed
that this can often be done and good results achieved
[28].

4.3 Reading techniques

In both formal and informal reviews, an important
factor is the reading techniques the reviewers use, or, in
other words, the level of guidance the reviewers receive
for accomplishing their task. Aurum et al. [26] list the
following relevant reading techniques:

– Ad hoc—no guidance is provided, reviewers use their
own knowledge and experience to identify defects.

– Checklist-based—a list of questions is provided spec-
ifying what properties of the document must be
checked and what specific problems should be sear-
ched for.

– Defect-based—not only a list of questions but also a
collection of procedures to follow is provided; each
procedure is aimed at finding a particular type of
defect and different procedures are usually assigned
to different reviewers. Aurum et al. prefer to call
this approach ‘scenario-based reading’. However,
using the word ‘scenario’ meaning ‘procedure’ creates

51

confusion with ‘scenario’ as an example of the system
use – see below. Aurum et al. seem to be confused
themselves because one of the papers they refer to is
about scenarios in the latter sense. Therefore, we use
the term ‘defect-based’ as introduced in [29].

– Perspective-based—similar to defect-based reading in
the sense that some procedures to follow are provided,
but they are based on the viewpoints of different
stakeholders.

Checklist-based reading is usually the only alternative
that is discussed in requirements engineering books.
Both Wiegers [4] and Kotonya and Sommerville [8]
provide some checklists. Roughly speaking, every rele-
vant requirements quality attribute (cf. Sect. 4.1.2) is
rewritten in the form of a question, or refined into two
or more questions. Therefore, a checklist works just as a
reminder for reviewers of those quality attributes.

Providing procedures that describe the steps to be
accomplished in order to answer the review questions
requires additional work, but it seems plausible that
such procedures may facilitate the reviewers’ work.
Porter et al. [29], who proposed defect-based reading for
requirements inspections, empirically compared it to ad
hoc and checklist-based approaches and found that it
discovered 35% more defects than those two techniques,
while the checklist-based approach performed no better
than the ad hoc approach. However, a later replication
of the same experiment [30] did not find empirical evi-
dence of better performance of the defect-based ap-
proach.

Focusing procedures on the viewpoints of different
stakeholders rather than on different defect types leads
to perspective-based reading. A discussion of its
advantages may be found in [31].

Business scenarios, i.e., examples of how the system
may be used, are believed to be an appropriate means
for both elicitation and validation of system require-
ments (e.g., [32]). Some kinds of scenario-based
requirements reviews are described, for example, [33],
[34], [20]. In [33], one of the two approaches (the second
is described below) is that the validation team walks
through the sequence of events in the normal and
alternative courses of the scenario to detect incomplete
and incorrect requirements. We interpret this as one
more reading technique:

– Scenario-based—a set of concrete scenarios is derived
from a predecessor of the reviewed document or from
a general understanding of the problem, and then the
document is examined for presence, correctness and
other quality attributes of requirement statements that
cover each scenario.

A ‘‘guided inspection‘‘ as described in [20] also takes
a scenario-based approach. It is not really an inspection
in Fagan’s sense, because the principle is quite different.
Defects are discovered only during inspection meetings.
Inspectors prepare scenarios (‘‘test cases’’ in [20]), and
the authors of the reviewed document then explain how

the system described by the document is assumed to
handle these cases. The team follows the explanations of
the authors and checks (1) whether the described system
behavior is appropriate, and (2) whether everything was
written down and was not left just in the heads of the
authors. This process could rather be called ‘‘desk test-
ing‘‘.

An enhanced version of the scenario-based reading
approach is presented by Maiden et al. [33]. We would
call it

– Pattern-based—a set of patterns is provided to
reviewers that they can use when validating require-
ments against scenarios.

Similar to design patterns, Maiden et al. discuss
requirements patterns as a novel technique to help in
acquiring, modeling and validating system requirements.
They describe some possible patterns. The simplest one,
the ‘MACHINE-FUNCTION’ pattern, captures the
essential fact that a good requirements document shall
include at least one functional requirement statement for
each action in which the software system is involved.
Applying this pattern in validation means that for every
action mentioned in a scenario, a corresponding
requirement statement must be found. Other patterns
are more complicated and capture not only facts essen-
tial to requirement documents themselves but also ideas
essential to design of systems. The ‘COLLECT-FIRST-
OBJECTIVE-LAST’ pattern suggests that a good
mechanical device with which a person interacts using
one or more personal items must ensure that the person
will not go away leaving those personal items at the
device. For example, the metro automatic gate machine
should open the gate only after the passenger collects the
ticket from the machine.

Maiden et al. discuss how such a requirements pat-
tern can be represented by a formal validation frame that
describes what a part of a scenario should look like to
make the pattern applicable, and what should then be
searched for in the requirements document. They also
claim that such validation frames may be used even for
automatic checking of requirements.

5 Translating requirements to other forms

Formal techniques for documenting software require-
ments have received considerable attention in the RE
research community. Nuseibeh and Easterbrook [35]
claim that since requirements engineering must span
the gap between the informal world of stakeholder
needs and the formal world of software behavior, the
key question over the use of formal methods is not
whether to formalize, but when to formalize. There is
little doubt that formal specification methods such as Z
and the Vienna Development Method (VDM) offer some
advantages over informal methods [8]. They remove
ambiguity and provide for formal (and even automated)

52

consistency checking as well as for partial completeness
and correctness checking.

However, formal methods have not been widely ac-
cepted in RE practice so far, and practically oriented RE
books (e.g., [4], [8]) usually say nothing or very little
about them. There are two main reasons for this. First,
formal methods are considered to be too heavy to use,
and too difficult to learn for people without an excep-
tionally strong background in mathematics and logic.
Second, only natural language is flexible enough to
document any possible requirement at any needed level
of detail for any kind of system. One could also counter
the above-mentioned claim in [35] by saying that for-
malization is not absolutely necessary in the software life
cycle before the coding phase.

Moreover, too early formalization may effectively
hinder validation of requirements. The more technical
the specifications, the less likely it is that those without
technical expertise can understand them [11].

Therefore, natural language remains the most com-
mon way of documenting software requirements.
Unfortunately, all natural languages are inherently
ambiguous; this problem is exacerbated in many pro-
jects, because the requirements are written in English
although many stakeholders are not fluent in it. In
addition, a software requirements specification (SRS)
document presenting the requirements as a collection of
separate statements is probably not the best under-
standable form for either customers or developers.
Wiegers [4] adds to this that actually no single view of
requirements may provide a complete understanding of
them. Therefore, the need for creating other represen-
tations must be obvious.

It is not considered feasible to maintain several con-
current representations of requirements due to modifi-
ability problems. However, for validating them,
rewriting natural language into other forms is considered
very useful. This has a double advantage—requirements
defects are found during the translation process itself and
during the following review of the result. However, for a
particular representation form, literature usually stresses
on only one of these advantages.

In the following subsections, we will discuss different
forms for expressing requirements, other than structured
natural language. However, translating requirements
from one natural language to another one is a relevant
approach as well. At least it may lead to identification of
some ambiguous statement, because, for example, some
ambiguities possible in English are just impossible in
Finnish, and vice versa. And, obviously, the level of
understanding of requirements may be significantly
better when they are presented to a reviewer in his native
language.

5.1 User manual

Many authors propose drafting the user manual for
the system early in the development process. A good

manual describes all user-visible functionality in easily
understandable language. It is still a natural language
document, but with all ‘shall’ statements rewritten as if
they were already implemented and presenting
requirements in a more tangible form than an SRS.
Berry et al. [36] suggest that in some cases the user
manual may be used as a sole requirements specifica-
tion document, i.e., instead of an SRS. However, a
user manual is obviously only a partial view of the
requirements since it presents only functionality (not
performance or other characteristics) and only that
functionality visible to end users of the software.
Manuals for other stakeholders (e.g., people who will
be responsible for maintenance of the system) could
also be drafted, of course.

A quality SRS should provide all the information
needed for writing the user manual. If the writer finds
this (partially) impossible, this points to some problems
with the SRS that must be investigated.

After the draft is finished, it is to be reviewed by
targeted stakeholders (other stakeholders could do this
as well, of course). Note that all the techniques discussed
in Sect. 4 could be applied. The review may be informal
or formal; we can leave the reader alone and then ask for
comments or try to learn more by watching him read (or
by interacting with him). We can just give him the
manual to read (ad hoc) or provide a checklist with
questions, a procedure to follow, or a set of scenarios of
the type ‘suppose you want to do...’ (see Sect. 4.3).

5.2 Visualizations

Visualization is often seen as a way to help people gain
insight from large and complex data sets. The SRS for a
complex system is such a data set, and it is usually dif-
ficult to understand and validate it directly. One can
check whether all the individual requirements statements
make sense; however, completeness and consistency of
the whole description is much harder to verify. Graph-
ical presentations provide help—they link individual
statements together and present a coherent picture of a
slice of the system.

Visualization is usually based on a semi-formal
model. [4] proposes the following graphical representa-
tions: data flow diagram, entity-relationship diagram,
state transition diagram, dialog map (for presenting user-
visible functionality), and class diagram (mainly for
domain analysis), decision tables and decision trees.
Among these diagram types, the class diagram and the
state-transition diagram (statechart diagram) are in-
cluded also in the UML [37], and the dialog map looks
like a simplified version of UML’s activity diagram.
Wiegers just mentions that some other UML diagram
types may be utilized as well, for example, sequence
diagram and collaboration diagram.

Also, dynamic representations, i.e., animations, are
proposed [38, 39] and considered as facilitators in
understanding the behavior of the system.

53

[40] lists the following characteristics of a good set of
visualizations for system requirements: minimize
semantic distance, match the task being performed,
support the most difficult mental tasks, highlight hidden
dependencies and provide context when needed, support
top-down review, support alternative problem-solving
strategies, provide redundant encoding, show roles being
played by parts of the specification, and show side effects
of changes in one part of the specification to others.

Again, problems with creating a graphical represen-
tation probably point to defects in requirements. Visu-
alizations are to be reviewed by all the relevant
stakeholders. Graphical models are undersood to some
degree by all stakeholders, however, specialists under-
stand them better than system end users.

5.3 Lightweight formal models

As discussed above, formal methods are considered
difficult to use and not flexible enough, and, therefore,
have not been widely accepted in RE practice. One
formal method that seems to have found some industrial
acceptance is Software Cost Reduction (SCR), which
uses a tabular notation (see, e.g., [41]). However, this
acceptance is limited to the ‘‘toy world’’ of nuclear
reactors, space shuttles, and car cruise control systems.
Those systems are inherently complex; but actual soft-
ware is relatively simple—the sets of monitored and
controlled variables are known and limited, and desired
relationships among them are expressible either mathe-
matically or in formal logic.

In response to this lack of acceptance, the research
community has proposed so-called lightweight formal
methods. These are actually the same VDM or SCR
methods, but applied in a lightweight way. The term
‘lightweight’ is used to indicate that the methods can be
used for partial analysis on partial specifications, with-
out a commitment to developing and baselining a
complete, consistent formal specification [42]. Therefore,
the requirements specification is assumed to be informal;
however, in order to find errors, some critical parts of it
are rewritten into a formal notation and then formally
verified.

Hörl and Aichernig [43] report on an experience of
rewriting informal specifications into VDM, and show
that just the attempt of rewriting discovered many de-
fects that had been missed during the preceding inspec-
tion. These defects were also more serious that those
discovered in inspection. Easterbrook and Callahan [44]
experimented with rewriting informal specifications into
Leveson-style AND/OR decision tables and into SCR.
They also report that this allowed discovery of some
requirements defects. Gervasi and Nuseibeh [45] present
an approach and a case study of validating highly-
structured natural language requirements specifications
by building a set of formal models and then checking
them for selected desirable properties, both phases
automatically. Any violations of the desirable properties

were reported to the specifiers. The authors report that
this revealed a number of defects.

5.4 Prototypes

The primary reason for creating a prototype is to resolve
uncertainties early in the development cycle. It is also an
excellent way to reveal ambiguities in the requirements.
We consider developing a prototype to be one more
form for expressing requirements. Similar to user man-
uals, a prototype may present only a limited set of
requirements. However, it is a useful tool for commu-
nication with stakeholders because it makes the
requirements tangible. Users, managers, and other non-
technical stakeholders usually find it very difficult to
visualize how a written statement of requirements will
translate into an executable software system. If a pro-
totype is developed to demonstrate requirements, they
find it easier to discover problems and suggest how the
requirements may be improved [8]. Prototypes are easier
to understand than the technical jargon developers
sometimes use [4].

There are two main kinds of prototypes. An evolu-
tionary prototype is an initial and partial version of the
system, which is available early in the development
process. It is intended to evolve into the final system
through modification and extension. A throwaway pro-
totype is developed solely for requirements analysis and
validation and is discarded afterward. It can be imple-
mented with completely different technology from that
of the final system. Requirements that should be sup-
ported by an evolutionary prototype are those which are
well-understood; in contrast, the requirements that
should be prototyped with throwaway prototypes are
those that cause most difficulties to customers and are
the hardest to understand [8]. Therefore, particularly
throwaway prototyping is useful for the purpose of
requirements validation.

There are three approaches which allow the devel-
opment of a throwaway prototype relatively quickly [8].
A paper prototype is a mock-up of the system that is
developed with no executable software. Paper versions
of the screens that may be presented to the end-user are
drawn and various usage scenarios are planned. In a
‘Wizard of Oz’ prototype, user interface software is re-
quired to be developed, but a person simulates the re-
sponses of the system in response to user inputs. An
automated prototype is an executable prototype created
with a fourth-generation language or another rapid
prototyping environment.

Even a paper prototype is an effective tool for
requirements validation. For example, [46] reports on an
experiment in an embedded software project, where a
technique was introduced for making early mock-ups of
the user interface and testing their usability with real,
potential users. The authors report that this led to a
surprisingly large reduction in the number of usability
problems – by about 70%.

54

Examples of automated prototyping approaches can
be found in literature. State machines are relatively easy
to handle and even animate; for example, experiences
with rapid prototyping using the STATEMATE tool are
presented in [47]. An approach for creating an execut-
able prototype from a VDM formal specification (with
the need to manually develop a user interface) is de-
scribed in [48].

As for executable prototypes, [49] lists the following
characteristics of a good prototype: it is simple, yet
captures all system functions which are of interest to
customers; demonstrates all user interactions with the
system, has a user interface which looks and behaves
similarly to the one intended for the final system, cap-
tures all exception conditions which are of interest to the
users, is ‘‘quick and dirty‘‘, but robust enough to
demonstrate some reliability and performance, is self-
contained and easily portable for demonstration at
geographically distant locations.

5.5 Test cases

As was noticed in sect. 4.1.2, a desirable attribute of
every requirement statement is that it should be verifi-
able, i.e., it should be possible to define one or more test
cases that can check whether the requirement has been
met. Even though the tests will be applied to the system
only after implementation, designing tests at an early
stage is an effective way of revealing requirements de-
fects. Creating test cases for the system requirements will
make the expected system behaviors clearer to all the
stakeholders and help validate the corresponding
requirements early in the project.

Test cases can be based on the functional require-
ments or derived from use cases. They are basically de-
tailed descriptions of anticipated user and system
activities associated with each requirement statement.
Naturally all activities implied by the requirements un-
der scrutiny should be tested. If the system requirements
are unambiguous and correct, the test cases should be
fairly obvious and easy to write. In contrast, if the test
cases are not easy to write, there is likely to be something
wrong with the requirements.

Here, the objective of proposing tests is to validate
requirements, not the system. Therefore, the writer of
the test cases may ignore many issues the designer of a
‘real’ test would have to deal with, such as costs,
redundancy, data definition, etc. Designing tests that
may later be used as system tests does make sense,
though, since it will clearly reduce the overall costs of
test planning. Indeed, according to the so-called V
model of software development [2], acceptance tests
should be designed together with the requirements.

Not all types of requirements are by nature easy or
even possible to test. For example, it is difficult to design
tests for requirements for the system as a whole, exclu-
sive requirements (the system must not do something; cf.
Sect. 4.1.3, and some non-functional requirements [8].

There is obvious similarity between scenarios
(Sect. 3) and test cases. However, we prefer to see test
cases as a form for expressing requirements and sce-
narios as a review reading technique. A set of detailed
test cases can still be reviewed, at least for completeness,
with respect to a set of general business scenarios.

6 Conclusions

Requirements quality control seems to be somewhat
marginal for RE. This situation is no different when
compared to, for example, the role of testing in software
engineering. Creative people seldom get excited about
any form of quality control and often even see it as a
necessary evil. We believe however that in RE this
mindset is largely inappropriate, because requirements
validation only to a very insignificant extent is checking
that requirements analysts are doing their jobs properly.
Validation is a necessary feedback link needed for
stimulating the elicitation process, stimulating evolution
of customers’ understanding about which of their
problems are solvable in principle, and for giving them a
chance to check early whether the solutions being pro-
posed will really solve their problems.

Literature also does not treat requirements quality
control as a coherent activity. Most books present some
set of ‘‘good practices’’, whose application may con-
tribute to the quality of requirements and to our confi-
dence in this quality. A tacit recommendation is that one
should apply as many of those as possible in order to
achieve better results.

In this paper, we developed a framework unifying
requirements quality control. We attempted to promote
the point that this important activity must be studied as a
coherent entity. We tried to reorganize the existing pre-
scriptive knowledge in a way that the focus would be on
the task of achieving a sufficient level of understanding of
the stated requirements by a particular stakeholder, in-
stead of focusing on some processes and techniques, in
which ’’all the stakeholders should participate’’.

The framework was depicted in Fig. 3, consisting of
the two basic activities, review and translation, and the
four pools: stakeholders, requirements quality criteria,
reading techniques, and requirements representation
forms. Requirements quality criteria include general is-
sues related to what kind of information requirements
should contain, quality attributes for the system
requirements as a whole, and quality attributes for
individual requirement statements. For stakeholders
classification, we proposed to use the 3-dimensional
model from [23] with a slight modification. We identified
six different reading techniques, and six different forms
for representing requirements. Of course, we do not
imply that those lists are complete; however, they in-
clude everything we encountered in the literature.

Our framework concentrates on informal approaches
to RE, while formal approaches are present in it only in
the form of lightweight models. Formal approaches are

55

seldom applied by practitioners, in part because they are
considered to be too heavy to use, and too difficult to
learn for people without an exceptionally strong back-
ground in mathematics and logic. Another problem is
that too early formalization may effectively hinder val-
idation of requirements, because the more technical the
specifications, the less likely it is that those without
technical expertise can understand them.

Throughout this paper, we assumed that a structured
text document is used as the primary form for docu-
menting requirements, as it is common in practice.
However, in principle, one could have a formal model as
the primary form, given that on-demand translation to
other requirements representation forms needed for
non-technical stakeholders is provided (which could
possibly be automated). Elaborating such an approach
so that formal techniques would appear more attractive
to practitioners is a tough but important challenge for
future work.

Acknowledgements The major part of this work was performed in
the KOTEVA project, which was financially supported by the
National Technology Agency of Finland (TEKES) (project number
676/31/01) and industrial partners TietoEnator, Elisa, Yomi, and
Systeemiratkaisu. We would like to thank the referees for their
insightful comments.

References

1. Glass RL (2003) Facts and fallacies of software engineering.
Addison-Wesley

2. Boehm BW (1979) Guidelines for verifying and validating
software requirements and design specifications, in Euro IFIP
79. London, UK: North-Holland, pp 711–719

3. Gause DC, Weinberg GM (2003) Exploring requirements:
Quality before design. Dorset House

4. Wiegers KE (2003) Software Requirements, 2nd ed. Microsoft
Press

5. Wiegers KE (1999) Software Requirements. Microsoft Press
6. Hetzel B (1988) The complete guide to software testing, 2nd ed.

Wiley
7. Bashir I, Goel AL (2000) Testing object-oriented software: life

cycle Solutions. Springer-Verlag, New York
8. Kotonya G, Sommerville I (1998) Requirements engineering :

processes and techniques. Wiley
9. Boehm BW (1984) Verifying and validating software require-

ments and design specifications. IEEE Software 1(1):75–88
10. Boehm BW(1974) Some steps towards formal and automated

aids to software requirements analysis and design, in Infor-
mation Processing 74: Proceedings of IFIP Congress 74.
Stockholm, Sweden: North-Holland, pp 192–197

11. Bergman M, King JL, Lyytinen K (2002) Largescale require-
ments analysis revisited: The need for understanding the
political ecology of requirements engineering. Requirements
Engineering 7(3):152–171

12. Jackson M (1995) Software requirements & specifications : a
lexicon of practice, principles and prejudices. ACM Press,
Addison-Wesley

13. Jackson M (2004) Seeing more of the world, IEEE Software
21(6):83–85

14. Zave P, Jackson M (1997) Four dark corners of requirements
engineering. ACM transactions on Software Engineering and
Methodology (TOSEM) 6(1):1–30

15. Nuseibeh B (2001) Weaving together requirements and archi-
tectures. IEEE Computer 34(3):115– 119

16. Hall JG, Jackson M, Laney RC, Nuseibeh B, Rapanotti L
(2002) Relating software requirements and architectures using
problem frame. In Proc IEEE joint international conference on
requirements engineering (RE’02) 137–144

17. Swartout W, Balzer R (1982) On the inevitable intertwining of
specification and implementation. Communications of the
ACM 25(7):438–440

18. Schneider RE, Buede DM (2000) Properties of a high quality
informal requirements document. In Proc 10th annual inter-
national symposium of the INCOSE

19. Kar P, Bailey M (1996) Characteristics of good requirements,
requirements working group of the INCOSE, available as
http://www.incose.org/rwg/goodreqs.html.

20. McGregor JD, Sykes DA (2001) A practical guide to testing
object-oriented software. Addison-Wesley

21. Carson RS, Requirements completeness: A deterministic ap-
proach, in Proc 8th annual international symposium of the
INCOSE, 1998, available as http://www.incose.org/rwg/
98_carson/paper016.pdf

22. Pohl K (1996) Process-centered requirements engineering. Re-
search studies Press / Wiley

23. Preiss O, Wegmann A (2001) Stakeholder discovery and clas-
sification based on systems science principles, In Proc 2nd
APQSC Asia-Pacific Conference on Quality Software. IEEE
194–198

24. Berry DM, Kamsties E (2000) The dangerous ’’all‘‘ in specifi-
cations In Proc 10th international workshop on software
specification and design. IEEE 191–193

25. Fagan ME (1999) Design and code inspections to reduce errors
in program development, IBM Systems Journal, vol 15, no. 3,
pp. 182–211, 1976, reprinted in IBM Systems Journal 38(2–
3):258–288

26. Aurum A, Petersson H, Wohlin C (2002) State-of-the-art:
software inspections after 25 years. Software Testing, Verifi-
cation & Reliability 12(3):133–154

27. Gilb T, GrahamD (1993) Software Inspection. Addison-Wesley
28. Votta LGJ (1993) Does every inspection need a meeting? in

Proc. 1st ACM symposium on the foundations of software
engineering, 1993, pp 107–114 (Software Engineering Notes,
vol. 18, no. 5)

29. Porter AA, Votta LGJ, Basili VR (1995) Comparing detection
methods for software requirements inspections: a replicated
experiment. IEEE Transactions on Software Engineering
21(6):563– 575

30. Fusaro P, Lanubile F, and Visaggio G (1997) A replicated
experiment to assess requirements inspection techniques.
Empirical Software Engineering 2(1):39–57

31. Shull F, Rus I, Basili V (2000) How perspective-based reading
can improve requirements inspections. IEEE Computer
33(7):73–79

32. Weidenhaupt K, Pohl K, Jarke M, Haumer P (1998) Scenarios
in system development: current practice. IEEE Software
15(2):34–45

33. Maiden N, Cisse M, Perez H, Manuel D (1998) CREWS vali-
dation frames: Patterns for validating systems requirements, in
Proc. 4th REFSQ international workshop on requirements
engineering: foundation for software quality

34. Kösters G, Six H-W, Winter M (2001) Coupling use cases and
class models as a means for validation and verification of
requirements specifications. Requirements Engineering 6(1):
3–17

35. Nuseibeh B, Easterbrook S (2000) Requirements engineering: a
roadmap. In Proc 22nd international conference on software
engineering (ICSE-00). ACM pp 35–46

36. Berry DM, Daudjee K, Dong J, Fainchtein I, Nelson MA,
Nelson T, Ou L (2004) User’s manual as a requirements spec-
ification: case studies. Requirements Engineering 9(1):67–82

37. Booch G, Rumbaugh J, Jacobson I (1999) The Unified Mod-
eling Language User Guide. Addison-Wesley

38. Lalioti V (1997) Animation for validation of business system
specifications. In Proc 13th Hawaii International Conference
on System Sciences vol. 2. IEEE, pp. 220–229.

56

39. Gemino A (2004) Empirical comparisons of animation and
narration in requirements validation. Requirements Engineer-
ing 9(3):153–168

40. Dulac N, Viguier T, Leveson N, Storey M-A (2002) On the use
of visualization in formal requirements specification. In Proc
IEEE joint international conference on requirements engi-
neering RE’02, pp 71–80

41. Heitmeyer C, Kirby J, Labaw B (1997) Tools for formal
specification, verification, and validation of requirements, In
Proc 12th annual COMPASS conference on computer assur-
ance pp 35–47

42. Schneider F, Easterbrook SM, Callahan JR, Holzmann GJ
(1998) Validating requirements for fault tolerant systems using
model checking, in Proc 3rd IEEE international conference on
requirements engineering, pp 4–13

43. Hörl J, Aichernig BK (2000) Validating voice communication
requirements using lightweight formal methods. IEEE Software
17(3):21–27

44. Easterbrook S, Callahan J (1997) Formal methods for V&V
of partial specifications: an experience report. In Proc 3rd
IEEE international symposium on requirements engineering
pp 160–168

45. Gervasi V, Nuseibeh B (2002) Lightweight validation of natural
language requirements. Software - Practice and Experience
32(2):113–133

46. Lauesen S, Vinter O (2001) Preventing requirement defects: An
experiment in process improvement. Requirements Engineering
6(1):37–50

47. Andrews BA, Goeddel WC (1994) Using rapid prototypes for
early requirements validation. In Proc 4th annual international
symposium of the INCOSE

48. Fenkam P, Gall H, Jazayeri M (2002) Visual requirements
validation: Case study in a Corba-supported environment. In
Proc IEEE joint international conference on requirements
engineering RE’02 81–88

49. Ghajar J-Dowlatshahi, Vernekar A (1994) Rapid prototyping
in requirements specification phase of software systems. In Proc
4th annual international symposium of the INCOSE

57

	Sec1
	Sec2
	Fig1
	Sec3
	Fig3
	Fig2
	Fig5
	Fig4
	Sec4
	Sec5
	Sec6
	Sec7
	Sec8
	Sec9
	Sec10
	Sec11
	Sec12
	Sec13
	Sec14
	Sec15
	Sec16
	Sec17
	Ack
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30
	CR31
	CR32
	CR33
	CR34
	CR35
	CR36
	CR37
	CR38
	CR39
	CR40
	CR41
	CR42
	CR43
	CR44
	CR45
	CR46
	CR47
	CR48
	CR49

