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Abstract In conventional model-oriented formal refine-
ment, the abstract model is supposed to capture all the
properties of interest in the system, in an as-clutter-free-
as-possible manner. Subsequently, the refinement pro-
cess guides development inexorably towards a faithful
implementation. However, refinement says nothing
about how to obtain the abstract model in the first place.
In reality developers experiment with prototype models
and their refinements until a workable arrangement is
discovered.

Retrenchment is a formal technique intended to
capture some of the informal approach to a refinable
abstract model in a formal manner that will integrate
with refinement. This is in order that the benefits of a
formal approach can migrate further up the develop-
ment hierarchy. The basic ideas of retrenchment are
presented, and a simple telephone system feature inter-
action case study is elaborated. This illustrates not only
how retrenchment can relate incompatible and partial
models to a more definitive consolidated model during
the development of the contracted specification, but also
that the same formalism is applicable in a re-engineering
context, where the subsequent evolution of a system may
be partly incompatible with earlier design decisions. The
case study illustrates how the natural method of com-
posing retrenchments can give results that are too liberal
in certain cases, and stronger laws of composition are
derived for systems possessing suitable properties. It is
shown that the methodology can encompass more ad
hoc and custom-built techniques such as Zave’s layered
feature engineering approach to applications exhibiting
a feature-oriented architecture (such as telephony).

Keywords Requirement engineering Æ Partial
requirements Æ Formal development Æ Retrenchment Æ
Refinement Æ Telephony Æ Feature engineering Æ
Feature interaction

1 Introduction

Formal refinement, in its various guises, has a long and
distinguished history. From the early papers [1, 2, 3], it
has developed into a large and vibrant field of research.
A comprehensive survey would be out of place here, but
modern accounts in the spirit of the original work can be
found in [4, 5]. In all of these the assumption is that one
knows already what the abstract model is, and all one
has to do is to refine it to a suitable lower-level model,
gaining a high degree of assurance for the development
thereby.

But the reality is that in most software development
the correct abstract model is by no means obvious at the
outset. Anecdotal evidence1 suggests that this is not only
true where one would expect it, namely in the develop-
ment of large and complex real-world critical applica-
tions, (undertaken using a formal approach because of
the belief in the assurance obtainable, or because legis-
lation mandates it), but is even present in the behind-the-
scenes aspects of the development of small textbook or
research examples, in which some experimentation is
often required before a model that will satisfactorily
refine to the desired concrete one is arrived at. (And that
last sentence exhibits an undertone that is quite delib-
erate, because it is frequently true that at the outset one
has a firmer idea of what the concrete model looks like
than the abstract one, and one reverse engineers the
latter from the concrete one to some degree.) The upshot
of this is that formal approaches, of the conventionally
understood kind, do not help much in the creation of an
abstract model that can be contracted to with confidence

1 Several private communications.
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for further development. Not that they ever claimed to,
but in the ‘oversold and underused’ [6] atmosphere that
has often surrounded debate about formal techniques in
the past, it is easy to imagine that they might have done.

Retrenchment [7, 8, 9, 10], is a technique that aims to
help address this issue by providing a formalism in
which the demanding proof obligations (POs) of
refinement are weakened, so that models not refinable to
the ultimate concrete system, but nevertheless consid-
ered useful, can be incorporated into the development in
a formal manner. This is not to say that every miscon-
ception and blunder that led to the correct abstraction
ought to be recorded in some sort of retrenchment audit
trail, but that a sanitised account2 of the construction of
the abstract model from preliminary but incomplete3

precursors that are considered convincing by the domain
experts is of benefit.

The stress on the acquiescence of domain experts is
vital. To seek to impose from the outside an alien
development discipline on an already well-established
engineering milieu is doomed to failure. Yet a naive ef-
fort to impose refinement as a software development
technique can result in exactly that. To be able to suc-
cessfully discharge the refinement POs can force a
development to adopt a structure surprisingly unlike
what one might imagine at the outset, especially when
interfacing with physical models. Furthermore, engi-
neers with an established track record of successful
development are seldom sympathetic to the suggestion
that all their familiar working practices must suddenly
be abandoned in favour of a way of working forced
implicitly by the rigidity of the refinement POs.

Retrenchment is a technique that seeks not to disturb
well-entrenched engineering habits, by allowing models
to be developed in a manner more in tune with engi-
neering intuitions. Yet it aims to do so in a manner that
can ultimately be integrated with refinement. To do so,
the POs of retrenchment must be less exigent than those
of refinement, but nevertheless have a structure that is

close enough to those of the refinement POs to make the
reconciliation feasible; we will see the details below.
Above all, it is vital that the mathematics of the for-
malism be the servant and not the master during the
development activity.

The development route that retrenchment opens up
now appears as follows. In the initial stages of require-
ments definition and specification design, many pre-
liminary and partial models are built. Some of these may
well prove, upon experimentation and further reflection,
to be misguided. They can be discarded. Other models
will, perhaps after some modifications, contain a sensi-
ble account of aspects of the desired behaviour of the
intended system. Unfortunately, it is quite likely that not
all of these sensible models will be compatible with each
other, in that being concerned with only part of the
desired behaviour, and above all with clarity and intui-
tive perspicuity, not all of the complexities of how the
part focused on interacts with other parts will have been
ironed out. Nor indeed should one expect it to have
been. One must understand first the broad intentions
before narrowing down on the finer details; details
moreover that may only be of concern in limited special
cases. On a formal level, the incompatibility we speak of
usually manifests itself in the impossibility of accom-
modating the various models we speak of in a single-
refinement based development. Retrenchment, being
more forgiving of this kind of incompatibility, offers the
possibility of retrenching from such a collection of
models to a more complicated model that properly takes
into account all the requirements, and that can serve
both as the basis of a contract between customer and
supplier, and as the basis of a subsequent refinement-
based implementation. We call this latter model the
contracted model.

The reflective process involved in reconciling the
incompatible partial models with the contracted model,
which is partially captured in the retrenchment relations
and proof obligations between these models, strengthens
the confidence that the right contracted model has been
decided upon, an activity that would otherwise be
completely informal. At worst, this is simply because it is
a reflective process. Any kind of reconsideration of such
design decisions from a novel standpoint is bound to be
helpful to some degree, simply because two perspectives
are always better than one. At best, the engineering of
the POs of the retrenchments will have brought into
sharp focus the most important issues that need to be
clarified in firming up the contracted model. One side
effect of retrenchment is to provide a formal framework
within which such considerations can exist.

What we have just described may be called the uto-
pian view of the utility of retrenchment. However, there
is another scenario in which retrenchment may yet come
to be accepted as even more useful than in the utopian
sense. Suppose we have a developed system, with per-
haps some hundreds of millions of installed instances.
Technology advances, and it suddenly becomes feasible
to enhance the original conception of the system in a

2 Taking some liberties with language, we mean not only ‘made
sanitary’ but ‘made sane’.
3 Some comment on the word ‘incomplete’ is in order. We mean
here incomplete in the sense that some of the functional require-
ments of the system are deliberately being ignored in order to better
understand and define the ones being focused on; we call this
requirement incompleteness. In other places incompleteness is in-
tended to refer to the lack of viability of a model to serve as a
system description in its own right from a user’s perspective (irre-
spective of the totality of requirements that ultimately needs to be
captured). In such cases the incompleteness refers to the lack within
the model of any defined system response to at least some of what
ought to be regarded as legitimate user demands or inputs to the
system; we call this model incompleteness; another way of describing
this would be lack of input readiness. Such scenarios usually arise
when there is an intention to fill in the missing pieces during later
refinements: these later refinements can be of such a nature that
they are incompatible for technical reasons with natural comple-
tions of the abstract model in its own right, thus provoking the
incompleteness of the abstract model in the first place (since a
suitable extension of an adroitly designed but incomplete abstract
model will usually yield a valid refinement).
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multitude of ways. Now, the original system must serve
as a sensible precursor in the design of the enhanced
system, but not because it was merely conceived as a
convenient staging post on the way to the more elabo-
rate design, but because it is there de facto, and no
development of the enhanced system can take place
without taking due account of the installed system base.
The original system is of course a precursor of the up-
graded one because it preceded it chronologically, but
the intent is no longer that it is in some sense subservient
to the development of the newer one. In such situations
it is almost inevitable that the new system will not be a
straightforward refinement of the old one, and the added
flexibility of retrenchment proves much more conve-
nient. The preceding remarks apply with full force in the
case of telephony, a case study that forms a thread
running through the rest of the paper.

The rest of this paper is now structured as follows. The
next section introduces our notation for systems, and
gives a toy example. In Sect. 3 we develop a very primitive
telephone system model, together with two independent
enhancements, call forwarding and call hold. Section 4
reviews the basic ideas of retrenchment in the context of
the earlier system notations and toy example. Since there
are areas of incompatibility between the primitive tele-
phone systemmodel and the two enhancements (features)
introduced, retrenchment is needed to describe the rela-
tionships between the primitive model and the enhanced
models; Sect. 5 covers this. Section 6 considers how the
two features may be combined: again there are areas of
incompatibility when both features can be triggered. It is
shown that given a design decision about how to resolve
the incompatibility, retrenchments can relate the two
features to the resulting final model. Section 7 considers
the two compositions of the two features along the two
routes from the original model to the final model, and
compares these to a retrenchment description of a one-
step derivation. It is shown that the compositions give safe
overestimates for what is permitted, due to the proof
technique used. This attests to the solidity of the
retrenchment technique. Section 8 describes two stronger
laws of composition for retrenchments that overcome the
overgenerous provisions of the standard composition.
While the first of these is still tooweak to cover what takes
place in the present case study, the second is better suited
to doing so. This illustrates that when disjunctions play a
prominent role in a derivation (as they notably do in
applications of retrenchment),we should both take care to
interpret the results in an appropriate manner, and note
that small changes in other parts of the system can sig-
nificantly affect the said interpretation.

In Sect. 9 we bring into the discussion Zave’s layered
feature-engineering approach, which proposes an archi-
tectural methodology for dealing with feature interac-
tions. This acts as a spur to re-examine our case study
from a layered feature-engineering perspective, and the
featuremodels for this approach are described in Sect. 10.
Section 11 considers the retrenchments between the layers
of this approach and relates them to the ones introduced

earlier, thus closing the loop. Section 12 concludes. In an
Appendix we describe how an alternative development of
the case study based on refinement might run. The pros
and cons of the refinement- and retrenchment-based
approaches are compared, and we illustrate how the
routes available to us via refinement all suffer from
undesirable aspects. These discussions are offlined so as
not to disturb the retrenchment-oriented flow of ideas in
the main body of the paper.

All through the paper, in constructing formal models,
we make use of a Z-like notation for standard discrete
mathematics notions. Mostly this should be self-
explanatory, but we introduce a couple of possibly less
familiar notations here.

Let R be a relation from X to Y, a set of (x, y) pairs
with x 2 X, y 2 Y. Then its domain and range are:

dom Rð Þ ¼ x 2 X j 9y 2 Y; x; yð Þ 2 Rf g
rng Rð Þ ¼ y 2 Y j 9x 2 X; x; yð Þ 2 Rf g ð1Þ

If X = Y then the field of R is:

fld Rð Þ ¼ dom Rð Þ [ rng Rð Þ ð2Þ

The domain and range subtraction operators / and
. are defined by:

A/ R ¼ x; yð Þ 2 R j x 62 Af g
R . B ¼ x; yð Þ 2 R j y 62 Bf g

ð3Þ

and the domain and range override operators �/ and �.
are defined by:

R�/ S ¼ S [ x; yð Þ 2 R j x 62 dom Sð Þf g
R�. S ¼ R [ x; yð Þ 2 S j y 62 rng Rð Þf g

ð4Þ

X fi Y denotes the total functions from X to Y;
X Y Y the total injections, and X�7 Y the partial
injections, etc. For a relation R, R+ denotes the transi-
tive closure of R. Other notations are introduced in situ.

2 System descriptions

In this paper we will strive to describe systems in the
simplest way possible consistent with the mathematical
precision necessary for resolving the technical issues we
have in mind. Accordingly we work in a pure transition
system framework. In this context, a system will be
described in the following manner.

The system will possess a set of operations, Ops, with
typical element m (and among the various operations
there will be a distinguished initialisation operation Init).
A typical operation m will act on a current (or before-)
state u, in a manner that depends on the current input i,
and will accomplish a state transformation yielding a new
(or after-) state u¢, producing an output value o. The val-
ues u and u¢will be drawn from a state spaceU common to
all operations, while the input spaces and output spaces Im
andOm can in principle vary from operation to operation,
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as is indicated by the notation. The transitions of the
system (arising from some operation m) can therefore be
written u � i; m; oð Þ�> u0. The totality of such transitions
makes up the transition or step relation for m, which we
write stpm, or stpm(u, i, u¢, o) when we want to display the
variables involved.

We consider a toy example before moving on to the
many more substantial systems contained in the rest of
the paper. Aside from the initialisation Init, our system
has one further operation Up. We have U = {0, 3}, and
IUp = [ = OUp. Init sets u to 0, and Up is given by
0 � e; UpA; eð Þ�> 3, where � is the empty input and
output; this is the only step in stpUp. This completes the
description of the toy example, the only transition of
which is illustrated in the top arrow of Fig. 1. We will
return to this example in Sect. 4 to give an equally toy
illustration of retrenchment.

3 Features in a simple telephony model

We will illustrate the potential for retrenchment to
capture the evolution of an integrated specification from
incomplete and contradictory prior models, using
elements of feature interaction in telephone systems as a
case study. There is now a substantial literature on this
topic, e.g. [11, 12], since the naive combination of novel
services on top of the plain old telephone system (POTS)
model can be problematic. Since our primary aim is to
illustrate the utility of retrenchment and not to advance
the state of the art in telephony, our models will be
oversimplified in the extreme. Still, they will make the
intended points well enough. In this section we start with
the simplest model PHONE, and then consider the
addition of call forward and call hold facilities, a well-
known situation in which the naive combination of extra
services does not work.

PHONE In this system the state space is just the set of
active calls, captured in the state variable calls, which is
a partial injection on the set of available phones NUM,
and in which the domain and range of the active calls
relation do not intersect; and with calls initialised empty.
(In POTS the same handset cannot be both the instiga-
tor of a phone call and the receiver of a phone call at the
same time.)

calls : NUM �7 NUM where

domðcallsÞ \ rngðcallsÞ ¼ ;
ð5Þ

There are just two operations, connectn and
breakn, the former to dial number i from phone n, and

the latter to disconnect phone n. We define
free nð Þ � n 62 fld callsð Þ � : busy nð Þ.

calls � i; connectn; oð Þ�> calls0 where

free nð Þ^
if free ið Þ ^ n 6¼ ið Þ
then o ¼ OK ^ calls0 ¼ calls [ n 7!if g
else o ¼ NO ^ calls0 ¼ calls

ð6Þ

calls � breaknð Þ�> calls0 where

busy nð Þ ^ calls0 ¼ nf g/ calls . nf g
ð7Þ

Note that (naively speaking) you cannot make a call
from a handset already engaged in a phone call, so that
free(n) must be a precondition in (6); i.e. it is asserted in
the definition of connectn. However, the outcome of a
connection attempt made from a free handset depends
on the state of the destination handset; therefore free(i)
is a guard in a conditional.

In POTS you can’t be having a telephone conversation
with yourself on the same handset. Now whereas in real
life when you pick up a phone and dial your own number
you hear the engaged tone, the connectn model in (6) is
only sensitive to the state of the calling handset at the
instant immediately before the handset is lifted, at
which pointwe have just said that itmust be free; therefore
in our crude model we must include the (n „ i) term in
the guard to ensure the invariant in (5) is preserved.
For simplicity, this tactic for dealing with the ‘calling
oneself’ scenario is maintained for all the models in this
paper.

From this very basic model we now construct en-
hanced services one at a time: first call forwarding.

PHONECF In this system the state space is the set of
active calls as before, plus a table fortab, of call for-
warding data, the latter being a partial injection on the
phones whose transitive closure is acyclic, and also ini-
tialised empty:

fortab : NUM �7 NUM where

fortabþ \ idNUM ¼ ;
ð8Þ

Two new operations regforCF,n(i) and delforn manip-
ulate the table. The former inserts forwarding destina-
tions in the table, the latter removes them.

Note that for simplicity we do not mention parts of
the state (i.e. here the part described by the state variable
calls) left unaltered by an operation: this is the pro-
gramming convention on update of state values, in
contrast to the logical convention for defining relations,
which takes it that any variables not explicitly
constrained can be assigned arbitrary values from the
appropriate domain. The logical convention is certainly
more widely used when defining relations, but in this
paper we stress that, for economy, we will adhere to the
programming convention when defining transition

Fig. 1 A simple retrenchment
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steps, despite the slightly non-standard nature of the
definitions which result. To avoid confusion, we will
highlight the relevant facts again at particularly critical
points.

Note that regforCF,n merely (and silently) overwrites
any existing information in the table if it is safe to do so.
This is certainly a rather naive model.

fortab � i; regforCF ;n
� �

�> fortab0 where

if fortab�/ n7!if gð Þþ \ idNUM ¼ ;
then fortab0 ¼ fortab�/ n 7!if g
else fortab0 ¼ fortab

ð9Þ

fortab � delforCF ;n
� �

�> fortab0 where

fortab0 ¼ nf g/ fortab
ð10Þ

In the presence of this new service, the connectn and
breakn operations must be re-examined, as the behaviour
required of them potentially changes due to the new
functionality we are building. The connectn operation
may be re-engineered thus:

calls � i; connectCF ;n; o
� �

�> calls0 where

free nð Þ ^

if free ið Þ ^ n 6¼ ið Þ

then o ¼ OK ^ calls0 ¼ calls [ n 7!if g

else if busy ið Þ ^ i 2 dom fortabð Þ ^

fortabþ ið Þ ¼ z ^ free zð Þ ^ z 6¼ nð Þ

then o ¼ OK ^ calls0 ¼ calls [ n 7!zf g

else o ¼ NO ^ calls0 ¼ calls

ð11Þ

while the breakn operation, it turns out, is unaltered:

breakCF ;n ¼ breakn ð12Þ

This completes call forwarding. Now we turn our
attention to call holding.

PHONECH In this system the state space is the set of
active calls, plus a table holtab, of call holding data, the
latter being a subset of the phones, initialised empty:

holtab � NUM ð13Þ

Two operations insert and remove elements of this
subset. Again for simplicity the operations work silently,
giving no feedback.

holtab � regholCH ;n
� �

�> holtab0 where

holtab0 ¼ holtab [ nf g
ð14Þ

holtab � delholCH ;n
� �

�> holtab0 where

holtab0 ¼ holtab� nf g
ð15Þ

With this service, connectn and breakn need re-exami-
nation once more, for the same reason as above. The
connectn operation simulates rather primitively the infu-
riating feedback obtainable from most holding services;
however, there is no attemptmade to accuratelymodel the
resolution of a hold when the call recipient becomes free:

calls� i;connectCHn;oð Þ�> calls0where

free nð Þ^
if free ið Þ^ n 6¼ ið Þ
then o¼OK^calls0 ¼ calls[ n 7!if g
else if busy ið Þ^ i2holtab

then o¼ 00Ouradvisor is busy:Pleasehold:00ð Þ100 ^
calls0 ¼ calls

else o¼NO^calls0 ¼ calls

ð16Þ

The breakn operation is unaltered as before:

breakCH ;n ¼ breakn ð17Þ

which completes the call holding model.
Before going on to consider feature interaction, it is

appropriate to ask how the two enhanced models PHO-
NECF and PHONECH, are related to PHONE. The nat-
ural expectationmight be that theywould in some sense be
refinements of PHONE, but this turns out not to be the
case. The reason is that the simple PHONE system pre-
scribes a specific response for the busy(i) case, this being
given by the clauses o ¼ NO ^ calls0 ¼ calls, a naive
model of the engaged tone. This is in turn necessitated by
the desire tomake thePHONE systemmodel complete, as
it would need to be if the PHONE system is to be con-
sidered a viable specification in its own right. Under the
same busy(i) conditions, when suitable supplementary
conditions hold, the two enhanced models prescribe dif-
ferent and incompatible behaviour: in PHONECF a con-
nection can be made to the forward location should there
be one and it happens to be free, while in PHONECH an
irritating message drones on interminably should the
destination phone be one for which holding is configured.
This means that the enhancedmodels cannot be viewed as
straightforward extensions of the PHONE model. But in
some sense this would have to be the case if the relation-
ships between PHONE and the enhanced systems were to
be refinements.

In the Appendix we outline how one can approach
this kind of development via refinement, most particu-
larly as it illustrates the fact that in order to do so we
must start with a different formulation of the primitive
model PHONE. We examine two possible starting
models, PHONE¢ and PHONE¢¢, and we see that in both
cases these versions of PHONE are incomplete. In the
case of PHONE¢ it is a straightforward case of model
incompleteness, a problem forestalled in the PHONE
model which specifies that if the desired number is not
available then a well-defined default behaviour is
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required. (In particular, the PHONE model does not
give the designer unfettered licence to refine the busy(i)
case down to completely arbitrary behaviour, as does
PHONE¢.) In the case of PHONE¢¢, where an unre-
stricted set of possible connection outcomes in the bu-
sy(i) case is permitted, with the intention that refinement
to PHONECF subsequently narrows it down to a more
specific subset, we have requirements incompleteness,
since such uncontrolled connection behaviour can never
reflect a realistic user-level requirement. (Again, the
PHONE model does not give the designer licence to
make an arbitrary connection in the busy(i) case.)

Thus the Appendix shows that PHONE models refin-
able to PHONECF or PHONECH display traits that are
problematic from the requirements perspective. We cur-
tail further discussion at this juncture, positing firstly that
PHONE as described captures completely the natural
functional requirements of the POTSmodel of this paper,
and secondly that (as we are about to illustrate) there is no
difficulty in casting the relationships between thePHONE
model and the enhanced models as retrenchments. But
first we must say what retrenchment is.

4 Retrenchment

Retrenchment is a relationship between two systems of
the kind we have been dealing with. These will be the
abridged system, expressing an idealised but self-consis-
tent view of some part of the desired system, and the
completed system, which takes all of (or at least more of)
the necessary details into account.4

At the abridged level, we have a system as we described
in Sect. 2, namely a set of operations OpsA with typical
element mA, and state space, input spaces, and output
spacesU, ImA,OmA, respectively. The transition relations
for typical operations mA are stpmA(u, i, u¢, o). Note that
we have acquired an extra subscript A to unambiguously
indicate the abridged system where necessary.

At the completed level we have an entirely analogous
set-up. This time the operation name set, state, input and
output spaces are OpsC, V, JmC, PmC, respectively, with
values mC, v, j, p, and similar conventions as before,
except noting that we write the operation name set and
operation names subscripted with C, e.g. mC. We assume
each abridged level operation mA, has a corresponding
completed level operation mC, but there may also be
other completed level operations, so that there is an
injection from the set OpsA to OpsC, which associates
mA with mC.

Wenow turn to the relationship between the two levels,
which consists of several pieces. Firstly we have the rela-
tionship between abridged and completed state spaces,
which is given by the retrieve relation G(u, v). Next we
demand that the two initialisation operations InitA and
InitC at abridged and completed levels establishes G in

corresponding after-states (as usual, the free variables are
assumed implicitly universally quantified):

InitC v0ð Þ ) 9u0 � InitA u0ð Þ ^ G u0; v0ð Þð Þ ð18Þ

Turning to the transition relation for a typical oper-
ation mA, beyond the retrieve relation G, we have a
within relation Pm(i, j, u, v), and concedes relation
Cm(u¢, v¢, o, p; i, j, u, v). The punctuation indicates that
Cm is mainly concerned with after-values, but may refer
to before-values too where necessary. These are
combined into the retrenchment PO for steps, which
says that for each such mA:

G u;vð Þ^ Pm i;j;u;vð Þ ^ stpmC v;j;v0;pð Þ)
9u0;o�stpmA u;i;u0;oð Þ^ G u0;v0ð Þ_Cm u0;v0;o;p;i;j;u;vð Þð Þð Þ

ð19Þ
This PO affords considerable flexibility in relating

different levels of abstraction, see [7, 8, 13, 9] for a dis-
cussion.

We return to our previous toy example for a brief
illustration. We have seen that the abridged level is given
by InitA, and one further operation UpA, with
U = {0, 3}, IUpA = [ = OUpA; and such that InitA
sets u to 0, and UpA is given by the one and only tran-
sition 0 � e; UpA; eð Þ�> 3. At the completed level we
have InitC and UpC. The state space is V = {0, 3, X},
and JUpC = [, PUpC = {Done, Error}. InitC sets v to 0,
and stpUpC has two transitions {0 � e; UpC; Doneð
Þ�> 3, 0 � e; UpC; Errorð Þ�> X }. The non-trivial steps
of both systems are illustrated in Fig. 1.

The retrieve relation is given by the inclusion of U

into V, i.e. equality of abridged and completed values,
and the within relation for Up is U ·V (i.e. we have a
trivial within relation, where we also remove the empty
input spaces).

There is some scope for choosing the concedes rela-
tion CUp. The smallest possibility is:

C1 ¼ u0; v0; pð Þju0 ¼ 3 ^ v0 ¼ X ^ p ¼ Errorf g ð20Þ

while other possibilities include:

C2 ¼
� ðu0; v0; pÞjðv0 ¼ X ^ p ¼ ErrorÞ
_ v0 ¼ u0 ^ p ¼ Doneð Þ

�
ð21Þ

C3 ¼
� ðu0; v0; pÞjðp ¼ Error) v0 ¼ X Þ ^
ðp ¼ Done) v0 ¼ u0Þ

�
ð22Þ

Note that C2 = C3 because of the smallness of the
spaces involved. These different possibilities indicate
some of what can be expressed using retrenchment in a
more syntactically based framework, in particular that
what goes into the concedes relation is at least partly a
question of design, and of the relative importance of
various issues as perceived by developers. It is easy to
check that the PO (19) holds for each of the Cis. With this
under our belts, we turn to the retrenchments of our case
study.

4 Most presentations of retrenchment speak of an abstract and a
concrete system, in the spirit of moving towards an implementation.
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5 Retrenchments for the telephony systems

Turning to the retrenchments between the systems of
Sect. 3, in each instance we first say which model is the
abridged one and which the completed one, and then we
give the retrieve relation between the state spaces, and
the within and concedes relations for each operation of
the abridged model.

PHONE to PHONECF We set up the data for the
retrenchment as follows, with PHONE as the abridged
model and PHONECF as the completed model:

GCF u; vð Þ ¼ u ¼ calls ^ v ¼ calls; fortabð Þð Þ ð23Þ

PCF ;connectn i; j; u; vð Þ ¼ i ¼ jð Þ ð24Þ

CCF ;connectn u0; v0; o; p; i; j; u; vð Þ ¼
busy jð Þ ^ j 2 dom fortabð Þ ^
fortabþ jð Þ ¼ z ^ free zð Þ ^ z 6¼ nð Þ ^
u0 ¼ u ^ v0 ¼ calls [ n 7!zf g; fortabð Þ ^
o ¼ NO ^ p ¼ OK

0

BBBB@
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CCCCA

ð25Þ

PCF ;breakn u; vð Þ ¼ true ð26Þ

CCF ;breakn u0; v0; u; vð Þ ¼ false ð27Þ

Showing that the POs of retrenchment hold for these
data is easy. The initialisation PO (18) is trivial given
that all the sets in the states of both models are initia-
lised empty. Also the operation PO (19) is easy given
that the only case where the actions of connectn and
connectCF,n differ is precisely the case documented in the
concedes relation (25). The two break operations are
identical, leading to trivial within and concedes rela-
tions.

PHONE to PHONECH The abridged model is
PHONE as before and PHONECH is now the completed
model:

GCH u; vð Þ ¼ u ¼ calls ^ v ¼ calls; holtabð Þð Þ ð28Þ

PCH ;connect i; j; u; vð Þ ¼ i ¼ jð Þ ð29Þ

CCH ;connect u0; v0; o; p; i; j; u; vð Þ ¼
busy jð Þ ^ j 2 holtab ^ u0 ¼ u ^ v0 ¼ v ^

o ¼ NO ^ p ¼ ’’Our:::hold:’’Þ100
� �

0

@ ð30Þ

PCH ;breakn u; vð Þ ¼ true ð31Þ

CCH ;breakn u0; v0; u; vð Þ ¼ false ð32Þ

The POs are as straightforward as previously, and for
the same reasons.

6 Feature interaction in telephony

Having built our basic system, and having separately
considered the call forwarding and call holding optional
enhancements, we now consider combining the two
features. Any combination is based on the assumption
that the calls state component and the input and output
spaces of the two variants of the connectn and breakn
operations are to be identified insofar as possible. (This
precludes constructions that incorporate say two calls
state components and then implement call forwarding in
one, and call holding in the other. Formally this might
work up to a point, but in practice such solutions are not
useful models of the real world.) In any event, we stress
that whatever method of combining the two features is
used, it will require a design decision, and will not just
rest on the mechanical application of some standard
piece of formalism.

PHONECF/CH The state space is calls as before, plus
tables of call forwarding and call holding data:

calls : NUM �7 NUM ;

fortab : NUM �7 NUM ;

holtab � NUM

0

@

1

A

where

dom callsð Þ \ rng callsð Þ ¼ ; ^
fortabþ \ idNUM ¼ ;

ð33Þ

The auxiliary operations to manage the two tables are
unchanged:

regforCF =CHn
¼ regforCF ;n

delforCF =CHn
¼ delforCF ;n

regholCF =CHn
¼ regholCH ;n

delholCF =CHn ¼ delholCH ;n

ð34Þ

(The equalities above are to be understood according
to the programming convention on values, namely that
anything not mentioned is to be left unchanged.) The
break operations are also unaltered:

breakCF =CHn
¼ breakCF ;n ¼ breakCH ;n ¼ breakn ð35Þ

The interest lies of course in the connectCF/CH,n(i)
operation. Our design is guided by the following princi-
ples. Firstly, if the conditions for neither service
enhancement hold, then the system should behave like the
plain PHONE service. Secondly, if the conditions for ex-
actly one of the service enhancements hold, then the sys-
tem should behave according to that enhancement. The
third case, when the conditions for both the call for-
warding and call hold enhancements are valid, requires a
more intrusive design decision. We determine that in this
case the caller should have a choice between the two
alternatives. To keep things as simple as previously, we do
not model the interaction with the caller or the resolution
of a hold situation very faithfully,modelling it by issuing a
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particular message at the output, in line with the unso-
phisticated nature of all the models in this paper.

calls� i;connectCF =CHn;o
� �

�> calls0 where
free nð Þ^
if free ið Þ ^ n 6¼ ið Þ
then o¼OK ^ calls0 ¼ calls [ n7!if g
else if busy ið Þ ^ i 62 holtab^ i 2 dom fortabð Þ ^

fortabþ ið Þ ¼ z ^ free zð Þ ^ z 6¼ nð Þ
then o¼OK ^ calls0 ¼ calls [ n7!zf g
else if busy ið Þ ^ i 2 holtab ^

i 62 dom fortabð Þ _
i 2 dom fortabð Þ ^�

busy fortabþ ið Þð Þ _ z¼ nð Þ
�

0

@

1

A

0

@

1

A

then o¼ ‘‘Our advisor is busy: Please hold:’’ð Þ100 ^
calls0 ¼ calls

else if busy ið Þ ^ i 2 holtab ^ i 2 dom fortabð Þ ^
fortabþ ið Þ ¼ z ^ free zð Þ ^ z 6¼ nð Þ

then o¼
‘‘Our advisor is busy: Please press 1

to speak to the janitor:’’

0

@

1

A^

calls0 ¼ calls
else o¼ NO ^ calls0 ¼ calls

ð36Þ

It is clearly plausible to infer immediately that
refinements will not hold either between the PHONECF

and PHONECF/CH models, or between the PHONECH

and PHONECF/CH models; reasons for this are as dis-
cussed earlier.

Despite this, we show that retrenchment can give a
good account of the situation, due to the more flexible
proof obligations that characterise it.

PHONECF to PHONECF/CH In contrast to the two
retrenchments given previously, this time PHONECF is
the abridged model and PHONECF/CH is the completed
model, illustrating how in a development hierarchy what
is regarded as concrete at one point becomes abstract
when one focuses lower down. (This is just as appro-
priate for the piecewise development of a specification
from preliminary models as it is when developing an
implementation from an already agreed specification.)

GCF>CH u; vð Þ ¼ u ¼ calls; fortabð Þ ^
v ¼ calls; fortab; holtabð Þ

� �
ð37Þ

PCF>CH :connectn i; j; u; vð Þ ¼ i; jð Þ ð38Þ

PCF>CH ;breakn u; vð Þ ¼ true ð40Þ

CCF>CH ;breakn u0; v0; u; vð Þ ¼ false ð41Þ

PCF>CH ;regforn i; j; u; vð Þ ¼ i ¼ jð Þ ð42Þ

CCF>CH ;regforn u0; v0; i; j; u; vð Þ ¼ false ð43Þ

PCF>CH ;delforn u; vð Þ ¼ true ð44Þ

CCF>CH ;delforn u0; v0; u; vð Þ ¼ false ð45Þ

It is clear that the relevant POs hold. Initialisation is
trivial as usual, and the operation POs are trivial for all
but the connectn operation. In the latter case it is easy to
see that in the cases where the abridged and completed
models differ, the differences are adequately documented
in the concedes clause.

PHONECH to PHONECF/CH Here the abridged model
is PHONECH and PHONECF/CH plays the part of the
completed model.

GCH>CF u; vð Þ ¼ u ¼ calls; holtabð Þ ^
v ¼ calls; fortab; holtabð Þ

� �
ð46Þ

PCH>CF ;connectn i; j; u; vð Þ ¼ i ¼ jð Þ ð47Þ

CCH>CF ;connectn u0;v0;o;p; i; j;u;vð Þ ¼
busy fð Þ^ j2 dom fortabð Þ ^
fortabþ jð Þ ¼ z ^ free zð Þ ^ z 6¼ nð Þ ^

j 62 holtab ^ u0 ¼ u ^ o¼NO ^ p¼OK^
v0 ¼ calls[ n 7!zf g;fortab;holtabð Þ

 !

_

j2 holtab ^ u0 ¼ u ^ v0 ¼ v^
o¼ ’’Our:::hold:’’ð Þ100^
p¼ ’’Our:::janitor:’’ð Þ
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ð48Þ

PCH>CF ;breakn u; vð Þ ¼ true ð49Þ

CCF>CH :connectn u0; v0; o; p; i; j; u; vð Þ ¼
busy jð Þ ^ j 2 holtab ^

j =2 dom fortabð Þ _ j 2 dom fortabð Þ ^
busy fortabþ jð Þ

� �
_ z ¼ nð Þ

� �
� �� �

^
u0 ¼ u ^ v0 ¼ v ^ o ¼ NO ^

p ¼ ’’Our:::hold:’’ð Þ100

0

B@
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CA _

j 2 dom fortabð Þ ^ fortabþ jð Þ ¼ z ^ free zð Þ ^
z 6¼ nð Þ ^ u0 ¼ calls [ n 7!zf g; fortabð Þ ^

v0 ¼ v ^ o ¼ OK ^
p ¼ ’’Our:::janitor:’’ð Þ

0
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0
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CCCCCCCCCA

0

BBBBBBBBBB@

1

CCCCCCCCCCA

ð39Þ
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CCH>CF ;breakn u0; v0u; vð Þ ¼ false ð50Þ

PCF>CH ;regholn u; vð Þ ¼ true ð51Þ

CCF>CH ;regholn u0; v0; u; vð Þ ¼ false ð52Þ

PCF>CH ;delholn u; vð Þ ¼ true ð53Þ

CCF>CH ;delholn u0; v0; u; vð Þ ¼ false ð54Þ

The POs are as straightforward as previously.
We note that in both of these retrenchments, the

concedes clause for the connectn operation has to cater
for two exceptional conditions. In the case of the
CF>CH retrenchment, when holding is available, the
two actions for when forwarding is available or not are
both incompatible with the provisions of the PHONECF

model, while in the CH>CF retrenchment, when for-
warding is available the two actions for when holding is
available or not are both incompatible with the provi-
sions of the PHONECH model. Aside from these non-
trivial cases, we have a greater proliferation of essentially
trivial operation POs, arising from the fact that PHO-
NECF and PHONECH have management operations for
the forward and hold tables respectively, and these are
also present in identical fashion in PHONECF/CH.

7 Compositions of retrenchments and a direct
retrenchment design

Given that we have two routes to get from the simple
model PHONE to the final model PHONECF/CH, the
first via PHONECF and the second via PHONECH, we
can examine the compositions of the relevant pairs of
retrenchments and compare them, both to each other
and to a one-step retrenchment which derives the final
design from the original simple PHONE system.

For the formulation of retrenchment used in this pa-
per, the method of composing retrenchments is examined
in detail in [9]. For brevity we just sketch the results.

Suppose we have at top level a system given by vari-
ables u, i, u¢, o (for a typical operation). At intermediate
level suppose the variables are v, j, v¢, p (for the corre-
sponding operation). And at lowest level suppose the
variables arew, k,w¢, q (for an operation corresponding to
an intermediate level operation with variables v, j, v¢, p).
Suppose a retrenchment is given from top level to inter-
mediate level with retrieve relation G(u, v), and for a top-
level operation m, the within and concedes relations are
Pm(i, j, u, v), Cm(u¢, v¢, o, p; i, j, u, v). Suppose there is
also a retrenchment from intermediate level to lowest level
whose retrieve relation is H(v, w), and such that for
intermediate-level operation m, the within and concedes
relations are Qm(j, k, v, w), Dm(v¢, w¢, p, q; j, k, v, w). In
such a case there is a retrenchment from the top level to the
lowest level, for which the retrieve relation is:

K u;wð Þ ¼ 9v � G u; vð Þ ^ H v;wð Þð Þ ð55Þ

and for which the within and concedes relations for a
top-level operation m are:

Rm i; k; u;wð Þ ¼
9v; j � G u; vð Þ ^ H v;wð Þ ^ð

Pm i; j; u; vð Þ ^ Qm j; k; v;wð ÞÞ
ð56Þ

Em u0;w0; o; q; i; k; u;wð Þ ¼
9v0; p; v; j �

G u0; v0ð Þ ^ Dm v0;w0; p; q; j; k; v;wð Þð Þ _
Cm u0; v0; o; p; i; j; u; vð Þ ^ H v0;w0ð Þð Þ _

Cm u0; v0; o; p; i; u; vð Þ ^
Dm v0;w0; p; q; j; k; v;wð Þ

� �

0
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ð57Þ

This result is confirmed by straightforward predicate
calculus as follows. On the basis of the assumed
retrenchments and the validity of their POs, we assume
we are given u, i and w, k related by (55) and (56), and a
lowest-level step w � k; m; qð Þ�> w0. We extract from
(55) and (56) the conjunction of the antecedents for the
individual POs, and apply them in turn to derive inter-
mediate and highest-level steps, and thence the con-
junction of the consequents for the individual POs.
Some predicate calculus now manipulates this conjunc-
tion into the disjunction of (55) and (56), confirming that
(55)–(57) indeed define a valid retrenchment.

We will now calculate the composed quantities (55)–
(57) for the two retrenchment routes from PHONE to
PHONECF/CH. In both cases we only need to check for
the top-level operations connectn and breakn because the
other operations at the intermediate level get filtered out
of the composed retrenchment.

For clarity, we will simplify the results as much as
possible. This includes, for example, eliminating clauses
if they arise anyway from other parts of the PO for the
composed retrenchment, or are obvious logical conse-
quences of such parts. Thus we strive not so much for
the literal results of (55)–(57) as for answers that are
equivalent to them within the context of their intended use,
i.e. equivalent under the hypotheses that the antecedents
of the PO are true, and that a suitable abridged level step
has been inferred from them.

We start with the route via PHONECF, getting a
retrenchment whose data, K, R, E, we label with
CF>CH. Starting with the retrieve relation, we plug
(23) and a suitably relabelled (37) into (55) and get:

KCF>CH u;wð Þ ¼ u ¼ calls ^
w ¼ calls; fortab; holtabð Þ

� �
ð58Þ

Moving to connectn and the within relation, we like-
wise plug (23) and (24) and a suitably relabelled (37) and
(38) into (56). We note that as far as the use of the
resulting relation in the operation PO is concerned, we
can discard the term G u; vð Þ ^ H v;wð Þ which
arises via (56) since PCF ;connectnði; j; u; vÞ and
QCF >CH ;connectnðj; k; v; wÞ are independent of the state
variables u, v, w, and KCF>CH ðu; wÞ is one of the PO
antecedents anyway. Thus we get:
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RCF>CH ;connectn i; k; u;wð Þ ¼ i ¼ kð Þ ð59Þ

Similarly, for the concedes relation, we plug (23) and
(25) and a suitably relabelled (37) and (39) into (57). After
some simplification and further manipulation, which we
explain below, we get the following, where the individual
clauses are labelled for ease of identification later:

ECF>CH ;connectn u0;w0;o;q;i;k;u;wð Þ¼ðbusy kð Þ^
½1� ððk 62holtab^k2domðfortabÞ^fortabþ kð Þ¼z^

free zð Þ^ z 6¼nð Þ^u0¼u^o¼NO^q¼OK^
w0¼ calls[ n7!zf g;fortab;holtabð ÞÞ_

2½ � ðk2holtab^k2dom fortabð Þ^fortabþ kð Þ¼z^
free zð Þ^ z 6¼nð Þ^u0¼u^o¼NO^q¼OK^
w0¼ðcalls[ n 7!zf g;fortab;holtabÞÞ_

½3� ðk2holtab^k 62dom fortabð Þ_
ðk2dom fortabð Þ^fortabþ kð Þ¼z^
ðbusy zð Þ_ðz¼nÞÞÞÞ^
u0¼u^w0¼w^o¼NO^

q¼ ’’Our:::hold:’’ð Þ100Þ_
4½ � ðk2holtab^k2dom fortabð Þ^fortabþ kð Þ¼z^

free zð Þ^ z 6¼nð Þ^u0¼calls[ n7!zf g^w0¼w^
o¼OK^q¼ð’’Our:::janitor:’’ÞÞ_

½5� ðk2holtab^k2dom fortabð Þ^fortabþ kð Þ¼z^
free zð Þ^ z 6¼nð Þ^u0¼u^w0¼w^o¼NO^
q¼ð’’Our::janitor:’’ÞÞÞÞ

ð60Þ

In deriving (60), in line with our remarks above, we
fully exploited the environment furnished by the context
of the intended use of the concedes clause, which con-
sists of the antecedents of the composed retrenchment
PO. These state that i = j, j = k hold, and allow us to
exploit the properties of G and H, removing the exis-
tential quantifications 9v0; v; j via the one point rule.
Also we identified intermediate-level outputs with high-
er- or lower-level outputs as appropriate in the clauses
containing G or H, allowing us to eliminate the 9p
quantification too. This goes slightly beyond what is
expressed in the generic operation PO because outputs
are discussed only in the concedes clause.5

Now disjuncts [1] and [2] of (60) come from the
C ^ H term in (57). We note that [2] is an artefact in
that it applies to a situation in which both forwarding
and holding are configured, and prescribes an outcome
incompatible with our design decision in (36). This
phenomenon is attributable to the insensitivity of H to
the means by which the state it is mapping was
arrived at, i.e. it allows forwarding behaviour to
survive when a subsequent design decision has over-
ridden it. This in turn is a by-product of the proof
technique used to establish the soundness of the
composed retrenchment, which calculates a composed
concedes relation which is safe if possibly overgener-
ous, purely on the basis of Boolean algebra, and
without regard to the underlying behaviour of the
composed systems. We look at this issue more closely
in the next section.

In like manner [3] and [4] come from G ^ D, with [4]
being an artefact which also applies when forwarding
and holding are configured, but this time stipulating a
different incompatible outcome to [2]. Finally [5] comes
from C ^ D, which generates two disjuncts from D;
however one of them reduces to false.

The other operation figuring in the retrenchment is
breakn for which we find, uninterestingly:

RCF>CH ;breakn u;wð Þ ¼ true ð61Þ

ECF>CH ;breakn u0;w0; u;wð Þ ¼ false ð62Þ

Now we can turn our attention to the alternative
route to PHONECF/CH via PHONECH. Going through
the same procedure we get a retrenchment labelled with
CH>CF.

The retrieve relation is as before:

KCH>CF u;wð Þ ¼ u ¼ calls ^
w ¼ calls; fortab; holtabð Þ

� �
ð63Þ

Similarly, for connectn, using the same techniques as
in (59), we obtain the within relation:

RCH>CF ;connectn i; k; u;wð Þ ¼ i ¼ kð Þ ð64Þ

To obtain the concedes relation, we manipu-
late (28) and (30) and a suitably relabelled (46) and (48)
into:

ECH>CF ;connectn u0;w0;o;q; i;k;u;wð Þ¼ ðbusy kð Þ^
½1� ððk2holtab^ðk 62 dom fortabð Þ_
ðk2 dom fortabð Þ^fortabþ kð Þ¼ z^
busy zð Þ_ z¼nð Þð ÞÞÞ^

u0 ¼u^w0 ¼w^o¼NO^
q¼ð’’Our:::hold:’’Þ100Þ_

½2� ðk2holtab^k2 dom fortabð Þ^fortabþ kð Þ¼ z^

free zð Þ^ z 6¼ nð Þ^u0 ¼ u^w0 ¼w^o¼NO^

q¼ ’’Our:::hold:’’ð Þ100Þ_

5 One can accept this situation as it stands; i.e. one can, if a more
precise solution is desired, add any necessary information about the
outputs in those cases where the retrieve relation is re-established
(and the concedes clause is not otherwise verified) as a top-level
disjunct in the concedes clause, making it true always; we have
finessed this possibility. Alternatively to improve matters regarding
outputs, one can move to a more expressive if more complicated
formulation of retrenchment, e.g. sharp retrenchment or its close
relatives [13, 9]. Among these possibilities, output retrenchment
replaces G in the consequent of the operation PO by G ^ O, where
O(o, p) relates higher- and lower-level outputs for the case that G is
maintained (in our case reducing to just (o = p)). Then a sound
law of composition supplements (55)–(57) with the composition of
O relations for successive retrenchments.
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½3� ðk2holtab^k2dom fortabð Þ^fortabþ kð Þ¼z^

free zð Þ^ z 6¼nð Þ

u0 ¼u^w0 ¼w^o¼ ’’Our:::hold:’’ð Þ100^

q¼ð’’Our:::janitor:’’ÞÞ_
½4� ðk =2holtab^k2dom fortabð Þ^fortabþ kð Þ¼z^

free zð Þ^ z 6¼nð Þ^u0 ¼u^o¼NO^q¼OK^

w0 ¼ðcalls[ n 7!zf g;fortab;holtabÞÞ_
½5� ðk2holtab^k2dom fortabð Þ^fortabþ kð Þ¼z^

free zð Þ^ z 6¼nð Þ^u0 ¼u^w0 ¼w^o¼NO^

q¼ð’’Our:::janitor:’’ÞÞÞÞ

ð65Þ

Using the same technical tricks as before, this time [2]
and [3] are spurious; with [1], [4], [5] agreeing with [3],
[1], [5] respectively of (60). Note that the spurious clauses
in the two calculations are not the same. They result
from the propagation of inappropriate information in
different directions.

As before, for breakn we find:

RCH>CF ;breakn u;wð Þ ¼ true ð66Þ

ECH>CF ;breakn u0;w0; u;wð Þ ¼ false ð67Þ

With these calculations completed, we can consider
what the details of the retrenchment would look like if
we built both enhanced services into the plain PHONE
model simultaneously. It is not hard to see that this
retrenchment would be given firstly by:

GCH=CF u;wð Þ ¼ u ¼ calls ^
w ¼ calls; fortab; holtabð Þ

� �
ð68Þ

and secondly for connectn we would get the within
relation:

PCH=CF ;connectn i; k; u;wð Þ ¼ i ¼ kð Þ ð69Þ

while for the concedes relation we would need merely to
record the cases in which the simple PHONE model
differs from the PHONECF/CH model, thus:

CCH=CF ;connectn u0;w0; o; q; i; k; u;wð Þ ¼
ðbusy kð Þ ^ u0 ¼ u ^ o ¼ NO ^
ððk 62 holtab ^ k 2 dom fortabð Þ ^
fortabþ kð Þ ¼ z ^ free zð Þ ^ z 6¼ nð Þ ^ q ¼ OK ^
w0 ¼ ðcalls [ n7!zf g; fortab; holtabÞÞ _
ðk 2 holtab ^ k 62 dom fortabð Þ _
ðk 2 dom fortabð Þ ^
fortabþ kð Þ ¼ z ^ ðbusy zð Þ _ ðz ¼ nÞÞÞÞ ^
w0 ¼ w ^ q ¼ ’’Our:::hold:’’ð Þ100Þ _
ðk 2 holtab ^ k 2 dom fortabð Þ ^
fortabþ kð Þ ¼ z ^ free zð Þ ^ z 6¼ nð Þ ^ w0 ¼ w ^
q ¼ ð’’Our:::janitor:’’ÞÞÞÞ

ð70Þ

For breakn we would find as usual:

PCH=CF ;breakn
u;wð Þ ¼ true ð71Þ

CCH=CF ;breakn
u0;w0; u;wð Þ ¼ false ð72Þ

With these formulae in place, we are in a position to
compare the various retrenchments we have derived.
The only places in which they differ are the various
concedes relations for the connectn operation. A little
thought shows that CCH=CF ;connectn is a subrelation of
both ECF>CH ;connectnand of ECH>CF ;connectn See Fig. 2.

It is not hard to see why this is the case. The law of
composition (57) is inclusive, in that all the behaviours
permitted by the component concedes relations are
effectively preserved and combined in all possible ways
in the composed concedes relation. As noted previ-
ously, this is a consequence of the proof technique
adopted to establish the soundness of the definition of
the composed retrenchment, which just manipulates
the conjunction of the component PO consequents.
This is insensitive to whether in any particular situa-
tion there are in fact any before-states, after-states,
inputs, outputs and transitions that inhabit all the
clauses allowed for in the composition. Inevitably, this
can sometimes give more than is needed, as happened
here.

The kind of composition of concedes clauses we
have used is appropriate for an adequately descriptive
approach to system description, in which it is the job of
the concedes clauses to place safe constraints on what
the systems actually do. In a more prescriptive ap-
proach, in which the concedes clauses must define what
the systems ought (and ought not) to do, a semantically
more incisive law of composition, where spurious
behaviour is eliminated, is more appropriate. We
describe possible improved composition laws in the
next section.

8 Stronger compositions for retrenchments

Suppose we are given three systems: a top-level system
with data u, i, u¢, o, an intermediate system with data v, j,
v¢, p, and a lowest-level system with data w, k, w¢, q. Let
there be a retrenchment from top level to intermediate
system characterised by relations G(u, v), Pm(i, j, u, v),
Cm(u¢, v¢, o, p; i, j, u, v), and a retrenchment from
intermediate to lowest-level system characterised by
relations H(v, w), Qm(j, k, v, w), Dm(v¢, w¢, p, q; j,
k, v, w).

Fig. 2 Inclusions between retrenchments
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Consider the top-level to intermediate system
retrenchment. We define the following predicates for an
abstract operation m:

preRet
m u; i; v; jð Þ ¼

9u0; o; v0; p �
G u; vð Þ ^ Pm i; j; u; vð Þ ^
stpmA u; i; u0; oð Þ ^ stpmC v; j; v0; pð Þ ^
G u0; v0ð Þ

0

B@

1

CA

ð73Þ

preConm u; i; v; jð Þ ¼
9u0; o; v0; p �
G u; vð Þ ^ Pm i; j; u; vð Þ ^
stpmA u; i; u0; oð Þ ^ stpmC v; j; v0; pð Þ ^
Cm u0; v0; o; p; i; j; u; vð Þ

0

B@
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ð74Þ

preRetA
m u; ið Þ ¼ 9v; j � preRet

m u; i; v; jð Þ
� �

ð75Þ

preRetC
m v; jð Þ ¼ 9u; i � preRet

m u; i; v; jð Þ
� �

ð76Þ

preConAm u; ið Þ ¼ 9v; j � preConm u; i; v; jð Þ
� �

ð77Þ

preConCm v; jð Þ ¼ 9u; i � preConm u; i; v; jð Þ
� �

ð78Þ

We say that a retrenchment is tidy iff for all abstract
operations m:

preRetA
m u; ið Þ ^ preConAm u; ið Þ ¼ false ð79Þ

and

preRetC
m v; jð Þ ^ preConCm v; jð Þ ¼ false ð80Þ

This says that the combinations of before-states and
inputs at both levels that characterise the transitions that
can re-establish the retrieve relation are disjoint from
those that merely establish the concedes relation.

Analogously for the intermediate to lowest-level
retrenchment, we have the predicates preRet

m v; j;ð
w; kÞ; preConm v; j;w; kð Þ; preRetAm v; jð Þ; preRetCm w; kð Þ; preConAm
v; jð Þ; preConCm w; kð Þ:
Two adjacent retrenchments like these, which are

both tidy, are said to be compatibly tidy iff for all ab-
stract operations m:

preRetA
m v; jð Þ2 ) preRetC

m v; jð Þ1 ð81Þ

and

preConAm v; jð Þ2 ) preConCm v; jð Þ1 ð82Þ

hold for the intermediate system. In (81) and (82) the
antecedent pre clauses come from the intermediate to
lowest-level retrenchment, which is subscripted 2 to
distinguish it from the top-level to intermediate
retrenchment, which is subscripted 1, and from which
the consequents come.

Theorem 8.1 With the current notations, two compat-
ibly tidy retrenchments compose to give a single
retrenchment given by the data:

K u;wð Þ ¼ 9v � G u; vð Þ ^ H v;wð Þð Þ ð83Þ

Rm i; k; u;wð Þ ¼ 9v; j � G u; vð Þ ^ H v;wð Þ ^
Pm i; j; u; vð Þ ^ Qm j; k; v;wð Þ

� �
ð84Þ

Em u0;w0; o; q; i; k; u;wð Þ ¼

9v0; p; v; j � Cm u0; v0; o; p; i; j; u; vð Þ ^
Dm v0;w0; p; q; j; k; v;wð Þ

 !
ð85Þ

Proof To show that we have a retrenchment, we must
show that the POs for the composed retrenchment fol-
low from the POs for the individual ones. The initiali-
sation PO follows immediately by composing the
individual initialisation POs.

For the operation PO, we assume the antecedents.
These give w, k, v, j, u, i, from (83) and (84), with v, j
arising by instantiating the existential quantifier. We
also have a step w � k; m; qð Þ�> w0 for some lowest-level
operation m corresponding to an abstract operation.
Since from (84) we have H v;wð Þ ^ Qm j; k; v;wð Þ, we sat-
isfy the antecedents of the intermediate to lowest-level
retrenchment operation PO, which gives an intermediate
step v � j; m; pð Þ�> v0, and H v0;w0ð Þ _ Dm v0;w0; p;ð
q; . . .Þ. Now using G u; vð Þ ^ Pm i; j; u; vð Þ from (84), we
satisfy the antecedents of the top-level to intermediate
retrenchment operation PO, which gives a top-level step
u � i; m; oð Þ�> u0 and G u0; v0ð Þ _ Cm u0; v0; o; p; . . .ð Þ.

Since the intermediate to lowest-level retrenchment is
tidy, exactly one of preRetC

m w; kð Þ2 or preConCm w; kð Þ2 will
hold, but not both. Suppose the former. Then H(v¢, w¢)
holds as does preRetA

m v; jð Þ2. From (81) we deduce
preRetC

m v; jð Þ1. By the fact that the top-level to interme-
diate retrenchment is tidy we deduce that preConC

m v; jð Þ1 is
impossible, whereupon G(u¢, v¢) holds, as does
preRetA

m u; ið Þ1. Thus in this case we have established that
K(u¢, w¢) holds.

Alternatively, suppose that preConCm w; kð Þ2 is true.
Then analogous reasoning establishes in turn Dm(v¢, w¢,
p, q; …), preConAm v; jð Þ2 , preConCm v; jð Þ1, Cm(u¢, v¢,
o, p; …), and preConAm u; ið Þ1. Thus Em(u¢, w¢, o, q; …)
holds. The two cases together verify the operation PO for
the composed retrenchment with retrieve, within and
concedes relations given by (83)–(85). h

The structure of the above result is very appealing. The
data that specifies the combined retrenchment is built in
an especially simple way from the component clauses.
Despite this, note that the composed retrenchment is not
necessarily tidy. Subscripting its pre clauses 12 to distin-
guish them from those hitherto, we observe that for some
w, k, wemight have preRetC

m w; kð Þ12 ^ preConCm w; kð Þ12 due
to the way that the composed data K, Rm, Em connected
top-level values u, i, u¢, o (satisfying stpm(u, i, u¢, o)) to
lowest-level values w, k, w¢, q (satisfying stpm(w, k, w¢, q))
using intermediate values v, j, v¢, p for which
stpm(v, j, v¢, p) was simply not valid.We therefore see that
this composition is not automatically compositional
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without additional conditions; evidently it cannot be
associative as it stands either.

Let us check whether the provisions of this result
apply to the feature interaction case study. Consider any
of the retrenchments we have described. In every case
the following hold. For a call to the connectn operation,
the input data to abridged and completed connectn
operations are the same, and the abridged before-state is
a part of the completed before-state. The latter means
that the retrieve relation is a projection from the com-
pleted to abridged state, obtained by discarding the
additional data in the completed state. Consequently,
for an (almost) arbitrary abridged state, one can con-
ceive an input value for which connection at the
abridged level is blocked, and furthermore: (a) there
exists a value for the additional data in the completed
state for which connection at the completed level is still
blocked; (b) there exists a value for the additional data
in the completed state for which connection at the
completed level (or other successful outcome) is now
possible. So in general there will be some u, i for which
we can make preRetA

m u; ið Þ ^ preConAm u; ið Þ valid, and the
retrenchments will not be tidy. On the other hand, we
know that possibilities (a) and (b) are mutually exclusive
in the sense that it is always true that different additional
data are needed to establish the two different possibili-
ties. We will use this clue to drive a wedge between the
possibilities aggregated in preRetA

m u; ið Þ ^ preConAm u; ið Þ,
deriving an even sharper composition law.

Let us say that a retrenchment is neat iff for all ab-
stract operations m:

preRet
m u; i; v; jð Þ ^ preConm u; i; v; jð Þ ¼ false ð86Þ

The neat condition keeps retrieve relation-preserving
behaviour apart from concedes relation-establishing
behaviour, as does the tidy condition, but it does it in a
technically more fine-grained way. The price we pay for
proving the analogue of Theorem 8.1 is that a more
complicated structure, requiring contributions from the
pre- clauses introduced above, is needed in the combined
concedes relation.

Theorem 8.2 With the current notations, two neat
retrenchments compose to give a single retrenchment
given by (83) and (84) and:

Em u0;w0; o; q; i; k; u;wð Þ ¼
9v0; p; v; j �

G u0; v0ð Þ ^ Dm v0;w0; p; q; j; k; v;wð Þ ^
preRet

m u; i; v; jð Þ ^ preConm v; j;w; kð Þ

� �
_

Cm u0; v0; o; p; i; j; u; vð Þ ^ H v0;w0ð Þ ^
preConm u; i; v; jð Þ ^ preRet

m v; j;w; kð Þ

� �
_

Cm u0; v0; o; p; i; j; u; vð Þ ^
Dm v0;w0; p; q; j; k; v;wð Þ ^
preConm u; i; v; jð Þ ^ preConm v; j;w; kð Þ

 !

0

BBBBBBBBB@

1

CCCCCCCCCA

ð87Þ

Furthermore, any intermediate-level transition
v � j; m; pð Þ�> v0 that witnesses the composed operation
PO can validate either at most one of the disjuncts of
(87), or the composed retrieve relation (83).

Proof The proof starts by repeating the first two
paragraphs of the proof of Theorem 8.1, after which we
argue as follows.

Since the intermediate to lowest-level retrenchment is
neat, exactly one of preRet

m v; j;w; kð Þ2 or preCon
m v; j;w; kð Þ2

will hold, but not both. Suppose the former. Then
H(v¢, w¢) holds and we call this case Ret-2. (The latter
will be case Con-2.)

By the fact that the top-level to intermediate
retrenchment is neat we know that exactly one of
preRet

m u; i; v; jð Þ1 or preConm u; i; v; jð Þ1 will hold, but not
both. This subdivides case Ret-2 into two subcases, Ret-
2/Ret-1 and Ret-2/Con-1 respectively. In Ret-2/Ret-1 we
have preRet

m v; j;w; kð Þ2 and preRet
m u; i; v; jð Þ1 and we re-

establish the retrieve relation G(u¢, v¢) in the after-state.
In Ret-2/Con-1 we have preRet

m v; j;w; kð Þ2 and
preConm u; i; v; jð Þ1. In this case we establish
Cm u0; v0; o; p; i; j; u; vð Þ ^ H v0;w0ð Þ.

In like manner we can consider Con-2 and its two
subcases Con-2/Ret-1 and Con-2/Con-1 which respec-
tively establish the other two possibilities permitted by
(87). These four cases verify the operation PO for the
composed retrenchment with retrieve, within and con-
cedes relations given by (83), (84) and (87).

Moreover, the preceding proof shows that at most
one of the four subcases Ret-2/Ret-1, Ret-2/Con-1,
Con-2/Ret-1, Con-2/ Con-1 can be witnessed by any
intermediate-level step v � j; m; pð Þ�> v0, as postulating
that any two or more of them are witnessed by the same
v � j; m; pð Þ�> v0 quickly yields a contradiction of the
neatness of either the top-level to intermediate, or
intermediate to lowest-level retrenchment (or both). h

Corollary 8.3 With the current notations, two neat
retrenchments satisfying:

preConm u; i; v; jð Þ ^ preConm v; j;w; kð Þ ¼ false ð88Þ

compose to give a single retrenchment given by (83) and
(84) and:

Em u0;w0; o; q; i; k; u;wð Þ ¼
9v0; p; v; j �

G u0; v0ð Þ ^ Dm v0;w0; p; q; j; k; v;wð Þ ^
preRet

m u; i; v; jð Þ ^ preConm v; j;w; kð Þ

� �
_

Cm u0; v0; o; p; i; j; u; vð Þ ^ H v0;w0ð Þ ^
preConm u; i; v; jð Þ ^ preRet

m v; j;w; kð Þ

� �

0

BBBBB@

1
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ð89Þ

Proof Immediate. h
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We observe that just as in the previous case, the no-
tion of neat retrenchment is not compositional, and it is
even easier to imagine how the required condition might
fail for the composite. Thus for the same u, i, w, k we
might both have preRet

m u; i;w; kð Þ12 established via sub-
case Ret-2/Ret-1 above and witnessed by va, ja, v¢a, pa,
and also preConm u; i;w; kð Þ12 established via one of the
other subcases and witnessed by vb, jb, v¢b, pb. These
different intermediate values get existentially quantified
away, and we are left with a failure of (86).

Let us now consider the extent to which the
retrenchments of our case study turn out to be neat.

PHONE to PHONECF The concedes relation is (25):

CCF ;connectn u0; v0; o; p; i; j; u; vð Þ ¼
busy jð Þ ^ j 2 dom fortabð Þ ^
fortabþ jð Þ ¼ z ^ free zð Þ ^ z 6¼ nð Þ ^
u0 ¼ u ^ v0 ¼ calls [ n7!zf g; fortabð Þ ^
o ¼ NO ^ p ¼ OK

0

B@

1

CA
ð90Þ

We note that for a fixed fortab, if u and v agree on the
calls component, and we have i = j, then whenever the
concedes relation holds, v¢ and v differ in the calls
component whereas u¢ = u. Consequently v¢ and u¢
differ in the calls component. Moreover, u¢ and v¢ agree

on the calls component whenever the retrieve relation is
re-established. Since both cannot be true simultaneously,
the retrenchment is neat.

PHONE to PHONECH The concedes relation is (30):

CCH ;connect u0; v0; o; p; i; j; u; vð Þ ¼
busy jð Þ ^ j 2 holtab ^ u0 ¼ u ^ v0 ¼ v ^
o ¼ NO ^ p ¼ ’’Our:::hold:’’ð Þ100

� �
ð91Þ

This time for fixed holtab, if u and v agree on the calls
component, and we have i = j, then whenever the
concedes relation holds, v¢ = v and u¢ = u, i.e. u¢ and v¢
agree on the calls component too; the outputs contain
the only indication that an abnormal situation
obtains. Also u¢ and v¢ agree on the calls component
whenever the retrieve relation is re-established. So we
can have both true, and the retrenchment is not neat as it
stands.

This is attributable to the lack of sensitivity of (73) to
outputs. In the general case we can overcome the

problem by using a notion of retrenchment that is sen-
sitive to properties of outputs in the case where the re-
trieve relation is re-established, as we pointed out in
footnote 5. With such an amplification of the notion of
‘re-establishing the retrieve relation’ fed into both the
operation PO and (73), all our results concerning tidi-
ness and neatness carry over, and the present retrench-
ment also becomes neat.

(As we also pointed out in footnote 5, for simplicity
we finessed the alternative, of suitably reformulating the
concedes relation to also carry the output properties in
the well-behaved case, but such a concedes relation be-
comes universally true in the models of interest (and in
the context of the operation PO antecedents). When, as
now, we are looking to separate behaviour that re-
establishes the retrieve relation from behaviour that
establishes the concedes relation, such universal validity
of the concedes relation is unhelpful, though even this
can be overcome by suitably dissecting the inevitably
more complex concedes relation that results. We omit
the technical details which would distort this paper
unduly.)

PHONECF to PHONECF/CH The concedes relation is
(39):

This retrenchment displays both of the behaviours
discussed above. In the u0 ¼ u ^ v0 ¼ v alternative we see
a difference in the outputs to which the retrieve relation
is insensitive, so neatness fails in the strict sense; while in
the other alternative we have a bona fide modification of
the state component in one model but not the other, so
this alternative exhibits neatness.

PHONECH to PHONECF/CH The concedes relation is
(48):

CCH>CF ;connectn u0;v0;o;p; i; j;u;vð Þ ¼
busy fð Þ ^ j 2 dom fortabð Þ ^
fortabþ jð Þ ¼ z^ free zð Þ ^ z 6¼ nð Þ ^

j 62 holtab^ u0 ¼ u^ o¼ NO^ p ¼OK ^
v0 ¼ calls[ n 7!zf g; fortab;holtabð Þ

� �
_

j 2 holtab^ u0 ¼ u^ v0 ¼ v ^
o¼ ’’Our:::hold:’’ð Þ100 ^
p ¼ ’’Our:::janitor:’’ð Þ

 !
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CCF>CH :connect u0; v0; o; p; i; j; u; vð Þ ¼
busy jð Þ ^ j 2 holtab ^

j =2 dom fortabð Þ _ j 2 dom fortabð Þ ^
busy fortabþ jð Þ

� �
_ z ¼ nð Þ

� �
� �� �

^
u0 ¼ u ^ v0 ¼ v ^ o ¼ NO ^
p ¼ ’’Our:::hold:’’ð Þ100

0

B@

1

CA _

j 2 dom fortabð Þ ^ fortabþ jð Þ ¼ z ^ free zð Þ ^
z 6¼ nð Þ ^ u0 ¼ calls [ nstozf g; fortabð Þ ^
v0 ¼ v ^ o ¼ OK ^
p ¼ ’’Our:::janitor:’’ð Þ
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This is similar to the preceding case, in having both a
neat alternative, and one that is not.

We conclude overall that though some of the
retrenchments of our case study are not neat in the strict
sense, the deficit would be easy to remedy, and neatness
provides a good intuition for understanding the case
study’s behaviour; we will see just how good in Sects 10
and 11.

Furthermore we can illustrate that the tighter com-
position of concedes relations for neat retrenchments in
(87) has the capacity to eliminate spurious clauses such
as those arising in (60) and (65). We do so by examining
the one case in which neatness holds unreservedly. This
is clause [4] of ECF>CH ;connectn in (60) which is:

ðbusyðkÞ ^ k 2 holtab ^ k 2 domðfortabÞ ^
fortabþ kð Þ ¼ z ^ free zð Þ ^ z 6¼ nð Þ ^
u0 ¼ calls [ n 7!zf g ^ w0 ¼ w ^
o ¼ OK ^ q ¼ ’’Our:::janitor:’’ð ÞÞÞÞ

ð94Þ

This arises from the G ^ D term in (57) applied to the
composition order in which call forwarding is introduced
first. Suppose this term were inhabited in the models
of interest. Then we would have to have
preRet

m u; i; v; jð Þ ^ preConm v; j;w; kð Þ true (for the only
possible j and a suitable v). Since we know that
preConm u; i; v; jð Þ holds, because the call forwarding
clauses of (11) only hold in the busy(i) case, i.e. when
POTS connection is impossible, we would have
preRet

m u; i; v; jð Þ ^ preConm u; i; v; jð Þ , which contradicts the
neatness of the PHONE to PHONECF retrenchment. So
clause (81) can be safely elided from the composed
concedes relation. Similar arguments would deal with the
other spurious clauses in (60) and (65) if it were the case
that these retrenchments were entirely neat.

9 Layered feature engineering

Zave [14] describes a feature of a software system as ‘an
optional or incremental unit of functionality’ and a
feature-oriented description as comprising ‘a base
description and feature modules’. Telecommunications
systems are conventionally given using such descriptions
[11, 15], and this is not the only application domain that
can be described in terms of features and their compo-
sition. In general, features are neither perfectly modular
nor perfectly compositional. This is the case in tele-
communications practice, where not only must feature
interaction be designed for and managed, but it can also
be useful to the system specifier.

Zave proposes a formal method for feature-oriented
descriptions which she calls feature engineering. Working
from partial (and in general inconsistent) requirements,
this involves four stages: (a) describe new features as if
independent, (b) understand all potential interactions,
(c) decide which interactions are desirable and which are
not, and (d) adjust features and their composition to
select desired interactions and avoid those not desired.

In the remaining sections of this paper we will see that
retrenchment offers a stepwise method of ‘layering in’
partial requirements (features), whilst managing inter-
action handling. We will therefore suggest that
retrenchment offers a feature-engineering approach to
feature-oriented applications.

The layering approach to requirements specification
is familiar from the object-oriented paradigm: new,
consistent requirements on a class are expressed (via the
inheritance relation) in the subclass, by adding structure
and behaviour in a manner consistent with the super-
class.6 Layering, in this object-oriented style, is not new
in the formal methods world; Back has proposed lay-
ering through interpreting inheritance as superposition
refinement [16, 17].

10 Feature engineering the case study

In this section we reorganise our telephony case study
along feature-engineering lines. Layering emerges as a
natural technique in sympathy with retrenchment. We
focus in the sequel exclusively on the connectn operation
as the only one for which non-trivial issues arise. To
lighten the notation, we no longer use ‘connectn’ as a
subscript, reserving subscripts to distinguish between
different variants of the operation. Before we start we
introduce a couple of items of notation for combinators
on relations.

The relational override combinator �/ is familiar
from the preceding sections and will be used a lot.

The relational ‘union asserted disjoint’ combinator [
is defined for two relations R and S (both from X to Y

say) by:

R [ S ¼ R [ S provided R \ S ¼ ; ð95Þ

and is otherwise undefined. Thus [ asserts (rather
than enforces) that R and S are disjoint. (In this respect
it is different from conventional disjoint union, which is
always well defined, and which in effect enforces the
distinctness of its arguments, if necessary by introducing
some tagging mechanism behind the scenes, so that the
originating set of any element of the disjoint union can
always be discerned. In our model-based reasoning,
where elements of the model are supposed to correspond
to aspects of the real world, such surreptitious tags can
have no place and we use the unconventional [ to
advertise that a union is in fact formed from two disjoint
sets.) Note that valid uses of [ can always be replaced
by �/ , resulting in equivalent if slightly less overtly
informative expressions.

Finally we will use conventional union [ on relations
too. This combinator is applicable when the relations in

6 This is as opposed to inheritance by method overriding, where
superclass behaviour is altered, in an inconsistent manner, in the
subclass. This alteration could be described using the concedes
relation in a retrenchment-based formulation of the inheritance
relation.
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question are in an appropriate sense not in conflict with
each other on a non-trivial intersection. (One plausible
area for using the conventional union combinator is
given by the calling number delivery feature, in which
the caller transmits his number to the callee, who may or
may not display it and choose to react accordingly. This
behaviour may coexist benignly with almost every other
feature, making union an appropriate combinator to
contemplate.)

We now rebuild the operations we discussed previ-
ously out of smaller-grained features. The original
operations from the preceding sections will be referred
to by using their previous names, e.g. connectn, while the
individual features we will discuss will typically be called
stpf, where f is the feature name, and we have lifted the
general stp notation for transition relations to highlight
that we define a feature by giving a presentation of the
relevant transition relation. Of particular note is the fact
that the original operations must be model complete (as
they were before), while the individual features that
comprise them need not be.

We start with the PHONE model. In line with our
feature-engineering goals, we split the original POTS
connectn operation into two features, stpP and stp�PP ,
representing respectively the connection capability and
the non-connection capability:

stpP ;n ¼ free nð Þ ^ free ið Þ ^ n 6¼ ið Þ ^
o ¼ OK ^ calls0 ¼ calls [ n7!if g ð96Þ

stp�PP ;n ¼ free nð Þ ^ o ¼ NO ^ calls0 ¼ calls ð97Þ

so the original POTS connectn operation (6) is given by:

connectP ;n ¼ stp�PP ;n �/ stpP ;n ð98Þ

Here we have renamed the connectn of (6) as con-
nectP,n, the P subscript emphasising the POTS aspect.
Note that the override combinator is definitely needed in
(98) as the non-connection capability is in principle al-
ways available.

Now we consider call forwarding. The call forward-
ing feature stpCF,n can be defined by:

stpCF ;n ¼ free nð Þ ^ busy ið Þ ^ i 2 dom fortabð Þ ^
fortabþ ið Þ ¼ z ^ free zð Þ ^ z 6¼ nð Þ ^
o ¼ OK ^ calls0 ¼ calls [ n7!zf g

ð99Þ

We wish to combine this with the PHONE model
of course. The first thing to note is that the state
space for PHONECF is larger than that for PHONE,
so we cannot utilise the �/ and [ operations directly
to combine stpCF,n with the previous system. This is
where our programming convention comes to the fore.
As previously, whenever the definition of a state
transition operation (via a relation) does not mention
some state variables, it is to be understood that the
part of the state described by such state variables is to
remain unchanged during the transition. This gives us
a means of defining the PHONE model’s state space in

a PHONECF model’s context (since not all of the
PHONECF state is mentioned in a PHONE transition).
But this does not cover all that we have to contend
with.

We note that the various features we engineer gen-
erate outputs not shared by other features, so we have to
determine what is to be done about reconciling those
output values. Hitherto we have not specified precisely
what the various spaces of output values are; we have
merely mentioned some individual values as needed. We
can thus assume that all such values are already present
in a common space of output values.

Finally, we must consider the input values. By
implication the input spaces are identical in all cases, as
all inputs are arbitrary phone numbers. Therefore no
special measures are needed to reconcile these.

To summarise: identical input spaces are trivially
identified; output spaces are implicitly identified by
considering the union of all values ever used for output;
state spaces, which are the Cartesian products of the sets
of values permitted for the various state variables, are
combined by identifying the state variables themselves
where possible. (For example, the state space for an
abridged model whose states are just the values for the
calls variable can be combined with the state space for a
completed model whose states are (pairs of) values for
the calls and fortab variables, by identifying the calls
variables. This results in an overall state space of pairs of
values for the calls and fortab variables, where the value
of calls is common, and in the abridged model the value
of fortab is irrelevant but unchanged during any
abridged state transition.)

With all of this in mind, we can regard (96) and (97)
as implicitly defining an extension of stpP,n and stp�PP ;n to
appropriately larger state spaces, in particular to ones
including a forwarding table, and to all the necessary
output values. Regarding and �/ [ as now referring to
these enlarged sets of values also, we can define the call
forward connect operation by:

connectCF ;n ¼ stp�PP ;n �/ stpCF ;n [ stpP ;n
� �

¼ stp�PP ;n �/ stpP�CF ;n
ð100Þ

where we define stpP�CF,n as the contents of the
parentheses on the preceding line. The P>CF
notation of the subscript of stpP�CF,n indicates the
feature precedence we have in mind. (Note that this is
distinct from the CF>CH notation used earlier, which
merely indicated temporal order of combination of
features.)

It is not hard to see that (100) agrees with the original
call forward connect operation (11). It is also easy to see
that we are vindicated in our use of [ , as stpP,n requires
free(i) to hold whereas stpCF,n requires busy(i). Of course
the override to stp�PP ;n is still needed as stp�PP ;n provides a
response for all busy(i) cases.

We can deal with call holding similarly. Assuming
the same conventions, we define the call holding feature
by:
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stpCH ;n ¼ free nð Þ ^ busy ið Þ ^ i 2 holtab ^
o ¼ ’’Our advisor is busy: Please hold:’’ð Þ100 ^
calls0 ¼ calls

ð101Þ

and now we get:

connectCH ;n ¼ stp�PP ;n stpCH ;n[ stpP ;n
� �

¼ stp�PP ;n �/ stpP>>CH ;n
ð102Þ

which agrees with (16).
Now when we consider combining the two features,

our layering strategy and use of override suggests a
possibility not considered before, namely of simply
allowing one feature to take precedence over the other
when both are applicable. Noting that we will not be
able to use [ between the two features, and also
replacing the previous uses of [ by �/ to simplify the
bracketing, we get two models, depending on which
order of precedence we select:

connectCF>>CH ;n ¼ stp�PP ;n �/ stpCH ;n �/ stpCF ;n �/ stpP ;n

¼ stp�PP ;n �/ stpP>>CF>>CH ;n ð103Þ

connectCH>>CF ;n ¼ stp�PP ;n �/ stpCF ;n �/ stpCH ;n �/ stpP ;n

¼ stp�PP ;n �/ stpP>>CH>>CF ;n ð104Þ

As should be clear from the preceding remarks, nei-
ther of these operations coincides with the connectCF/
CH,n operation of (36) since that operation depended on
novel design for cases when call forwarding and call
holding both applied. However, an operation like (36)
can be handled in our layered feature-engineering ap-
proach by inventing a fresh feature for the precise pur-
pose of describing what should happen in the
overlapping cases, and then incorporating it into the
feature hierarchy at the appropriate point.

This idea forms a key ingredient of the general ap-
proach described below. Whenever features are in con-
flict and a straightforward prioritisation does not give an
adequate solution to the problem, we design a new
feature: an interaction feature intended to take prece-
dence over both of them, and defining the behaviour
required. For features A and B in conflict, we system-
atically name the relevant interaction feature A+B.

Using the interaction feature strategy, we re-engineer
the overlapping call forwarding and call holding case
with the interaction feature CF+CH:

stpCFþCH ;n ¼ free nð Þ ^busy ið Þ ^ i2 dom fortabð Þ ^
fortabþ ið Þ ¼ z^ free zð Þ ^ z 6¼ nð Þ ^ i 2 holtab ^

o¼
’’Our advisor is busy: Please press 1

to speak to the janitor:’’

 !

^

calls0 ¼ calls

ð105Þ

With stpCF+CH,n to hand, we recover the connectCF/
CH,n operation of (36) by:

connectCF =CH ;n ¼ stp�PP ;n stpCH ;n [ stpCF ;n
� �

�/ stpCFþCH ;n [ stpP ;n
� �

¼ stp�PP ;n �/ stpP>>CFþCH ;n>> CF ;CHð Þ;n

ð106Þ

In the first line of (106) we have been quite explicit
in setting out the layering in a way that exposes the
dependencies and independencies between adjacent
features in detail (we could, more lazily, have just used
override throughout). Thus stpCF+CH,n and stpP,n are
combined in union asserted disjoint, because one of
them requires busy(i) and the other its negation. These
must in turn override stpCH,n and stpCF,n for reasons
that have already been discussed. However stpCH,n and
stpCF,n must be combined using conventional union
rather than [ , because they are certainly not disjoint.
In fact (stpCH,n [ stpCF,n) offers a non-deterministic
choice in the overlap region, a fact which has no
design significance in the context of (106) as the
overlap is immediately overridden by the stpCF+CH,n

feature.
The preceding leads us to a stepwise method for

feature composition with static resolution of interactions
in the spirit of the feature engineering of [18].

Procedure 10.1

1. Describe each feature f independently using a relation
stpf. Include a default feature fD to ensure model
completeness.

2. Choose a precedence order between features.
3. Start with the topmost feature f0 and the default

feature fD, to build the operation op0 ¼ stpfD �/ stpf0 .
4. For successive i, layer in feature fi after feature fi-1

giving:

opi ¼ stpfD �/ stpfi �/ stpfi�1 �/ :::�/ stpf0

¼ stpfD �/ stpfi �/ stpf0>>:::>>fi�1

¼ stpfD �/ stpf0>>:::>>fi

ð107Þ

5. If feature fi interacts with feature fj for j < i, design
an ‘interaction feature’ fi+j to resolve the problem,
giving it precedence over both fi and fj thus:

opi ¼ stpfD �/ stpfi :::�/ stpfj �/ stpfiþj �/ :::�/ stpf0

¼ stpfD �/ stpfi �/ stpf0>>:::fiþj>>fj>>:::>>fi�1

¼ stpfD �/ stpf0>>:::fiþj>>fj>>:::>>fi

ð108Þ

6. Repeat until all features have been handled.

Procedure 10.1 only considers the possibility of bin-
ary interactions between features, but this is clearly not
the only possibility. Ultimately if there are n features,
there are up to 2n possible interactions (one for each
possible subset of the n). All interactions can give rise to
interaction features, and these can be layered in as
above. The objective of prioritisation is of course to
minimise the number of interactions that have to be
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handled ‘out of line’, by choosing an ordering such that
the interactions naturally subsume one another as far as
possible.

Of course we have not yet related the various layers
to one another. The technique for doing this will be
retrenchment, and will form the subject of the next
section.

11 Layered feature engineering by composition of
retrenchments

Now that we have defined the features of interest and
their composites, it might be thought that the
retrenchments between them are just the ones we have
already dealt with. This is almost true, but we must
remember that the operations of the last section are
defined on subtly different spaces than previously, so
we must also adapt our previous retrenchments
accordingly.

Our feature layering of the last section simply im-
posed new functionality on operations so, just as in
Sect. 3, we used the same variable names for all the
different models. However, just as in Sect. 5, when we
come to discuss retrenchments between the models, we
must use distinct names for distinct models (but with a
tacit understanding of which distinct names are distinct
names for the same thing). This is rendered potentially
more confusing because, recalling the discussion after
(99), all the models are assumed to share the same spaces
of values.

Thus all the input spaces are trivially the same; all the
outputs are assumed to also belong to the same space of
values; and there is a common state space, the Cartesian
product of all the sets of values permitted for any of the
state variables occurring in any of the models to be
considered.

We have remarked that in defining transitions we
adhere to the programming convention whereby any
variable not explicitly altered by the transition is to re-
main at its previous value. However, for the retrieve,
within and concedes relations of a retrenchment this is
not appropriate. These relations do not describe a state
change of some system, but comprise the description of
the retrenchment relationship between two distinct sys-
tems. This is a predicate in the conventional sense, and it
is therefore the logical convention that is appropriate
here; i.e. any variable not mentioned is unconstrained
within its range of permitted values.

With this understood, we can describe the general
nature of the retrenchments to come. In all cases the
within relations will be of the form:

i ¼ jð Þ ð109Þ

because the input spaces will always be the same. The
retrieve relations will be of the form:

u ¼ vð Þ ð110Þ

because the state spaces of all models have been ex-
tended to be the same.7 Since these facts hold for all the
systems of interest, we need not mention the retrieve or
within relations any more. Finally the concedes relations
will feature the variables intrinsic to the models at issue,
on the understanding that all other variables are
unconstrained.

As an example of the preceding, we consider the
retrenchment from connectP ;n ¼ stp�PP ;n �/ stpP ;n in (98), to
connectCF ;n ¼ stp�PP ;n �/ stpP>>CF ;n ¼ stp�PP ;n �/ stpCF ;n �/ stpP ;n
in (100). Note that we have reverted to using the over-
ride combinator throughout, as we will do for the
remainder of this section for notational simplicity.8

The two models differ only when call forward is en-
abled, so we can write the concedes clause as:

CP>>CF ;n u0; v0; o; p; i; j; u; vð Þ ¼
u; ið Þ 2 dom stpCF ;n

� �
� dom stpP ;n

� �� �
^

stp�PP ;n u; i; u0; oð Þ

� �
^

v; jð Þ 2 dom stpCF ;n
� �

� dom stpP ;n
� �� �

^
stpCF ;n v; j; v0; pð Þ

� �

ð111Þ

In (111), (u, i) 2 (dom(stpCF,n) – dom(stpP,n)) refers
to the part of the abridged before-state and input
spaces outside of dom(stpP,n) but inside dom(stpCF,n)
(the latter viewed through the within and retrieve
relations (109) and (110)), and acting as a constraint on
stp�PP ;nðu; i; u0; oÞ; while (v, j) 2 (dom(stpCF,n) –
dom(stpP,n)) refers to the same thing viewed in the
other direction through the within and retrieve rela-
tions, and acting as a constraint on stpCF,n(v, j, v¢, p),
all in line with the semantics of the override combin-
ator. Although (111) is syntactically different from (25),
in the intended context of use (i.e. when the retrieve
and within relations are assumed, and a completed le-
vel step is posited together with a suitable abridged
level step inferred from all of these), the two are
equivalent. The formulation in (111), while including
some redundant clauses, is more systematic, and its
structure reflects closely the layering in of features used
in the construction of connectCF,n.

Lemma 11.1 Let opl = stpfD �/ + stpf0�...� fl and let
opl+1 = stpfD �/ stpfl+1 �/ stpf0>>...>>fl be given by
layering in feature fl+1 as in Procedure 10.1. Suppose
that stpf0�...� fl and stpfl+1 have no transitions in
common that differ only on outputs (on the common
space of values on which they are both defined). Let
Cfl� fl+1(u¢, v¢, o, p; i, j, u, v) be given by:

7 We could have opted for a variant in which components of the
extended common state which are not intrinsic to the model at a
given layer were unconstrained, generating retrieve relations which
were equalities in some components and universal relations in other
components; but (110) is simper and leads to equivalent results.
8 Readers will be able to rework what follows for operation defi-
nitions involving [ and [ without difficulty.
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Cfi>>fiþ1 u0; v0; o; p; i; j; u; vð Þ ¼
u; ið Þ 2 dom stpfiþ1

� �
� dom stpf0>:::>fi

� �� �
^

stpfD u; i; u0; oð Þ

� �
^

v; jð Þ 2 dom stpfiþ1

� �
� dom stpf0>:::>fi

� �� �
^

stpfiþ1 v; j; v0; pð Þ

� �

ð112Þ

Then with within and retrieve relations (109 and 110),
Cfl� fl+1 defines a neat retrenchment from opl to opl+1.

Proof We consider first the view in which both opl and
opl+1 are regarded as transition relations on the same
space of values. Then we can partition the common
domain of these relations into three pieces: (1) the set of
(u, i) pairs in dom(stpf0�...� fl); (2) the set of (u, i) pairs
in (dom(stpfl+1) – dom(stpf0�...� fl)); (3) the remainder.
On piece (1) both opl and opl+1 behave as stpf0�...� fl.
On piece (3) both opl and opl+1 behave as stpfD. On piece
(2) they differ, opl behaving like stpfD and opl+1 beha-
ving like stpfl+1; moreover, these behaviours are
incompatible, having no transitions in common that
differ only on outputs, by hypothesis.

Now in the view where opl is the abridged system, and
uses variables u, i, u¢, o, and opl+1 is the completed
system, and uses variables v, j, v¢, p, pieces (1) and (3)
describe points at which the retrieve relation is re-
established, and piece (2) describes points at which the
concedes relation (112) is established. Since there are no
transitions in common that differ only on outputs
starting from points in piece (2), the retrieve relation
cannot hold there, and the neatness condition (86) is
proved. h

Note that the phrase ‘no transitions in common that
differ only on outputs’ is connected with the insensitivity
of the re-established retrieve relation to outputs in the
present formulation of retrenchment. With a more
incisive version, this could be strengthened to ‘no tran-
sitions in common’.

Lemma 11.2 Let opl and opl+1 be as in Lemma 11.1,
and similarly for opl+1 and opl+2. Then condition (88) of
Corollary 8.3 holds.

Proof Considering as before the view in which opl,
opl+1 and opl+2 are regarded as transition relations
on the same space of values, we can partition the
common domain into four pieces: (1) the (u, i) pairs

in dom(stpf0�...� fl); (2) the (u, i) pairs in (dom(stpfl+1) –
dom(stpf0�...� fl)); (3) the (u, i) pairs in (dom(stpfl+2) –
dom(stpf0�...� fl) – dom(stpfl+1)); (4) the remainder. On
piece (1) opl, opl+1 and opl+2 behave like stpf0�...� fl. On
piece (4) opl, opl+1 and opl+2 behave like stpfD.

On piece (2) they differ, with opl behaving like stpfD,
and opl+1 and opl+2 both behaving like stpfl+1. On piece
(3) they also differ, with opl and opl+1 behaving like
stpfD, and opl+2 behaving like stpfl+2. Moreover, these
behaviours, where different, are incompatible, having no
transitions in common that differ only on outputs, by
hypothesis.

So on each piece, at least two consecutive operations
out of opl, opl+1 and opl+2 behave identically, i.e. in the
retrenchment view, on each piece at least one retrench-
ment re-establishes the retrieve relation. Since both
retrenchments are neat, so that we have (86) for both,
there can be no triples of transitions from the transition
relations of opl, opl+1 and opl+2 which make
preConop u; i; v; jð Þ ^ preConop v; j;w; kð Þ true. So we get (88).

The preceding immediately admits the applicability of
Corollary 8.3, which declares that the composed con-
cedes relation has the structure G ^ Dop

� �
_ Cop ^ H
� �

.
Noting that all retrieve relations are identities, and using
the one point rule to eliminate intermediate variables as
previously, we get:

Cfi>>fiþ2 u0;w0;o;q;i;j;u;wð Þ¼
u;ið Þ2 dom stpfiþ1

� �
�dom stpf0>>:::>>fi

� �� �
^

stpfD u;i;u0;oð Þ

� �
^

w;kð Þ2 dom stpfiþ1

� �
�dom stpf0>>:::>>fi

� �� �
^

stpfiþ1 w;k;w0;qð Þ

� �

0

BBB@

1

CCCA

_
u;ið Þ2 dom stpfiþ2

� �
�dom stpf0>>:::>>fiþ1

� �� �
^

stpfD u;i;u0;oð Þ

� �
^

w;kð Þ2 dom stpfiþ2

� �
�dom stpf0>>:::>>fiþ1

� �� �
^

stpfiþ2 w;k;w0;qð Þ

� �

0

BBB@

1

CCCA

ð113Þ

Noting that the retrieve and within relations are
identities, and taking advantage of the antecedents of
the retrenchment operation PO as we have done before,
we manipulate (113) to obtain something not logically
equivalent to (113), but equivalent to it in the context of
its use, and of a shape that we prefer:

Cfi>>fiþ2 u0;w0; o; q; i; j; u;wð Þ ¼
stpfD u; i; u0; oð Þ ^

w; kð Þ 2 ðdom stpfiþ1

� �
� dom stpf0>>:::>>fi

� �
Þ ^

stpfiþ1 w; k;w0; qð Þ

� �
_

w; kð Þ 2 dom stpfiþ2

� �
� dom stpfiþ1

� �
�

dom stpf0>>:::>>fi

� �
� �

^ stpfiþ2 w; k;w0; qð Þ
� �

0

BB@

1

CCA

ð114Þ
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This displays the expected behaviour, namely that
in the region of disagreement between opl, opl+1,
and opl+2, opl behaves like the default feature
stpfD throughout, while opl+2 behaves like stpfl+1 at
points in dom(stpfl+1) and like stpfl+2 at points in
dom(stpfl+2).

The structure of the general case should now be
evident. If we have an operation opn structured by lay-
ering features f1 ... fn into a default stpfD �/ stpf0 oper-
ation, then the transition relation for opn can be
displayed as:

Opn ¼ stpfD �/ stpfn �/ stpfn�1 �/ ::::�/ stpf0 ¼
stpf0 [

domð Þ f1ð Þ � dom f0ð Þ / stpf1

� �
[

domð Þ f2ð Þ � dom f1ð Þ � dom f0ð Þð Þ / stpf2 [
dom f2ð Þ � dom f1ð Þ � :::� dom f0ð Þð Þ / stpf2

� �
[

dom fnð Þ � dom fn�1ð Þ � :::� dom f0ð Þð Þ / stpfn

� �
[

dom fDð Þ � dom fnð Þ � :::� dom f0ð Þð Þ / stpfD

� �

ð115Þ

where / is domain restriction. The concedes relation
from op1 to opn can now be written as:

Note that unlike the cases covered by Lemmas 11.1
and 11.2, expressions (115) and (116) were built by
analogy and are not directly based on the results of
Sect. 8. To have attempted to get (115) and (116) for-
mally would have entailed a digression into the multiple
compositionality and associativity properties of tidy and
neat retrenchments. Given the counterexamples to tidi-
ness and neatness of composed tidy and neat retrench-
ments indicated in Sect. 8, this would have proved to be
a lengthy exercise.

The regular structure of expressions (115) and (116),
and the fact that feature interaction can be dealt with by
introducing interaction features which are handled just
like any other features, means that (115) and (116) can
do duty for the general case of interacting features,
simply by relabelling the features that occur, in line with
(108). The approach just outlined is certainly the sim-
plest method for handling feature interaction in the
present layered architecture.

An alternative route to the same thing treats feature
interaction not as a fresh feature, but as a new kind of
phenomenon, utilising not Corollary 8.3 but the full

force of Theorem 8.2. However, a moment’s thought
reveals that in both approaches ultimately the same
process of partitioning the before- and input spaces is
going on under different guises, and the lack of a specific
‘interaction feature’ is counterbalanced by the C ^ D
term in (87) and corresponding manipulations in the
remainder of the theory; so we do not pursue this option
in detail.

The same insight informs the treatment of the other
feature combinators: union, and union asserted disjoint.
Arbitrarily complicated feature expressions may be
analysed to discern the regions of enabledness of the
constituent subexpressions, and from there we partition
the before- and input spaces into regions in which a
single feature or collection of features is enabled. Fur-
thermore, the same approach will deal with ‘partial
interaction features’, where the desire is to introduce a
new feature on only part of the region in which two
other features interact, and in the remainder to deal with
the interaction by other means, e.g. by prioritisation;
one has simply to generate a finer partition. Once the
appropriate partition of the before- and input spaces has
been arrived at, the definitions of various staged versions
the operation of interest, given by adding the behaviour

relevant to individual regions one by one, follows
readily.

12 Conclusions

Feature interaction in telephony has attracted a fair
amount of attention in recent years, e.g. [11, 12]. The
burgeoning telecoms industry is always introducing new
capabilities into its systems, mainly because of the flex-
ibility afforded by digital electronics and programmed
interconnection exchanges. However, even if a telecoms
provider can make a rational reconciliation of all of the
enhanced services that it provides itself, it is by no means
clear that when one provider’s network is interfaced to
another provider’s network, the results will be as either
provider envisaged. This kind of thing has posed a
challenge to development techniques (both formal and
not so formal).

Amongst these various efforts, refinement has been
used to address the problem [19], but the use of refine-
ment in an area where previously established properties

Cf1>>fn u0;w0; o; q; i; j; u;wð Þ ¼
stpfD u; i; u0; oð Þ ^

w; kð Þ 2 dom stpf2

� �
� dom stpf1

� �� �
^

stpf2 w; k;w0; qð Þ

� �
_

w; kð Þ 2 dom stpf3

� �
� dom stpf2

� �
� dom stpf1

� �� �
^

stpf3 w; k;w0; qð Þ

� �
_

w; kð Þ 2 dom stpfn

� �
� :::� dom stpf1

� �� �
^

stpfn w; k;w0; qð Þ

� �

0

BBBBBB@

1

CCCCCCA

ð116Þ
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have to be overridden is frequently an exercise in perver-
sity. One has to search for a way of formulating the
problem so that the contradictions inherent in a typical
development step do not become exposed during the
refinement process, the sophistication of the notion of
refinement used notwithstanding. This is principally
because refinement allows only the accumulation of
properties in a conjunctivemanner, a trait which although
immensely appealing and mathematically robust is often
at odds with real-world experience in system develop-
ment. The Appendix below illustrates this phenomenon
concretely to some extent in a very simple context.

In contrast, the recording of the development deci-
sions made via retrenchment would, we would claim,
appear much more natural, and in the preceding sections
we have considered a simple illustration of this via a
stripped-down telephony case study. By necessity, such a
simple example cannot display many of the facets of
inconsistency in specification that we claim may be
usefully described by retrenchment. Instead we showed
in Sect. 6 how a simple functional interaction between
features could be resolved by design and described by
retrenchment. It is noteworthy that our chosen features
can be handled very much in the manner of the priori-
tised ‘busy treatments’ of [14], where features available
to deal with a call request to a busy subscriber are ap-
plied in a guarded and prioritised manner.

The work in this paper represents a new methodo-
logical departure for retrenchment. The notion was
conceived as a liberalisation of classical refinement for
the situation where the idealised description was
incompatible with finite, discrete computational models.
Retrenchment was thus conceived as an ‘approximate’
refinement, or refinement with exceptions. In the case of
feature-oriented descriptions, the thesis is that
retrenchment offers a framework for the stepwise, lay-
ered construction of a requirements specification,
accounting for both beneficial and harmful interactions.
For harmful, or interfering, interactions, the framework
allows incorporation of design to resolve the interaction
in the layered construction process.

This retrenchment approach to feature interaction
can be located in the taxonomy of formal methods for
feature interaction in [20] as property-based. That is, the
description is in terms of feature properties and their
relations to one another. The description is in first-order
logic, and as for other property-based approaches, tools
such as PVS [21] can be brought to bear to mechanise
the process, and to bring the additional assurance that
mechanical checking can give.

However, it must be emphasised that since the denial
of previously established properties is fraught with
danger if adopted in a development path, the use of
retrenchment for these purposes must be adopted in a
completely transparent and conscious manner. System
designers must be aware that the abstract and concrete
models in a retrenchment step must coexist in an open
dialogue about the evolution of the functional require-
ments of the desired system, which are recorded via the

retrenchment POs. They must not assume, just because
the retrenchment technique is formal, that it is therefore
some miraculous panacea, the adherence to the formal
structure of which automatically guarantees success. In
other words, designers must not think that retrenchment
absolves them from taking responsibility for design
decisions. With such a proviso, retrenchment can help to
both document and to justify the design arrived at.

On purely technical grounds, it must be admitted that
we were limited somewhat in this paper by the fact that
the retrenchments we used related a single step at the
upper level to a single step at the lower level. This is
certainly the easiest formulation of the retrenchment
concept to understand and to work with. However our
models were thereby doomed to be rather unrealistic as
regards accurately reflecting real-world telephone sys-
tems, as we pointed out at the time. In reality, call
connection and the other features we alluded to are all
multistep operations, and the temporal aspects cannot
be neglected in an accurate model. To undertake a more
convincing retrenchment-based study of feature inter-
action, we would have to resort to a formulation of
retrenchment that allowed more than one step at a single
level to play a role in the retrenchment relationship.
Some aspects of such a formulation of retrenchment
have been studied in [13], where one abstract step is
retrenched to several concrete steps, and a retrenchment
version of Schellhorn’s m:n refinement would also be
relevant in this context [22, 23].

While doing such a more detailed study of feature
interaction remains for future work, and would
undoubtedly be worthwhile, we have concentrated in
this paper on making the case for retrenchment not only
as a means of progressing approximate and require-
ments incomplete models towards a more definitive
contracted model, but also as a useful formal tool for re-
engineering and design evolution situations (since
mathematically, there is little to distinguish the two
activities). We used feature interaction as a pertinent
illustrative vehicle. We have seen that as well as pro-
viding an encompassing milieu for such activity,
retrenchment can comfortably accommodate more ad
hoc custom approaches such as layered feature engi-
neering. Therefore we regard the case as well made.

Acknowledgement The authors would like to thank Michael
Jackson for valuable interaction during the preparation of this
paper.

Appendix: PHONE Development via Refinement

In this section we examine the prospects for doing at
least some of the development of the telephone case
study using refinement. We had better start by saying
what we mean by refinement in this context.

We are working in a straightforward transition
system-based framework. For this reason, notions of
potential non-termination and attendant complexities,
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often taken into account in refinement formalisms, just
do not arise: there are transitions that initiate and ter-
minate successfully as described in an operation’s tran-
sition relation, and there is nothing else. We revert to the
usual convention of speaking about an abstract and a
concrete system, as is prevalent in the refinement liter-
ature.

With the notational conventions we have been using
up to now, we define the precondition for say an abstract
operation mA, whose transition relation is stpmA, by:

premA u; ið Þ ¼ 9u0; o � stpmA u; i; u0; oð Þ ð117Þ

(So premA is just what we called dommA before, but
we now conform to the terminology more common in
refinement.)

Now we define refinement from an abstract system to
a concrete system to be characterised by the following Z-
refinement-like conditions:

OpsA ¼ OpsC ð118Þ

premA u; ið Þ ^ G u; vð Þ ) premC v; ið Þ ð119Þ

G u; vð Þ ^ stpmC v; i; v0; oð Þ )
9u0 � stpmA u; i; u0; oð Þ ^ G u0; v0ð Þð Þ ð120Þ

Note that we are being strict here about I/O. The
inputs and outputs must be identical at the two levels of
abstraction. This is in line with viewing refinement as an
implementation mechanism which can silently replace an
abstract model with an implementation, without the
user’s awareness. (Also it finesses a couple of minor
logical niggles.)

What are now the prospects of doing, for example,
the PHONE to PHONECF development step via
refinement? Immediately we say nil, because (118) is
violated by the additional table management operations
of PHONECF. Let us agree to ignore this for the sake of
not falling at the first fence. We next examine one model
for PHONE that has prospects for refinement.

PHONE¢ In this system the state space is just as for the
original PHONE model:

calls : NUM �7 NUM where

dom callsð Þ \ rng callsð Þ ¼ ;
ð121Þ

The two operations, connectn and breakn, look like:

calls � i; connectn; oð Þ�> calls0 where

free nð Þ ^ free ið Þ ^ n 6¼ ið Þ ^
o ¼ OK ^ calls0 ¼ calls [ n7!if g

ð122Þ

calls � breaknð Þ�> calls0 where

busy nð Þ ^ calls0 ¼ nf g / calls . nf g
ð123Þ

Note that this differs from PHONE in that the
specification of connectn has nothing corresponding to

the ‘else’ clause of (6). It is thus a partial operation since
in the busy ið Þ _ n ¼ ið Þ case we are outside the pre-
condition of connectn. Some stratagem like this is forced
on us, however, because if PHONECF’s connectCF,n
operation is to be a valid refinement of connectn, then up
to the latitude permitted by the retrieve relation (which
will continue to be (23) and thus effectively affords no
latitude whatsoever), the actions of connectCF,n and
connectn must agree in the busy ið Þ _ n ¼ ið Þ case should
they both be defined, otherwise (120) will fail. This effect
is rendered even more acute when we remember that, in
refinement, outputs must agree.

Unfortunately this kind of partiality of operations is
not acceptable in a high-level model that purports to
capture a coherent set of user requirements, and is a
manifestation of the model incompleteness described in
the Introduction. User requirements at this level must
express a defensively drawn and complete model, as it is
quite unreasonable to assume that users can flawlessly
adhere to the need to never call a connectn operation
from a before-state/input combination for which there
exists no connectn transition.

(It is thus clear that model incompleteness is
unavoidably a user-level or meta-level issue, not
deducible from the mathematics of the model alone. For
example, whereas it is certainly the case that there are
never any connectn transitions when busy(n) holds, this is
not a symptom of model incompleteness due to the
different significance of n and i at user level—users ac-
cept that it is semantically self-contradictory to expect a
transition in the busy(n) case.)

Since this refinement attempt has spawned some
unsatisfactory features, we give an alternative con-
struction, exploiting non-determinism rather than
partiality this time.

PHONE¢¢ In this system the state space is just as
before:

calls : NUM �7 NUM where

dom callsð Þ \ rng callsð Þ ¼ ;
ð124Þ

The operations connectn and breakn this time look
like:

calls � i; connectn; oð Þ�> calls0 where

free nð Þ ^
if free ið Þ ^ n 6¼ ið Þ
then o ¼ OK ^ calls0 ¼ calls [ n 7!if g
else either o ¼ NO ^ calls0 ¼ calls

or o ¼ OK ^ nf g / calls0 ¼ calls

ð125Þ

calls � breaknð Þ�> calls0 where

busy nð Þ ^ calls0 ¼ nf g / calls . nf g
ð126Þ

In this version of events, in the busy ið Þ _ n ¼ ið Þ
case, the operation connectn has the capacity to

287



non-deterministically connect to some unspecified loca-
tion.9 The non-determinism is resolved in the refinement
to PHONECF (still using the same retrieve relation), in
which the connectCF,n operation specifies when and
where a connection can be made in the busy ið Þ _ n ¼ ið Þ
case.

The abstract operation is now total, overcoming the
objection in the previous version. However, the price for
this is the non-deterministic else clause in (125). For
sure, the PHONE¢¢ model is a more abstract entity than
the PHONECF model, but when one asks the question as
to what extent PHONE¢¢ deserves to be called a speci-
fication of the POTS model in the sense that PHONE¢¢
captures a coherent set of functional requirements of the
POTS system the answer is less than satisfactory. Is the
specific non-determinism present in PHONE¢¢ a
requirement of the POTS model? The answer is surely
that it is not. The PHONE¢¢ model was specifically
construed to withhold those features from PHONECF

that could neatly be reinstated by the definition of
refinement that we are using; i.e. it was reverse engi-
neered from PHONECF. Thus the abstract and concrete
levels have become entangled in this development, and
vestiges of properties of the envisaged lower-level model
have had to migrate to the higher-level one in order to
satisfy the exigencies of refinement. This is the kind of
reverse engineering we alluded to in the Introduction;
and while it might not be too problematic in such a small
example, in larger systems it can become a serious nui-
sance. The pollution of the perspicuity of the higher-
level models, arising from the forced incorporation of
very specific perspectives on inappropriate lower-level
detail forced upwards by the demands of refinement, can
merely serve to bring an otherwise blameless refinement-
based specification development methodology into dis-
repute among designers.

Thus refinement based-developments of the evolution
of a more complex specification from a simpler one
(each of which captures a coherent set of functional
requirements of the system at a suitable level of
abstraction) are replete with difficulties. We have illus-
trated these just in the case of the PHONE to PHONECF

development step; however, extending the same ap-
proach to the other parts of the feature interaction case
study would simply cause the illustrated difficulties to
proliferate.
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