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Abstract
Many pregnant and postpartum women worldwide suffer from high anxiety and/or depression, which can have detrimental
effects on maternal and infant well-being. The first-line pharmacotherapies for prepartum and postpartum affective disorders
continue to be the selective serotonin reuptake inhibitors (SSRIs), despite the lack of large well-controlled studies demonstrating
their efficacy in reproducing women and the potential for fetal/neonatal exposure to the drugs. Prepartum or postpartum use of
SSRIs or other drugs that modulate the brain’s serotonin system is also troubling because very little is known about the typical, let
alone the atypical, changes that occur in the female central serotonin system across reproduction. We do know from a handful of
studies of women and female laboratory rodents that numerous aspects of the central serotonin system are naturally dynamic
across reproduction and are also affected by pregnancy stress (a major predisposing factor for maternal psychopathology). Thus,
it should not be assumed that the maternal central serotonin system being targeted by SSRIs is identical to non-parous females or
males. More information about the normative and stress-derailed changes in the maternal central serotonin system is essential for
understanding how serotonin is involved in the etiology of, and the best use of SSRIs for potentially treating, affective disorders
in the pregnant and postpartum populations.
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Recent analyses indicate that at least 10–15% of the millions
of pregnant and parturient women worldwide each year are
faced with a depressive disorder and at least 8–10% suffer
from an anxiety disorder (Fairbrother et al. 2016; Goodman
et al. 2016; Le Strat et al. 2011; Reck et al. 2008). When one
further considers the many pregnant and postpartum women
with high, but subclinical, depressive and anxious symptoms,
the number of affected women is extremely troubling. Mental
health problems at any time of life are certainly a cause for
concern, but heightened attention to them during this period of
possibly increased susceptibility (see Davé et al. 2010; O'Hara
et al. 1990; Britton, 2008) is especially important because
there are few times in a woman’s life when the stakes of
having a depressive or anxiety disorder are as high. Indeed,

a peripartum psychiatric admission is a greater mortality risk
for women compared to almost all other causes, including
heavy smoking (Appleby 1998; Chesney et al. 2014).
Depression or anxiety during pregnancy and postpartum are
also each associated with a host of other negative outcomes
for mothers and their infants. At their extreme, maternal de-
pression and anxiety contribute to infant neglect and abuse,
but more commonly are associated with lower rates of
breastfeeding, lack of maternal emotional and behavioral sen-
sitivity to the infant, poor mother-infant bonding, negative
infant temperament, altered infant neurodevelopment, and
emotional and behavioral problems in the children when they
are older (Drury et al. 2016; Field 2010; Glasheen et al. 2010;
Stein et al. 2014). Because of a desperate need for increased
attention to maternal affective disorders, the United States
Preventive Services Task Force and the American College of
Obstetricians and Gynecologists each recently recommended
routine mental health screening for all pregnant and postpar-
tum women (Committee on Obstetric Practice 2015;
O'Connor et al. 2016).

The first-line pharmacotherapies for affective disorders in
pregnant and postpartum women are the serotonin reuptake in-
hibitors (SSRIs). SSRIs are prescribed to ~2–8% of pregnant
women and ~ 4% of early postpartum women in the United
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States; even higher usage can be found elsewhere (e.g., > 9% in
the U.K.) (Alwan et al. 2011; Andrade et al. 2008; Charlton et al.
2015; Hanley and Mintzes 2014; Huybrechts et al. 2013;
Lupattelli et al. 2014; Munk-Olsen et al., 2012). This is true
despite concerns about placental and breastmilk transference of
the drugs or their metabolites impacting fetal and neonatal devel-
opment (Glover and Clinton 2016; Oberlander et al. 2009;
Weisskopf et al. 2015), as well as the lack of large double-blind,
placebo-controlled studies of SSRIs involving reproducingwom-
en (DeCrescenzo et al. 2014;McDonagh et al. 2014;Molyneaux
et al. 2015).

How SSRIs may alleviate depression and anxiety is un-
clear, but the mechanisms at least initially involve
elevated central serotonergic signaling. Some supporting evi-
dence for this includes that SSRIs have lower clinical efficacy
in people with serotonin transporter gene (SERT) polymor-
phisms that yield low transcriptional activity (Ruhé et al.
2009; Serretti and Kato 2008), that some strains of SERT-
knockout rodents show abnormally high depressive- and
anxiety-like behaviors (Holmes et al. 2002; Kalueff et al.,
2007; Lira et al. 2003; Olivier et al. 2008), and that SERT-
knockout mice are resistant to SSRIs’ antidepressant behav-
ioral effects (Holmes et al. 2002). After elevating serotonergic
activity, the downstream consequences of SSRIs on the brain
include neuroplastic changes (e.g., cell birth and survival, cell
death, synaptogenesis, dendrite morphology, and axonal out-
growth) within the hippocampus, cortex, and even back on the
serotonin system itself that facilitate adaptation to stress
(Haase and Brown 2015; Pittenger and Duman 2008).
Eliminating the signaling of a major neurotrophic factor me-
diating many types of neuroplasticity, brain-derived neuro-
trophic factor (BDNF), by mutating its TrkB receptor gene
in the hippocampus or midbrain dorsal raphe (DR; the source
of most forebrain-projecting serotonin cells (Lowry et al.
2008) prevents SSRIs’ positive effects on neuroplasticity
and affective behaviors in laboratory rodents (Adachi et al.
2017; Horne et al. 2008; Li et al., 2008; Monteggia et al.
2004; Saarelainen et al. 2003).

Concern about the high rate of SSRI use by pregnant and
postpartum women also comes from the fact that we know
very little about how SSRIs may act uniquely on the pregnant
and postpartum brain. Due to the physiological adaptations of
reproduction that alter drug absorption, distribution, metabo-
lism, and elimination (Anderson 2006; Pariente et al. 2016),
SSRI doses are often increased for pregnant and early post-
partum women in order to maintain drug blood levels and
hopefully their clinical efficacy (Crescenzo et al. 2014;
Hostetter et al. 2000; McDonagh et al. 2014; Molyneaux et
al. 2015). However, this is based on insufficient empirical
evidence. A small longitudinal study of 11 women found a
late-pregnancy drop in plasma concentrations of the SSRI,
citalopram, although most of the women did not require an
increased dose to maintain euthymia (Heikkinen et al. 2002).

Two other small longitudinal studies assessing women from
pregnancy week 20 to 3 months postpartum also revealed in-
creased SSRI drug clearance during pregnancy, but not in all of
the women (Sit et al. 2008, 2010). Yet another small study found
no significant differences across pregnancy in metabolism of the
SSRI, sertraline, but noted very large individual differences
among the women (Freeman et al. 2008). Such individual dif-
ferences in SSRI metabolism are partly due to genotypic differ-
ences in drug-metabolizing cytochrome 450 liver enzymes,
(Ververs et al. 2009) and are associated with women’s continu-
ance or discontinuance of their antidepressants (Berard et al.
2017). To further complicate things, a very recent analysis of
blood samples from almost 300 pregnant women found that
third-trimester drug concentrations were lower than baseline on-
ly for some SSRIs (paroxetine, citalopram), were higher than
baseline for another SSRI (sertraline), and did not change for
two others (escitalopram and fluoxetine) (Westin et al. 2017). In
addition to this complex collection of results raising questions
about the frequent practice of increasing SSRI doses for pregnant
and early postpartum women, adjusting SSRI doses to maintain
blood drug levels does not consider any distinctive effects that
SSRIs may have on the central nervous system of reproductive
women, and assumes that their brain serotonin system is identi-
cal to non-reproductive women. The handful of studies detailed
immediately below demonstrates that this is not the case.

Pregnancy and the postpartum period involve some of the
most dramatic neurobiological modifications that can occur
in adulthood, and these modifications collectively facilitate a
mother’s ability to care for her young (Galea et al. 2014;
Gammie et al. 2016; Kim et al. 2016; Leuner and Sabihi
2016). However, there has been little attention to how the
brain’s serotonin system is naturally affected by female repro-
duction, even though it is known to be sensitive to experi-
mental manipulations of ovarian hormones in female rodents
and monkeys (Bethea et al., 2002; Chavez et al. 2010;
Donner and Handa 2009; Fink et al. 1996; Inagaki et al.
2010). A number of studies have reported that female repro-
duction normatively upregulates central serotonergic activity.
Women in their second trimester of pregnancy or at term have
higher cerebrospinal fluid serotonin metabolites compared to
non-pregnant women (Spielman et al. 1985), and pregnant or
postpartum women have higher plasma serotonin than do
non-reproducing women (Sekiyama et al. 2013). Seemingly
inconsistent with these results are other studies finding that
late pregnancy and the early postpartum period are associated
with relatively low serum levels of the serotonin precursor,
tryptophan (Handley et al. 1980; Badawy 2014; Maes et al.
2002; Veen et al., 2016). Although reduced plasma trypto-
phan may be expected to reduce the capacity for brain sero-
tonin synthesis (Fernstrom and Wurtman 1971), it is impor-
tant to note that plasma trytophan alone does not dictate the
brain’s capacity to produce serotonin (Fernstrom and
Wurtman 1972).
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In laboratory rats, serotonin cell firing in the midbrain dor-
sal raphe is higher in pregnant and early postpartum females
when compared to cycling females (Klink et al. 2002), and we
have found that dorsal raphe levels of tryptophan hydroxylase
2 (TPH2; the rate-limiting enzyme for central serotonin syn-
thesis) and serotonin metabolism (as indicated by the seroto-
nin metabolite 5-hydroxyindoleacetic acid; 5HIAA) are
higher in early postpartum rats compared to diestrus, nullipa-
rous females (Harding and Lonstein 2016; Holschbach and
Lonstein 2016). Early postpartum rats also have non-
statistically significant, but considerably higher (> 30%),
SERT in their dorsal raphe compared to non-maternal female
rats (Harding and Lonstein 2016). On the other hand, a study
using a small sample of postpartum day 10 laboratory mice
found that these females had less serotonin immunoreactivity
in their dorsal raphe compared to cycling females (Jury et al.
2015).We did not find this difference in dorsal raphe serotonin
immunoreactivity in a large study of laboratory rats sacrificed
as diestrous virgins or on postpartum days 8 or 19
(Holschbach and Lonstein 2016), though, perhaps suggesting
species-specific effects of female reproduction on the mid-
brain serotonin system. At the serotonin receptor level, we
recently found > 50% less excitatory serotonin 2C receptor
mRNA expression in the postpartum rat dorsal raphe com-
pared to females sacrificed during the estrus cycle or mid-
pregnancy (Vitale et al. 2017). Because the serotonin 2C re-
ceptor is often found on inhibitory GABAergic cells in the
dorsal raphe (Serrats et al., 2005), its reduced expression likely
contributes to the elevated dorsal raphe serotonin cell excit-
ability and output during late pregnancy and the early post-
partum period (Boothman et al. 2006). Not only is the mid-
brain serotonin system affected by female reproduction, but
frontocortical serotonin content and turnover rises across
pregnancy and then falls postpartum in rats (Desan et al.
1988; Glaser et al. 1990), and serotonin turnover in two basal
forebrain sites involved in maternal caregiving and anxiety
(i.e., the medial preoptic area and bed nucleus of the stria
terminalis) is higher in postpartum rats compared to diestrous
virgin females (Lonstein et al. 2003; Smith et al. 2013).

These motherhood-induced neurochemical changes in
the serotonin system are accompanied by neuroplastic
changes. Contrary to early thinking that the adult mam-
malian brain is extremely limited in its neuroplasticity,
remarkable alterations in brain cell birth, survival, differ-
entiation, and death are now known to continue through-
out the lifespan and particularly during times of
hormone-induced neurobehavioral flux (Sisk et al.
2013). For instance, a number of research groups have
shown in laboratory rodents and sheep that giving birth
and interacting with young affect the proliferation of
newborn cells in the subgranular zone (SGZ) of the hip-
pocampus, as well as the survival of those cells after
they migrate to the nearby granule cell layer (Leuner

and Sabihi, 2016; Lévy et al. 2017; Pawluski and
Ga l e a 2007 ) . The func t i ona l s i gn i f i c ance o f
motherhood-induced changes in hippocampal cell birth
and survival are unknown, but they may partly underlie
how the hippocampus is involved in the blunted
hypothalamic-pituitary adrenal (HPA) axis response to
stress during pregnancy and postpartum (Brunton et al.
2008). Female reproduction also affects the number of
cells born in the subventricular zone (SVZ) that lines
the walls of lateral ventricles, from which the cells mi-
grate to the main olfactory bulb and contribute to the
postpartum display of maternal caregiving behaviors
(Corona et al. 2017; Furuta and Bridges 2005; Larsen
and Grattan 2010; Shingo et al. 2003).

While the far majority of studies of adult brain cell prolifer-
ation and survival have focused on the SGZ/hippocampus and
SVZ/main olfactory bulb, a number of other adult brain regions
do contain newborn cells (Akbari et al. 2007; Lévy et al. 2017).
We recently found that this includes the midbrain dorsal raphe.
By using systemic injections of the thymidine analogue,
bromodeoxyuridine (Brdu), to later identify mitotic cells in
the dorsal raphe of different groups of adult nulliparous,
pregnant, and postpartum rats, we found that Brdu-containing
cells born during the early postpartum period were less likely to
survive almost 2 weeks later into late lactation when compared
to cells that were born during late pregnancy (Holschbach and
Lonstein 2016). Cytogenesis in the adult dorsal raphe had not
previously been reported in any animal, but it was not
completely unexpected because the lining of the cerebral
aqueduct lying just above the dorsal raphe is a highly prolifer-
ative niche generatingmidbrain cells during other developmen-
tal epochs (Arenas et al. 2015). The differences we found
between pregnancy-born and postpartum-born dorsal raphe
cells in their survival were paralleled by dorsal raphe immuno-
reactivity for the cell differentiation factor, NeuroD, and many
of the surviving cells could in fact be phenotyped as young
neurons (Holschbach and Lonstein 2016). The relatively low
survival of cells born in the early postpartum dorsal raphe re-
quired that mothers interacted with pups, because removing the
litter soon after parturition increased dams’ newborn cell sur-
vival. Consistent with the ability of early litter removal to in-
crease newborn cell survival in thematernal dorsal raphe, dams
whose litters were removed at parturition also showed less
programmed cell death (i.e., apoptosis) compared to dams that
remained with their offspring (Holschbach and Lonstein 2016).
It may seem surprising to some readers that we found that
motherhood is associated with lower dorsal raphe newborn cell
survival and higher cell death. Regressive events such as cell
death and synaptic pruning are essential for refining and
optimizing neural circuit function (Chechik et al. 1999;
Fricker et al. 2018), and thus are surely relevant for neurobe-
havioral changes across the peripartum period and lactation
(Perei ra 2016). Whether the motherhood-related
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neuroplasticity we found in the dorsal raphe is a cause, result,
or unrelated to the motherhood-related serotonin changes there
and elsewhere in the brain remains to be determined.

The studies discussed above reveal a number of normative
neurochemical and cellular changes in the serotonin system
across female reproduction, but we know almost nothing
about how these normative changes may be derailed by stress,
or if stress can produce completely novel effects on this sys-
tem. The dorsal raphe and other serotonin cell groups are rich
in the receptors for stress-related hormones such us glucocor-
ticoids and corticotrophin releasing hormone (CRH), and re-
ceive direct neuronal input from CRH cells in the amygdala,
bed nucleus of the stria terminalis, and paraventricular nucleus
of the hypothalamus (Aaronson et al. 1988; Fox and Lowry
2013). This is relevant because pregnancy stress is strongly
associated with prepartum and postpartum affective disorders
in women (Britton 2008; Lancaster et al. 2010; Robertson et
al. 2004; Soderquist et al. 2009) and stress produces these
effects, in part, by interacting with serotonin (Bethea et al.
2013; Costas et al. 2010; Mehta et al. 2012; Mitchell et al.
2011; Pinheiro et al. 2013). Pregnancy stress can also increase
later postpartum depression- and anxiety-like behaviors in
laboratory rodents (Darnaudery et al. 2004; Haim et al.
2014; Hillerer et al. 2011; Leuner et al. 2014; O'Mahony et
al. 2006; Smith et al. 2004; although see Pawluski et al. 2011,
2012a), but only two studies have examined if pregnancy
stress alters any aspect of the maternal central serotonin sys-
tem. These studies found that stressed postpartum dams had
higher serotonin turnover in the cortex (Gemmel et al. 2016)
and lower cortical and hippocampal serotonin 1A receptor ex-
pression (Szewczyk et al. 2014), compared to unstressed dams
when the subjects’ brains were assessed in late lactation.
Relevant to SSRI’s/serotonin’s downstream effects on neuro-
trophic factors, pregnancy stress in rodents has also been
found to reduce BDNF levels in the maternal hippocampus
and cortex (Maghsoudi et al. 2014; Miao et al. 2018), as well
as atrophy neuronal dendrites in thematernal hippocampus and
nucleus accumbens (Haim et al. 2014; Pawluski et al. 2012b).

It is mostly unknown if the neurochemical and cellular
changes in the serotonin system across reproduction de-
scribed above affect mothers’ physiological or behavioral
responses to SSRIs. It was recently found that the SSRI
fluoxetine decreases body weight, lowers circulating corti-
sol, and increases neurogenesis in the hippocampus of nul-
liparous rats but not in postpartum mothers (Workman et
al. 2016). On the other hand, only in mothers did fluoxe-
tine interact with cortisol to reduce circulating estradiol
(Workman et al. 2016). The parity difference in fluoxe-
tine's effect on cortisol is particularly interesting given
the association between hypothalamic-pituitary-adrenal
axis dysfunction and some types of depression in non-
parous humans (Stetler and Miller 2011). Studies in mice
have revealed parity differences in the behavioral

responses to an SSRI, with citalopram decreasing the la-
tency for postpartum mothers but not nulliparous females
to become immobile in a forced-swim test - a common
paradigm used to assess depressive-like behavioral dispair
in laboratory rodents (Jury et al. 2015). In rats, though, the
high immobility in the forced-swim test shown by both
mothers and nullipare treated with corticosterone can be
reversed by fluoxetine (Workman et al. 2016).

In sum, SSRI use is widespread during pregnancy and the
early postpartum period, and there is no reason to expect
that this will change anytime soon (Hanley and Mintzes
2014). There are relatively few studies of the normative and
stress-induced changes in the central serotonin system across
female reproduction in either humans or laboratory rodents, but
this information is critical for understanding how serotonin and
its downstream effects on neuroplasticity and other brain pro-
cesses contribute to the etiology of postpartum depression and
anxiety. Understanding the unique aspects of the maternal se-
rotonin system is also essential for optimizing the dose and
timing of SSRIs, or any other pharmacotherapies affecting the
brain’s serotonin system, when they are to be used as potential
treatments for prepartum and postpartum affective disorders.
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