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Summary. Several differences exist between quinolinic acid and N-methyl-D-
aspartate (NMDA) in the potency and pharmacology of their neurotoxic
actions in the brain, suggesting that quinolinic acid may act by mechanisms
additional to the activation of NMDA receptors, possibly involving lipid
peroxidation. In the present review, studies are considered which have
attempted to determine whether free radicals might contribute to the
neuronal damage induced by quinolinic acid. Following Injections into the
hippocampus of anaesthetised rats, quinolinic acid induced damage is
prevented by melatonin, by an action not blocked by the melatonin receptor
blocker luzindole. Deprenyl, but not the non-selective monoamine oxidase
inhibitor nialamide, also prevent quinolinic acid-induced damage. In vitro,
seversl groups have shown that quinolinic acid can induce lipid peroxidation
of brain tissue The results suggest that free radical formation contributes
significantly to quinolinic acid-induced damage in vivo.
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Introduction

Quinolinic acid, an endogenous agonist at N-methyl-D-aspartate (NMDA)
receptors (Stone and Perkins, 1981; Perkins et al., 1983; Stone, 1993),
produces neuronal damage after local injection into the brain (Schwarcz et al.,
1983). It is also of interest because of its possible role in the neuronal damage
accompanying a range of pathological states (Stone, 1993). For example, the
levels of quinolinic acid in the brain increase following infection with HIV or
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the simian equivalent, SIV, when the concentration in cerebrospinal fluid can
rise up to 400-fold (Heyes et al., 1992). These levels are higher than those able
to produce neuronal damage. Following treatment, the levels of quinolinic
acid decline in parallel with improvements in disease activity.

The neurotoxicity of quinolinic acid is more pronounced than can be
accounted for solely by the activation of NMDA receptors since quinolinic
acid is less active in producing neuronal excitation whereas they are
equiactive in producing neuronal damage. There are also qualitative dif-
ferences (Foster and Schwarcz, 1989) as well as pharmacological differences
(Perkins and Stone, 1983; Winn et al., 1991) between the neurotoxic effects of
NMDA and quinolinic acid. Some of the these differences could be explained
if quinolinic acid-induced damage were mediated partly by free radicals, and
this possibility has been explored by several groups working in vivo and in
vitro.

Studies of lipid peroxidation

A major consequence of the effects of reactive oxygen species on living tissue
is the formation of oxidised products of cellular membrane lipids. These
include malondialdehyde and 4-hydroxynonenal, both of which can be
detected in vitro (Zaleska and Floyd, 1985) and in vivo (Kogure et al., 1982)
following cerebral insults of various kinds. These lipid peroxidation products
are in turn toxic, causing disruption of cellular enzymes, membrane receptors
and transport processes (Braughler, 1985; Picklo et al., 1999; Brown-Galatola
and Hall, 1992).

Reactive oxygen species may also damage nucleic acid structure, com-
promising cell survival directly and potentially modifying gene expression,
leading to disorders of cell proliferation (Morel and Baroiki, 1998). The
oxidation of thiols and the formation of carbonyl groups on proteins can lead
to widespread deterioration in cell viability, with loss of receptor, enzyme and
transporter functions (Brown-Galatola and Hall, 1992).

Rios and Santamaria (1991) were the first to demonstrate that quinolinic
acid could elevate the formation of thiobarbituric acid reactive substances, a
measure of lipid peroxidation, after incubating with brain homogenates for 30
minutes. Concentrations of 20–80µM were effective in raising peroxidation up
to 50% above control values.

In a subsequent, in vivo, study, the same authors demonstrated that the
intrastriatal injection of quinolinic acid also increased lipid peroxidation. In
addition, however, they found that the effect, along with the neuronal damage
produced, was prevented by the non-competitive NMDA antagonist
dizocilpine (Santamaria and Rios, 1993).

It is difficult to reconcile this ability of quinolinic acid to produce per-
oxidation via a receptor mechanism, with the result of a more recent study
showing that the oxidising activity of quinolinic acid may not be exerted
directly on neural tissue, but that it requires the obligatory presence of
iron (Stipek et al., 1997). It may be that the proposed complex formation
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between quinolinic acid and iron has a greater effect on NMDA receptors
than virgin quinolinic acid, and this possibility would seem to merit further
exploration.

Neuronal protection by anti-oxidants

One of the few in vivo studies of neuroprotection has revealed that both the
histopathological and the neurological consequences of the intrastriatal
administration of quinolinic acid can be prevented by α-phenyl-t-butyl
nitrone (Nakao and Brundin, 1997). This compound is a spin-trap reagent,
able to interact with high selectivity with free radical molecules to form stable
complexes, preventing their having extensive injurious effects on cell
membranes. This result is, therefore, strongly suggestive of a role for free
radicals in the damaging effects of quinolinic acid.

In our own work, we have found that quinolinic acid (120nmols) produced
a dose-dependent loss of neurones in areas CA1, CA3 and CA4 and resulted
in the infiltration of the pyramidal cell layers and surrounding tissue by
microglial cells. NMDA also produced damage in the CA3 region, an area
which we chose to use for quantitative comparisons. The quinolinate damage
was prevented by the co-administration of melatonin applied both by
intrahippocampal injection simultaneously with quinolinic acid, and twenty-
four hours later as an intraperitoneal injection. Neither the administration of
melatonin alone at this dose, nor its ethanolic vehicle, affected the pyramidal
neurone population.

Luzindole is an antagonist of at least one of the melatonin receptors, and
it was used in order to discriminate the possibility that melatonin was acting as
an anti-oxidant as opposed to via a receptor mechanism. In fact, luzindole had
no effect on neuronal survival alone, and did not prevent the protection
afforded by melatonin.

We have also found that deprenyl produced a significant level of
protection against quinolinic acid, whereas the non-selective monoamine
oxidase inhibitor nialamide did not affect the amount of neuronal damage
produced.

Mechanisms of protection

Activation of neuronal NMDA receptors is associated with an influx of
calcium ions leading to the generation of reactive oxygen species (Choi, 1987;
Hartley et al., 1993; Velazquez et al., 1997; Atlante et al., 1997). This action
may underlie the receptor-mediated component of lipid peroxidation
encountered by Rios and Santamaria (1991) and Santamaria and Rios (1993).
The reports of damage limitation by spin trap reagents such as α-phenyl-t-
butylnitrone (Nakao and Brundin, 1997) are clearly consistent this view.

Melatonin is a highly efficient scavenger of free radicals (Hardeland et al.,
1993; Hardeland and Rodriguez, 1995; Reiter et al., 1995), while deprenyl
can also protect neurones partly by scavenging free radicals and partly by
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increasing the activity of antioxidant enzymes (Mytilineou et al., 1997; Wu
et al., 1993; Koutsilieri et al., 1994). Melatonin has been shown to protect
neurones against a variety of toxic insults (Giusti et al., 1995; Cagnoli et al.,
1995; Lezoualch et al., 1996; Uz et al., 1996; Cho et al., 1997) and can prevent
lipid peroxidation induced in vitro by kainate, nitric oxide or hydrogen
peroxide (Melchiorri et al., 1995; Sewerynek et al., 1995; Reiter et al., 1995;
Escames et al., 1997). The failure of luzindole to prevent the protec-
tion produced by melatonin argues against a receptor-mediated effect.
(Dubocovich 1995) of at least a significant proportion of the quinolinic acid
induced damage and free radical generation.

Overall, therefore, existing data indicate that part of the neuronal damage
produced by quinolinic acid may be due to the enhanced formation of free
radicals, and that this is likely to be independent of NMDA receptor
activation (Giusti et al., 1995; Cazevieille et al., 1997). This is supported by
other data from our laboratory indicating that melatonin does not prevent the
excitotoxicity produced by NMDA itself. The mechanism of quinolinic acid’s
toxicity may, therefore, involve at least partly a direct interaction with cell
constituents. Damage produced by quinolinic acid may, alternatively, be the
result of the gliosis which follows excitotoxic challenge, since activated
microglia are known to produce free radicals.

Deprenyl protects cultured dopamine neurones against damage mediated
by NMDA receptors (Mytilineou et al., 1997), and reduces hippocampal
damage produced by cerebral ischaemia (Paterson et al., 1997). The
mechanism of protection does not seem to involve monoamine oxidase
inhibition (Wu et al., 1993; Gerlach et al., 1994; Tatton et al., 1996), since
protection was not mimicked by nialamide. Deprenyl can promote neuronal
regeneration and neuritogenesis (Iwasaki et al., 1994; Koutsilieri et al., 1994).
Chronic administration of deprenyl increases the activities of two of the
antioxidant enzymes, superoxide dismutase and catalase (Carrillo et al.,
1994a,b,c). It also scavenges hydroxyl and peroxyl radicals (Thomas et al.,
1997).

In conclusion, the neurodegeneration produced by quinolinic acid may be
partly dependent upon the generation of reactive oxygen species in addition
to its stimulant effect on NMDA receptors.
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