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Summary. The inhibitory amino acid taurine is an osmoregulator and
neuromodulator, also exerting neuroprotective actions in neural tissue. We
review now the involvement of taurine in neuron-damaging conditions, in-
cluding hypoxia, hypoglycemia, ischemia, oxidative stress, and the presence of
free radicals, metabolic poisons and an excess of ammonia. The brain concen-
tration of taurine is increased in several models of ischemic injury in vivo.
Cell-damaging conditions which perturb the oxidative metabolism needed for
active transport across cell membranes generally reduce taurine uptake in
vitro, immature brain tissue being more tolerant to the lack of oxygen. In
ischemia nonsaturable diffusion increases considerably. Both basal and K1-
stimulated release of taurine in the hippocampus in vitro is markedly en-
hanced under cell-damaging conditions, ischemia, free radicals and metabolic
poisons being the most potent. Hypoxia, hypoglycemia, ischemia, free radicals
and oxidative stress also increase the initial basal release of taurine in cerebel-
lar granule neurons, while the release is only moderately enhanced in hypoxia
and ischemia in cerebral cortical astrocytes. The taurine release induced by
ischemia is for the most part Ca21-independent, a Ca21-dependent mechanism
being discernible only in hippocampal slices from developing mice. Moreover,
a considerable portion of hippocampal taurine release in ischemia is mediated
by the reversal of Na1-dependent transporters. The enhanced release in
adults may comprise a swelling-induced component through Cl2 channels,
which is not discernible in developing mice. Excitotoxic concentrations of
glutamate also potentiate taurine release in mouse hippocampal slices. The
ability of ionotropic glutamate receptor agonists to evoke taurine release
varies under different cell-damaging conditions, the N-methyl-D-aspartate-
evoked release being clearly receptor-mediated in ischemia. Neurotoxic
ammonia has been shown to provoke taurine release from different brain
preparations, indicating that the ammonia-induced release may modify neu-
ronal excitability in hyperammonic conditions. Taurine released simultane-



510 P. Saransaari and S. S. Oja

ously with an excess of excitatory amino acids in the hippocampus under
ischemic and other neuron-damaging conditions may constitute an important
protective mechanism against excitotoxicity, counteracting the harmful ef-
fects which lead to neuronal death. The release of taurine may prevent excita-
tion from reaching neurotoxic levels.
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Introduction

Taurine

Taurine (2-aminoethanesulfonic acid) is one of the most abundant free amino
acids in the central nervous system. In many mammals its concentration even
exceeds that of glutamate during ontogenic development (Oja and Kontro,
1983a). This simple sulfonic acid has been thought to have a special role in
immature brain tissue (Oja and Kontro, 1983a; Kontro and Oja, 1987a;
Sturman, 1993). It is a vital nutrient for cats, and probably also for primates,
being essential for the development and survival of neural cells (see Huxtable,
1992; Sturman, 1993). In kittens a dietary deficiency of taurine manifests itself
in morphological degeneration of the retina and tapetum lucidum and in
pathological alterations in the electroretinogram and visual evoked potentials
in cats and monkeys (Sturman et al., 1985). In taurine-deficient kittens mitotic
activity also persists and migration of granule cells from the external granule
cell layer to the inner layers in the cerebellum is delayed (Sturman et al.,
1985). These observations have given impetus to taurine supplementation of
infant formulas derived from taurine-poor cow milk. On the other hand,
taurine is known to act as an osmoregulator in marine animals (Simpson et al.,
1959), and is thought to function in the same role in the brains of terrestrial
species (Walz and Allen, 1987; Pasantes-Morales and Schousboe, 1997). Fur-
thermore, taurine induces hyperpolarization and inhibits firing of central
neurons. It has therefore come to be regarded as an inhibitory transmitter or
more precisely a modulator of nervous activity (Oja et al., 1977; Oja and
Kontro, 1983a; Huxtable, 1992; Saransaari and Oja, 1992).

Neural cell damage

Hypoxia, hypoglycemia, ischemia and free radical production cause neuronal
cell damage and death. In ischemia, oxidative metabolism shifts to anaerobic
glycolysis due to the lack of oxygen and glucose. The generation of high-
energy phosphate reserves is then insufficient to maintain cellular ionic gradi-
ents and other metabolic processes. In oxidative metabolism biological
systems tend to produce free radicals. Free radical levels and membrane lipid
peroxidation may become abnormally high under certain conditions, includ-
ing ischemia and ageing, and damage membrane structures in nerve cells
(Haddad and Jiang, 1993; Hara et al., 1993). Free radicals are also thought to
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be involved in certain neurological diseases (Halliwell, 1992; Bondy, 1995).
The effects of ischemia and exposure to free radicals share many common
features (Gilman et al., 1994).

High extracellular concentrations of excitatory amino acids are neuro-
toxic, and overstimulation of their receptors due to an increased release from
intracellular stores contributes to neuronal death during cerebral ischemia
(see Rothman and Olney, 1988; Szatkowski and Attwell, 1994). Excitatory
amino acids are massively released from neural structures during hypoxia and
ischemia both in vitro (Pellegrini-Giampietro et al., 1990; Collard and Menon-
Johansson, 1993; O’Regan et al., 1995a,b) and in vivo (Benveniste et al., 1984,
Hagberg et al., 1985; Globus et al., 1988). Moreover, the release of excitatory
amino acids is in part a consequence of the action of oxygen-derived free
radicals formed in hypoxic brain tissue (Pellegrini-Giampietro et al., 1988).
Free radicals and excitatory amino acids thus cooperate in the genesis of
ischemia-induced neuronal damage (Halliwell and Gutteridge, 1985;
Pellegrini-Giampietro et al., 1990; Coyle and Puttfarcken, 1993). The activa-
tion of the N-methyl-D-aspartate (NMDA) class of glutamate receptors in
particular increases the intracellular concentration of Ca21 and triggers a long-
lasting potentiation of NMDA-gated currents (Szatkovski and Attwell, 1994).

Neuroprotective effects of taurine

Taurine is known to protect neural cells from the excitotoxicity induced by
excitatory amino acids (Fariello et al., 1982; French et al., 1986; Trenkner,
1990). It forestalls the harmful metabolic cascades evoked by ischemia
and hypoxia (Schurr et al., 1987) and attenuates Ca21 influx in ischemia
(Lehmann et al., 1985). An endogenous taurine-containing dipeptide γ-L-
glutamyltaurine also efficiently attenuates glutamate-agonist-evoked calcium
fluxes in neurons (Varga et al., 1992). Taurine-containing neurons are
fairly resistant to cerebral ischemia induced by the four-vessel occlusion
(Matsumoto et al., 1991; Wu et al., 1994). Taurine protects cerebellar granule
cells exposed to kainate without affecting the production of reactive oxygen
species in these cells (Boldyrev et al., 1999).

Taurine has ameliorated epileptic symptoms in experimental animals and
human patients (Kontro and Oja, 1983b). However, a perusal of the literature
shows that only about one third of human patients clearly respond to taurine
medication, as was also the case in our own patient series of intractable cases
of epilepsy in children (Airaksinen et al., 1980). Taurine penetrates into the
brain slowly (Oja et al., 1976), because the molecule is fairly lipophobic and
the active uptake systems are not very effective (Lähdesmäki and Oja, 1973).
On the other hand, an excess of taurine in plasma is readily excreted into urine
(Chesney et al., 1985). The brain level is thus only marginally elevated after
oral or parenteral administration of taurine. With this in mind we have
endeavored to develop lipophilic taurine derivatives which could more readily
penetrate brain tissue and act as antiepileptics. A few such derivatives ap-
peared fairly effective in rodent seizure models (Lindén et al., 1983; Oja et al.,
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1983), but taltrimide (2-phthalimidosulfon-N-isopropylamine), when sub-
jected to clinical trials failed to ameliorate symptoms in intractable epileptic
patients (Airaksinen et al., 1987). Like the parent compound, taurine,
taltrimide affects GABAergic neurotransmission (Kontro and Oja, 1987c),
which interaction may underlie its failure in clinical trials. Taltrimide
potentiates basal taurine release in normoxia but not the ischemia-induced
release in mouse hippocampal slices (Saransaari and Oja, 1999b). In
our opinion there nevertheless remain unexplored possibilities of modify-
ing the taurine molecule in a search for novel anticonvulsants and
neuroprotectants.

The mechanisms of neuroprotective effects are not known but may be
related, in addition to neuromodulation and osmoregulation, to the antioxi-
dant and calcium ion regulatory actions of taurine. We review now the
involvement of taurine in certain neuron-damaging conditions, including
hypoxia, hypoglycemia and ischemia. Cell damage caused by oxidative stress,
free radicals and metabolic poisons is also discussed, as well as the role of
taurine in ammonia toxicity.

Taurine under different cell-damaging conditions

Taurine levels in vivo

The extracellular concentrations of taurine together with other amino acids
have been measured by microdialysis in several animal models of ischemic
injury in vivo. The levels have been found to be increased in the rat striatum
(Uchiyama-Tsuyuki et al., 1994) and rabbit cerebral cortex (Matsumoto et al.,
1996) after transient focal ischemia, in the rat cerebral cortex in the four-
vessel occlusion model (Phillis et al., 1999), after aortic occlusion in the rabbit
spinal cord (Simpson et al., 1990) and after forebrain ischemia in the hippo-
campus of both normal (Lekieffre et al., 1992) and spontaneously hyperten-
sive rats (Ooboshi et al., 1995). In this latter experimental paradigm the
ischemia-induced release of taurine was smaller in aged rats than in adults,
contributing to the age-related vulnerability of hippocampal neurons to
ischemia (Ooboshi et al., 1995). In a global model of brain ischemia taurine
was seen to be accumulated in the rat auditory cortex and cerebrospinal fluid
(Shimada et al., 1993). In anoxia, on the other hand, extracellular taurine in
the striatum of newborn rats began to increase only after the anoxia-induced
elevation of extracellular K1 (Pérez-Pinzón et al., 1993). Hypoxia alone did
not affect the hippocampal taurine level but markedly prolonged the increase
in a rat model with controlled closed head injury followed by hypoxia (Katoh
et al., 1997). A similar delayed release of taurine has also been noted under a
number of experimental conditions in many brain preparations in vitro (see
Saransaari and Oja, 1992). Furthermore, the taurine concentration in the rat
piriform cortex rose during focal ischemia and remained elevated, though
somewhat attenuated, throughout the subsequent reperfusion phase (Lo et
al., 1998). The response to K1 stimulation was significantly attenuated after
this ischemia reperfusion. The long-lasting increase in extracellular taurine
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after injury may be beneficial to damaged tissue, but not the attenuation of
responses to K1 stimulation during reperfusion.

Taurine uptake in vitro

Taurine possesses saturable, Na1-dependent transport systems operating in
neuronal and glial cell membranes and comprising both high- and low-affinity
components (see Oja and Kontro, 1983a; Huxtable, 1992). Conditions which
are known to cause neural cell damage affect taurine uptake in mouse cer-
ebral cortical synaptosomal preparations (Saransaari and Oja, 1996). Meta-
bolic poisons, hypoglycemia, hypoxia and ischemia all perturb the oxidative
metabolism needed for active taurine transport across cell membranes. Short-
term exposure to hypoxia or ischemia has proved to have no apparent effect
on taurine uptake measured at a 10-µM concentration, but kinetic analyses
revealed that nonsaturable diffusion nevertheless increased under ischemic
conditions, the increase manifesting itself only at higher concentrations
(Saransaari and Oja, 1996). Apparently there was greater leakage of taurine
molecules into synaptosomes through partially disrupted membranes, though
the operation of carriers was still almost intact. Only the maximal velocity of
low-affinity uptake was increased, indicating that more transport sites were
available or that the translational step was faster. However, long-lasting expo-
sure to ischemia gradually reduced the uptake, the inhibition being more
pronounced in the adult than in developing mice. The taurine uptake systems,
which are more efficient in the immature than the mature cerebral cortex (Oja
and Kontro, 1984), better tolerate perturbations of oxidative metabolism.
This is in keeping with the observation that the immature brain is markedly
resistant to both brief and prolonged periods of hypoxia (Nabetani and
Okada, 1994). Oxidative stress and the experimental conditions inducing free
radical production have been seen to affect taurine uptake only in adults. The
transport systems were not affected by these insults in the immature brain
(Saransaari and Oja, 1996).

Basal and K1-stimulated taurine release in vitro

The basal and K1-stimulated release of both endogenous and exogenous
taurine have been modified by tissue-damaging experimental conditions in
the hippocampi of developing, adult and ageing mouse (Saransaari and Oja,
1996, 1997a, 1998a). The basal release of [3H]taurine from hippocampal
slices from developing mice is markedly increased in the presence of 2,4-
dinitrophenol (DNP). Hypoglycemia, ischemia and media inducing free radi-
cal production were likewise fairly effective, and NaCN and hypoxia caused
small increases (Fig. 1). In hippocampal slices from young adult mice the basal
release of taurine was enhanced by the same experimental conditions (Fig. 2),
ischemia being in this case the most effective of them. Free radicals, NaCN
and DNP were now almost equipotent, and hypoxia and hypoglycemia were
also fairly effective. Oxidative stress does not affect taurine release in mouse
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Fig. 1. Taurine release from hippocampal slices from 7-day-old mice under different
cell-damaging conditions. The freely floating slices, preloaded for 30min with 10 µM
[3H]taurine, were superfused for 50min with glucose-containing or glucose-free
(hypoglycemia and ischemia) Krebs-Ringer media continuously bubbled with O2 or N2

(hypoxia and ischemia). Oxidative stress was induced by 7.5µM FeSO4 and free radical
production achieved by exposure to 0.01% H2O2. The concentration of NaCN and 2,4-
dinitrophenol was 1mM. From 30min onwards the medium in every second experi-
ment was supplemented with 50mM K1 (potassium stimulation). The results are mean
efflux rate constants (1SEM) k2 (34–50min) of 4–8 independent experiments. Basal
unstimulated release (open bars) and K1-stimulated release (cross-hatched bars). Basal
unstimulated release was significantly (P , 0.01) increased in all other cases except in
oxidative stress. K1 stimulation significantly (P , 0.01) enhanced the release in all other
cases except in the presence of 1mM DNP. The graph is composed from the results in

Saransaari and Oja (1997d,1999c) and from our unpublished results

hippocampal slices (Saransaari and Oja, 1997a, 1998a), while in cultured
retinal cells oxidative stress, hypoxia and ischemia have increased release in
the presence of Ca21 (Rego et al., 1996).

In hippocampal slices from adult mice, stimulation by 50mM K1 failed to
evoke any significant potentiation of taurine release under hypoglycemic and
hypoxic conditions, in free radical-containing medium and in the presence of
NaCN, but enhanced the release in oxidative stress (Fig. 2). In ischemia and
in the presence of DNP, taurine release was even diminished when the slices
were exposed to medium with a high K1 concentration. In the developing
hippocampus, the enhancement of release by K1 stimulation was generally
preserved under cell-damaging conditions (Fig. 1). The only exception was
observed in the presence of DNP in superfusion medium, in which case the
release was markedly diminished. The increase in taurine release under
ischemic conditions was reversible after the introduction of control aerobic
conditions in both age groups (Saransaari and Oja, 1997a). On the other hand,
when the slices were poisoned with DNP a gradual recovery was seen after its
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Fig. 2. Taurine release from hippocampal slices from 3-month-old mice under dif-
ferent cell-damaging conditions. The experiments made and the symbols are the same as
in Fig. 1. The results are mean efflux rate constants (1SEM) k2 (34–50 min) of 4–8
independent experiments. Basal unstimulated release was significantly (P , 0.01) in-
creased in all other cases except in oxidative stress. K1 stimulation significantly (P , 0.01)
enhanced the release in control experiments and in oxidative stress and diminished it in
ischemia and in the presence of DNP. The graph is composed from the results in

Saransaari and Oja (1997d, 1999c) and from our unpublished results

omission from superfusion medium in slices from immature mice, but not in
those from adults. The release of endogenous taurine has been doubled in
hypoxia and tripled in ischemia in adult hippocampal slices, but K1 stimula-
tion is abolished (Saransaari and Oja, 1998a). In the immature hippocampus
the increase in taurine release was 10-fold in hypoxia and 30-fold in ischemia,
K1-stimulation being still partly preserved (Saransaari and Oja, 1998a).

In glutamatergic cerebellar granule cells hypoxia and ischemia have pro-
duced an initial increase in the basal release of taurine when compared to
normoxia, but the response to K1 has been diminished (Saransaari and Oja,
1999d). Hypoglycemia, oxidative stress and free radicals have enhanced tau-
rine release and subsequent K1 treatment causes a correspondingly greater
stimulation. The magnitude of K1 stimulation is identical in hypoxia and in
controls, whereas in ischemia the response is somewhat attenuated (Fig. 3A).
A common feature of taurine release in all the above conditions in granule
cells is a slow response to K1 stimulus, particularly to that of veratridine
(Saransaari and Oja, 1999d). Maximal release has occurred invariably only
after cessation of stimuli. On the other hand, in cultured cerebral cortical
astrocytes the basal release of taurine is only moderately enhanced in hypoxia
and ischemia, whereas the potentiation by free radicals is marked (Saransaari
and Oja, 1999c). The small basal release from astrocytes signifies that taurine
release from brain tissue in ischemia may originate from neurons rather than
from glial cells. Moreover, the release evoked by K1 is greater in hypoxia and



516 P. Saransaari and S. S. Oja

Fig. 3. Time-course of taurine release from cultured cerebellar granule cells (A) and
cerebral cortical astrocytes (B). The cells were preloaded with 10µM [3H]taurine in
Krebs-Ringer-Hepes medium and the release of radioactivity was then monitored by
changes of non-radioactive incubation medium at 2-min intervals. The medium was
supplemented with 50mM K1 from 40 to 60min (granule cells) and from 30 to 50 min
(astrocytes) as indicated by the bars. Control (normoxia) (-d-), hypoxia (-s-) and
ischemia (-n-). Hypoxic and ischemic conditions were generated as described in the
legend to Fig. 1. The results are mean values of 4–6 independent experiments. SEM is
shown if it exceeds the size of symbols. The graphs are composed from the data in

Saransaari and Oja (1999a,b)

ischemia than in normoxia, with a relatively slow time-course (Fig. 3B). K1

stimulation has also always evoked less taurine release from astrocytes than
from granule neurons (Saransaari and Oja, 1999c,d). The enhanced release of
inhibitory taurine from astrocytes in ischemia may be beneficial to surround-
ing neurons, since it outlasts the initial stimulus and counteracts impending
hyperexcitation.

Mechanisms of ischemia-induced taurine release

General mechanisms

The properties of ischemia-induced release of neurotransmitters have been
studied mainly with excitatory amino acids. Only the present authors have
attempted to analyze the mechanisms of ischemia-induced taurine release.
The increased release is apparently mediated by the same systems which are
involved with aspartate and glutamate, multiple mechanisms being operative.
Taurine release in ischemia may thus be enhanced by means of several mecha-
nisms, including Ca21-dependent exocytotic release from nerve terminals,
reversal of the functions of Na1-dependent membrane transporters and facili-
tation of diffusion. Moreover, it has been suggested that the enhanced release
of excitatory amino acids in ischemia may stem from membrane permeability



Taurine and neural cell damage 517

changes elicited by the activation of phospholipases by elevated intracellular
Ca21 (O’Regan et al., 1995a). Taurine efflux may also be a consequence of a
regulatory volume decrease possibly mediated by ion channels and triggered
as a response to ischemia-induced cell swelling.

Ca21-dependency

In normoxia taurine release has been seen to be more Ca21-dependent in the
immature than the mature hippocampus (Saransaari and Oja, 1997a, 1998a,b).
The release of both exogenous and endogenous taurine in hypoxia, hypo-
glycemia, ischemia, oxidative stress and in the presence of free radicals in
the developing and adult hippocampus has been in all cases partially Ca21-
dependent (Saransaari and Oja, 1997a, 1998a). In ischemia, the major part
of release has been Ca21-independent in the adult and aged hippocampus
(Saransaari and Oja, 1997a), whereas both basal and K1-stimulated releases in
the developing hippocampus have been attenuated in the absence of Ca21

which indicates the involvement of Ca21-dependent processes (Saransaari and
Oja, 1999a). On the other hand, the Ca21 channel blocker nimodipine has no
effect on the release in normoxia or ischemia in both the adult and developing
hippocampus (Saransaari and Oja, 1998b, 1999a), which would imply that the
L-type of voltage-dependent Ca21 channels does not participate in the release.

In cultured retinal cells taurine release has increased in hypoxia and
ischemia mainly by a Ca21-independent mechanism, while release in oxida-
tive stress has required the presence of Ca21 (Rego et al., 1996). Even though
Ca21-dependent processes may be involved in ischemia-induced taurine
release, the release could also result from excitotoxicity-induced cellular
swelling under cell-damaging conditions. Both K1 depolarization (Oja and
Saransaari, 1992) and exposure to glutamate receptor agonists (Saransaari
and Oja, 1991) have induced swelling-associated release of taurine in brain
slices. The Ca21-dependent exocytosis of synaptic vesicles may thus play a
minor role in the ischemia-evoked release in the immature hippocampus.
Depolarization-induced release probably contributes to the initial release, but
this is limited by the rapid inactivation and desensitization of both voltage-
and glutamate-receptor-gated Ca21 channels (Mody and MacDonald, 1995)
and by the dependency of exocytotic release on adequate levels of ATP
(Sánchez-Prieto et al., 1987). Furthermore, ischemia has been shown to initi-
ate an initial exocytotic release of glutamate followed by a nonexocytotic
release from cultured cerebellar granule cells (Pocock and Nicholls, 1998).

Na1 effects

Both basal and K1-stimulated hippocampal releases of taurine are markedly
enhanced by Na1 deficiency in normoxia, as demonstrated in mouse cerebral
cortical and hippocampal slices (Kontro and Oja, 1987a,b; Oja and Kontro,
1987; Saransaari and Oja, 1998c). Na1-free medium is known to diminish the
K1 content of the slices (Korpi and Oja, 1983) due to inhibition of Na1, K1-
ATPase. In agreement with this, ouabain generally greatly stimulates the
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basal release of taurine (Kontro and Oja, 1987a,b). This bespeaks the involve-
ment of Na1-dependent taurine transporters operating outwards. Indeed,
developing and adult brain tissue possesses a saturable, Na1-requiring trans-
port system for taurine at neuronal and glial cell membranes, comprising both
high- and low-affinity components (Oja and Kontro, 1983a; Huxtable, 1992),
which could exhibit this kind of behavior. When the Na1 gradient is dissi-
pated, the preferred direction of transport changes from inward (uptake) to
outward (release). Such a Ca21-independent release for glutamate has been
assumed to be activated under certain pathological conditions, e.g., in anoxia
(Sánchez-Prieto and Gonzales, 1988), but it appears also to operate for tau-
rine in normoxia.

In ischemia, neurons are suddenly depolarized, being accompanied by
a massive increase in the extracellular K1 concentration and a decrease in
extracellular Na1 levels (Somjen et al., 1990). The reduction in ischemia-
induced taurine release in Na1-free media could to some extent result from
the slow depolarization of cells in the total absence of extracellular Na1

(Saransaari and Oja, 1998b). In addition to intracellular Na1 ions, brain slices
also lose intracellular K1 in Na1-free media (Korpi and Oja, 1983). Under
these experimental conditions the K1-evoked depolarization, riding on the
ischemia-induced depolarizations, fails to enhance taurine release, even
though the absence of extracellular Na1 should have potentiated taurine
release by reversal of the transporters (Saransaari and Oja, 1998b; 1999a). In
Na1-free medium K1 ions may even partially adopt the role of Na1 in promot-
ing the function of transporters, since taurine release from brain slices is
reduced when an excess of K1 ions is added to the incubation medium (Korpi
and Oja, 1983). In addition to this, the involvement of transporters in taurine
release has been confirmed using the structural analogues hypotaurine and â-
alanine, which potentiate taurine release by trans-stimulation in normoxia
(Saransaari and Oja, 1998b; 1999a). Under Na1-free conditions this stimula-
tion was not discernible, the carriers not operating without Na1. In ischemia,
the significant potentiation of taurine release by â-alanine and hypotaurine
constitutes further evidence that the heteroexchange also functions under
ischemic conditions in the presence of Na1. In Na1-deficient medium in
ischemia stimulation is absent. These results clearly show a substantial part
of Ca21-independent taurine release in ischemia to be mediated by Na1-
dependent transport in the hippocampus. In keeping with this, taurine trans-
porters in the mouse cerebral cortex remain operative in ischemia, though
nonsaturable diffusion is greatly increased (Saransaari and Oja, 1996).
Similarly, the release of glutamate (Roettger and Lipton, 1996) and GABA
(Saransaari and Oja, 1997b) during ischemia has been shown to occur largely
via reversal of the Na1-dependent transport systems.

Involvement of ion channels

Attenuation of ischemia-evoked amino acid release by ion channel blockers
would be consistent with the surmise that they exert their effects by prevent-
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ing the movement of amino acids through swelling-activated anion channels
as a part of the regulatory volume decrease (Pasantes-Morales, 1996; Strange
et al., 1996). In this process swollen cells attempt to regain their normal
volume by releasing osmolytes, including taurine. The swelling-induced in-
crease in taurine release has been demonstrated to be mediated by simple
diffusion without carrier involvement (Sánchez-Olea et al., 1991, 1993).
Moreover, diffusion of other amino acids, including aspartate and glutamate,
through an anion channel is thought to be partially responsible for the el-
evated levels of excitotoxic amino acids during ischemia (Phillis et al., 1997).
The chloride channel inhibitors 4-acetamido-4-isothiocyanostilbene-2,29-
disulfonic acid (SITS) and 5-nitro-2-phenylpropylaminobenzoic acid (NPPB)
have been found to reduce taurine release in vivo in normoxia and after four-
vessel occlusion in the rat cerebral cortex (Phillis et al., 1997). Moreover, SITS
and also diisothiocyanostilbene-2,29-disulfonate (DITS) reduce only the K1-
stimulated taurine release under normal conditions in the developing hippo-
campus in vitro (Saransaari and Oja, 1999a), indicating that this release may
occur through anion channels, though these channels may not be involved in
the ischemia-induced release. This differs from the situation in the adult
hippocampus, where a part of the enhanced taurine release in ischemia has
been shown to occur through these channels (Saransaari and Oja 1998c). The
involvement of K1 and Na1 channels in ischemic taurine release is also un-
likely, since the corresponding channel blockers aminopyridine and amiloride
have been without any effect (Saransaari and Oja, 1998b, 1999a, 2000).

Effects of membrane damage

An activation of membrane phospholipases upon damage to plasma mem-
branes has been held responsible for a substantial fraction of the ischemia-
induced release of excitatory amino acids (O’Regan et al., 1995b).
Phospholipase inhibitors have reduced the ischemia-elicited release of gluta-
mate and aspartate, while exogenously applied phospholipases enhance their
efflux (O’Regan et al., 1995a,b; Phillis and O’Regan, 1996). Membrane disrup-
tion thus allows diffusion of compounds present intracellularly at high con-
centrations down their concentration gradient into the extracellular space.
Phospholipase inhibitors have had no reducing effects on taurine release in
hippocampal slices from both developing and adult mice (Saransaari and Oja,
1998b, 1999a). Moreover, the involvement of tyrosine phosphorylation and
protein kinase C in the ischemia-induced release of taurine is unlikely in view
of the absence of any effects of the corresponding enzyme inhibitors.

Excitotoxic damage

Excitotoxic conditions induced by high concentrations of glutamate have
markedly potentiated hippocampal taurine release in both developing and
adult mice, but the release is not significantly further enhanced in ischemia
(Saransaari and Oja, 1998b, 1999a). The releasable pool of taurine is ap-
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parently limited, in spite of its high tissue concentration in the developing
hippocampus in particular (Saransaari and Oja, 1998a). On the other hand,
the ionotropic glutamate receptor agonists NMDA, kainate and 2-amino-
3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) have concentration-
dependently potentiated taurine release in the developing, adult and ageing
mouse hippocampus. Stimulations have been markedly greater in the imma-
ture than in the adult or ageing hippocampus (Saransaari and Oja, 1997c). The
NMDA and AMPA receptors have proved to be involved in taurine release
throughout the whole life-span of mice, while the kainate-receptor mediated
release does not appear to function in adults. The ability of ionotropic gluta-
mate agonists to evoke taurine release varies under different cell-damaging
conditions (Saransaari and Oja, 1997d). In adults, glutamate agonists evoke
release only in hypoxia and oxidative stress. The glutamate-receptor-stimu-
lated release is generally operative in the immature hippocampus, except in
the presence of DNP and free radicals, since they alone maximally potentiate
the release. Furthermore, taurine release is greatly potentiated by exposure to
media producing free radicals in both the mature and the immature hippo-
campus. The glutamate agonists then fail to evoke any additional release.
Activation of the three ionotropic glutamate receptors can enhance taurine
release in the developing hippocampus in hypoxia and oxidative stress and
upon metabolic blockade by NaCN. In ischemia, the NMDA-evoked release
has been shown to be not receptor-mediated, but both NMDA and kainate
receptors induce taurine release in hypoglycemia (Saransaari and Oja, 1997d).

It has been speculated that the NMDA receptors may be the responsible
mediators of ischemic brain damage and other excitotoxic syndromes in the
immature brain (see Olney, 1993). This may explain the extreme sensitivity of
the immature brain to excitotoxicity. Taurine released simultaneously with an
excess of excitatory amino acids in the hippocampus may constitute an impor-
tant protective mechanism against excitotoxicity, counteracting the harmful
effects which lead to neuronal death. Release of this inhibitory amino acid
may prevent excitation from reaching neurotoxic levels. On the other hand,
the mammalian neonate is much more resistant to hypoxia than the adult
(Vanucci, 1990). One reason for this phenomenon may be the high levels of
taurine in young animals (Schurr and Rigor, 1987). Taurine enhances Cl2

conductance, inducing hyperpolarization and reducing cell excitability (Oja
et al., 1990). It also attenuates Ca21 influx and antagonizes depolarization-
evoked Ca21 efflux in the developing brain (Kontro and Oja, 1988). Moreover,
taurine inhibits the cellular Ca21 uptake elicited by NMDA (Lehmann et al.,
1984) and preserves the integrity of neurons exposed to kainate (Fariello
et al., 1982). The elevated extracellular levels of taurine would thus appear
to contribute to the maintenance of homeostasis in the hippocampus upon
impending hyperexcitation.

Ammonia toxicity

Ammonia is a neurotoxin which provokes a variety of neurological symptoms.
At high doses, it has a depolarizing action on neuronal membranes (Iles and
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Jack, 1980), causing epileptiform seizures and eventual death (Marcaida
et al., 1992). At low doses, it exhibits hyperpolarizing effects (Szerb and
Butterworth, 1992). The neurophysiological effects of ammonia probably
originate from its influences on central excitatory and/or inhibitory trans-
mitter mechanisms, as recently reviewed by Albrecht (1998). A possible role
for excitatory amino acids has been suggested, implicating the activation of
NMDA receptors (Hermenegildo et al., 1996). Ammonium chloride at con-
centrations measured during acute hyperammonemia has stimulated taurine
release in cultured rabbit Müller cells (Faff-Michalak et al.,1994; Faff et al.,
1997), rat cortical astrocytes (Albrecht et al., 1994) and cultured rat cerebellar
astrocytes and granule cells (Wysmyk et al., 1994). The ammonia-induced
taurine release in rabbit Müller cells has been shown to be mediated by an
intracellular accumulation of cAMP (Faff et al., 1996). Moreover, hepatic
encephalopathy induced by the hepatotoxin thioacetamide has elevated tau-
rine concentrations in the basal ganglia and cerebral cortex (Hilgier et al.,
1996). The K1-stimulated release of taurine is also enhanced in the striatum of
rats treated with thioacetamide (Wysmyk et al., 1991). High concentrations of
ammonia evoke release in striatal slices prepared from them. Ammonia-
induced taurine efflux from rat cerebrocortical minislices has been accompa-
nied by an increase in cell volume, but the underlying mechanism was not
inferred to be a simple cell volume regulatory response normally discernible
in hypoosmotic stress (Zielińska et al., 1999). These results indicate that the
ammonia-induced taurine release may also modify neuronal excitability ac-
companying hyperammonic conditions. The taurine released could counter-
act the ammonia-induced excitation of neurons in acute hyperammonemia
or augment neural inhibition associated with chronic hyperammonemia
(Albrecht, 1998).
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