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Abstract
Protein 3D structures, determined by their amino acid sequences, are the support of major crucial biological functions. 
Post-translational modifications (PTMs) play an essential role in regulating these functions by altering the physicochemical 
properties of proteins. By virtue of their importance, several PTM databases have been developed and released in decades, 
but very few of these databases incorporate real 3D structural data. Since PTMs influence the function of the protein and 
their aberrant states are frequently implicated in human diseases, providing structural insights to understand the influence 
and dynamics of PTMs is crucial for unraveling the underlying processes. This review is dedicated to the current status of 
databases providing 3D structural data on PTM sites in proteins. Some of these databases are general, covering multiple types 
of PTMs in different organisms, while others are specific to one particular type of PTM, class of proteins or organism. The 
importance of these databases is illustrated with two major types of in silico applications: predicting PTM sites in proteins 
using machine learning approaches and investigating protein structure–function relationships involving PTMs. Finally, these 
databases suffer from multiple problems and care must be taken when analyzing the PTMs data.

Keywords  Protein structures · Glycosylation · Phosphorylation · Modified amino acids · Structure/function relationship · 
Secondary structures · Prediction approaches

Abbreviations
3D	� Three-dimensional
ADP	� Adenosine diphosphate
CNN	� Convolutional neural network
DNA	� Deoxyribonucleic acid
GAG​	� Glycosaminoglycan
HPP	� Human Proteome Project
IDP	� Intrinsically Disordered Protein
IDR	� Intrinsically Disordered Region
MBP	� Myelin basic protein
MD	� Molecular dynamics

MS	� Mass Spectrometry
nsSNP	� Non-synonymous single nucleotide 

polymorphism
PCA	� Pyrrolidone carboxylic acid
PPI	� Protein–protein interaction
P-site	� Phosphorylation site
PTM	� Post-translational modification
RF	� Random Forest
RNA	� Ribonucleic acid
SNO	� S-nitrosylation
SVM	� Support Vector Machine
TM	� Transmembrane

Introduction

Proteins are mainly composed of a succession of 20 stand-
ard amino acid types. Their 3D structures, determined by 
their sequences, are the support of major crucial biological 
functions. But it was found that post-translational modifica-
tions (PTMs) influence the structure and regulate the func-
tion of proteins. It is speculated that nearly every protein 
undergoes some form of PTMs (Lodish 2013) which involve 
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the attachment of chemical groups to the amino acid side 
chains, and in rare cases, to the backbone of proteins (Mul-
ler 2018). Although proteins can be modified pre-, co- or 
post-translationally, all protein modifications are generally 
referred to as PTMs, because they are typically made post-
translationally, after the protein is folded, and they can be 
reversible or irreversible.

PTMs alter the physicochemical properties of proteins 
and thereby play a critical role in modulating various bio-
logical functions. However different PTMs display differ-
ent physicochemical properties; thus, the same protein may 
exhibit different functions upon different modifications 
(Jungblut et al. 2008; Mann and Jensen 2003). As a result 
of their high diversity and their reversibility reflecting the 
dynamic nature of a cell, PTMs have also been reported to 
play essential roles in many cellular control mechanisms, 
folding, conformational change, stability, activity, locali-
zation, turnover, and molecular interactions with partners 
(Mann and Jensen 2003; Deribe et al. 2010; Walsh et al. 
2005). PTMs influence protein function both in orthosteric 
and allosteric modes (Berezovsky et al. 2017).

Apart from normal cellular processes, it was also shown 
that dysregulation of PTMs and mutation of PTM sites are 
implicated in a number of human diseases (Vidal 2011) 
such as cancer (Bode and Dong 2004; Dai and Gu 2010; 
Radivojac et al. 2008), diabetes (Donnelly and Williams 
2020; Sidney et al. 2018; Lernmark 2013), cardiovascular 
disorders (Van Eyk 2011; Aggarwal et al. 2020; Gao et al. 
2020) and neurodegenerative disorders (Gong et al. 2005; 
Nekooki-Machida and Hagiwara 2020; Ajit et al. 2019). It 
was also shown that proteins modified by multiple types of 
PTMs are significantly more prone to participate in disease 
than proteins carrying no known PTM sites (Huang et al. 
2014). The formers were found notably implicated in protein 
complexes with many partners with a preference to act as 
hubs in protein–protein interaction (PPI) networks.

In the past, PTMs were primarily studied with the aid 
of low-throughput biological techniques. Nowadays, the 
current high-throughput MS-based approaches and prot-
eomic studies allow many more novel sites to be identified 
and produce a wealth of new information regarding PTMs. 
For instance, the PRoteomics IDEntifications PRIDE data-
base (Perez-Riverol et al. 2019) is the world’s largest data 
repository of mass spectrometry-based proteomics data and 
is one of the founding members of the global ProteomeX-
change (PX) consortium (http://​www.​prote​omexc​hange.​org) 
(Deutsch et al. 2017); many of the deposited data are related 
to PTMs, mainly glycosylation, such as glycoproteome asso-
ciated with prostate cancer progression (Kawahara et al. 
2021). With this increased amount of PTM data, Research-
ers encountered challenges and difficulties to include all this 
information in a consistent and structured way by standardiz-
ing the annotation of PTM features and adopting a controlled 

vocabulary associated with every described PTM (Farriol-
Mathis et al. 2004), to facilitate easy retrieval and promote 
understanding by biologist expert users as well as computer 
programs. Providing a precise number of the different types 
of PTMs is a highly difficult task as some, such as Phospho-
rylation and N- and O-linked Glycosylation are ubiquitous, 
while others are specific to a clade. 682 types of PTMs have 
been reported in the UniProt database (UniProt 2019) using 
a controlled vocabulary (2021 3rd release of 02-Jun-2021), 
spanning all domains of life.

A decade after the release of the Human Proteome Pro-
ject (HPP) in 2010 (Legrain et al. 2011), 191,837 PTMs 
across the 20,379 proteins of the human proteome have 
been already detected by mass spectrometry in the different 
cell types that comprise the human body as indicated on 
the neXtProt platform in its February 2021 release (Adhi-
kari et al. 2020; Zahn-Zabal et al. 2020). All these PTMs, 
altering protein properties, are in part responsible for the 
largely unmapped complexity and diversity of the human 
proteoforms (Aebersold et al. 2018). For instance, the human 
histone H4 (UniProt accession: P62805) mapped 75 frequent 
proteoforms overs its length of only 103 residues.

Owing to the importance of PTMs, several databases have 
been developed and released in decades, but very few of 
these databases incorporate 3D structural data (i.e., with real 
3D coordinates). Since PTMs influence the function of the 
protein and their aberrant states are frequently implicated in 
human diseases, providing structural insights to understand 
the influence and dynamics of PTMs is crucial for unrave-
ling cellular processes. Many web-based protein structure 
databases exist providing the scientific community access to 
a wide variety of structural information. The primary reposi-
tory of 3D structural data on proteins (and other biological 
macromolecules) is the Protein Data Bank that was founded 
in 1971 with only seven experimentally determined protein 
structures at that time (Berman et al. 2000). In 2021, the 
PDB is celebrating its 50 years anniversary with more than 
178,000 entries by June 2021. Despite the PDB being a rich 
reservoir of structural information for biological macromol-
ecules and having powerful querying interfaces, it turns out 
that specialized databases, derived from the PDB and cross-
annotated with other types of data, are often easier, faster, 
and more informative for some specific scientific/research 
questions and goals. These databases have also the added 
value of being built, maintained, and updated by experts in 
the field of structural biology.

To illustrate some of the points discussed above, the 
human Cyclin-Dependent Kinase 2 (CDK2) protein (Uni-
Prot ID: P24941) is selected. This kinase is involved in the 
control of the cell cycle and its modifications are essential to 
regulate its activity (to cite a few of the published research 
works Gu et al. 1992; Welburn et al. 2007; Timofeev et al. 
2010; Choudhary et al. 2009). Figure 1 represents an overall 

http://www.proteomexchange.org
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view of the superimposition of 4 human CDK2 protein struc-
tures downloaded from the Protein Data Bank and exhibiting 
different types of PTMs highlighted in the 4 zoomed views 
located on the sides: PDB id 2CJM (Welburn et al. 2007), 
colored in green, highlighting two phosphorylation on resi-
dues Tyr15 and Thr160; PDB id 1H01 (Beattie et al. 2003) 
and PDB id 4RJ3 (Hanan et al. 2014), colored in gold and 
blue, displaying a carboxylation and acetylation on the same 
Lys33 residue, respectively; finally PDB id 1GZ8 (Gibson 
et al. 2002), colored in dark red, showing a sulfino-alanine 
on residue 177. We can clearly observe the conformational 
changes induced by the phosphorylation of the two residues 
(Tyr15 and Thr160) affecting mainly the N-terminal domain 
and a few loops on the CDK2 structure colored in green.

The immense majority of currently existing PTM data-
bases predominantly focus on protein sequence information 
and basic modification site metadata while the 3D structural 
data related to PTMs have been largely overlooked. In this 
review, we focus on the current state and development of 
the limited number of PTM 3D structural databases, i.e., 
with 3D coordinates. Then we highlight their importance 
and application in many research studies. Sample cases 
where these databases have been used to aid computational 
and modeling studies of PTM structures or to advance our 
knowledge about biological macromolecules are referenced 
briefly. Finally, we conclude with the many promising in 
silico research area that still needs to be further explored for 
a better understanding of PTM’s impacts on protein struc-
tures and functions, and improvement of their predictions.

PTM structural databases

The focus of this review is to discuss the current status of 
structural databases providing three-dimensional data that 
are experimentally confirmed and/or predicted on PTM sites 
in proteins. These databases can be general, covering mul-
tiple types of PTMs in different organisms, or specific to 
one particular type of PTM, class of proteins or organism. 
The emphasis is on repositories offering open-access data 
through a web user interface. Some of the significant histori-
cal projects, no longer maintained, will be also mentioned 
in this review. The information discussed below are sum-
marized in Table 1. For each database, its name, the year of 
first and last publications, a brief description of the various 
features, the data coverage and their citation references are 
provided.

The most famous database giving access to PTM sites in 
protein is dbPTM (http://​dbptm.​mbc.​nctu.​edu.​tw), firstly 
published in 2006 (Lee et al. 2006), and often updated 
(Lu et al. 2013; Huang et al. 2016, 2019; Lee et al. 2009). 
The first release of this database includes all the experi-
mentally validated PTM sites from three external biologi-
cal databases related to protein PTM information [Swis-
sProt (Wu et al. 2003), PhosphoELM (Diella et al. 2004) 
and O-GLYCBASE (Gupta et al. 1999)] and authors have 
developed computational tools to systematically identify 
and predict three major types of protein PTM (phosphoryl-
ation, glycosylation and sulfation) sites against the Swis-
sProt proteins. Protein structural properties and functional 

Fig. 1   Overall view of the superimposition of 4 human CDK2 pro-
tein structures. The CDK2 fold is rendered in ribbon representation 
and colored in green, gold, blue, and dark red for the PDB IDs 2CJM, 
1H01, 4RJ3 and 1GZ8, respectively. The PTMs present in each of 
these structures are drawn in ball-and-stick mode with carbon atoms 
colored similarly to the overall structure while nitrogen, oxygen, 

phosphorus, and sulfur atoms colored in dark blue, red, orange, and 
yellow, respectively. RMSD calculations, between all pairs of CDK2 
structures, showed values ranging from 0.25 Å (for 1H01 with 4RJ4) 
to 4.85  Å (for 1GZ8 with 2CJM); The structure colored in green 
(2CJM) presented most local and global conformational changes, 
consisting of loop motions and tilt of the smaller N-terminal lobe

http://dbptm.mbc.nctu.edu.tw
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information, such as the solvent accessibility of residues, 
protein isoforms, non-synonymous single nucleotide poly-
morphism (SNP), protein tertiary structures and protein 
functional domains, are provided for researchers who are 
investigating the protein PTM mechanisms by integrating 
the following external data sources: Ensembl (Hubbard 
et al. 2005), InterPro (Mulder et al. 2002) and PDB (Desh-
pande et al. 2005). Solvent accessibility and secondary 
structure of residues, when experimental 3D structures 
are not available, are computationally predicted and are 
mapped to the PTM sites. To help access the database 
content, a web query interface and graphical visualization 
were designed and implemented.

In the second version of dbPTM (Lee et al. 2009), the 
database was enhanced to comprise a variety of new features 
and collected literature related to PTM, protein conserva-
tions and the specificity of substrate site. Furthermore, a 
variety of prediction tools have been developed for more 
than ten PTM types (Zhou et al. 2006), such as phospho-
rylation, glycosylation, acetylation, methylation, sulfation 
and sumoylation. The interface was also redesigned and 
enhanced.

In 2013, the dbPTM database in its third version (Lu et al. 
2013) was updated to integrate experimental PTMs obtained 
from public resources as well as manually curated MS/MS 
peptides associated with PTMs from research articles. The 
aim is to become an informative resource for investigating 
the substrate specificity of PTM sites and functional associa-
tion of PTMs between substrates and their interacting pro-
teins. Additionally, the information of structural topologies 
on transmembrane (TM) proteins is integrated into dbPTM 
to delineate the structural correlation between the reported 
PTM sites and TM topologies. To facilitate the investiga-
tion of PTMs on TM proteins, the PTM substrate sites and 
the structural topology are graphically represented. Also, 
literature information related to PTMs, orthologous conser-
vations and substrate motifs of PTMs are also provided in 
the resource. Finally, this version features an improved web 
interface to facilitate convenient access to the resource.

In 2014, the authors have developed topPTM (http://​
topptm.​cse.​yzu.​edu.​tw) (Su et al. 2014), a new dbPTM 
module that provides a public resource for identifying the 
functional PTM sites on transmembrane (TM) proteins with 
structural topology giving the crucial roles of TM proteins 
in various cellular processes and the importance of PTMs in 
their functioning. Experimentally verified TM topology data 
were integrated from TMPad (Lo et al. 2011), TOPDB (Tus-
nady et al. 2008), PDBTM (Kozma et al. 2013) and OPM 
(Lomize et al. 2012). In addition to the PTMs obtained from 
dbPTM, experimentally verified PTM sites were manually 
extracted from research articles by text mining. The PTM 
sites on the tertiary structures of TM proteins can be visual-
ized using a Jmol plugin.

In its most recent publication, dbPTM integrates more 
than 30 different PTM databases leading to 908,917 experi-
mentally verified PTM sites (571,032 experimentally veri-
fied phosphorylation sites, 137,442 acetylation and 118,495 
ubiquitination, …) and 347,984 predicted putative sites. It 
described more than 130 PTM types (Huang et al. 2019).

dbPTM strength is not only limited to the fact that the 
database has been well maintained for over 10 years and 
that it integrates many experimentally validated PTMs from 
available databases and through manual curation of litera-
ture but also it provides PTM-disease associations based 
on non-synonymous single nucleotide polymorphisms (nsS-
NPs). Some 3D structures are shown with some information 
of secondary structures; this last is predicted when no 3D 
structures are available. A JSmol applet allows the visualiza-
tion of the molecules (Huang et al. 2016).

PTMcode, constructed by Minguez et al., is another gen-
eral database that integrates 3D structural data, co-evolution 
and literature curation (http://​ptmco​de.​embl.​de) (Minguez 
et al. 2013, 2015). The PTM residues were searched in the 
Protein Data Bank (Berman et al. 2000) and specific works 
have been performed to analyze distance between two PTMs 
in the same proteins; their conformation could have been 
visualized using the Jmol plugin. However, the complete 
list of PTMs, within and between interacting proteins, can 
be downloaded under the Data” tab in a tab-separated flat 
files. Based on Flash technology, that is now obsolete, it 
is complex to browse the database. The second version 
of PTMcode was released in 2014 and it includes a new 
strategy to propagate PTMs from validated modified sites 
through orthologous proteins. This second release covers 19 
eukaryotic species from which more than 300,000 experi-
mentally verified PTMs were collected of 69 types (Minguez 
et al. 2015).

Another publicly available 3D structure database for a 
wide range of PTMs, named PRISMOID [PRoteIn Struc-
ture MOdIfication Database (http://​prism​oid.​erc.​monash.​
edu)] was recently developed (Li et al. 2020). The focus 
is the 3D structural context of PTMs sites and mutations 
that occur on PTMs and neighboring PTM sites with func-
tional impact. PRISMOID provides the users with a vari-
ety of interactive and customizable search options and data 
browsing functions to access the data for the target of inter-
est via keywords, PDB/UniProt ID. For each entry in the 
database, a comprehensive page includes a detailed PTM 
annotation on the 3D structure and biological information 
in terms of mutations affecting PTMs, secondary structure 
assignment, solvent accessibility features of PTM sites and 
predicted disordered regions. In addition, visualization tools 
are employed to underline the position of the PTM. How-
ever, it is not possible to highlight it in a specific and direct 
way; the user must do it with its own tool. The DSSP assign-
ment is not provided as classically done by the succession of 

http://topptm.cse.yzu.edu.tw
http://topptm.cse.yzu.edu.tw
http://ptmcode.embl.de
http://prismoid.erc.monash.edu
http://prismoid.erc.monash.edu
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3- or 8-states but with 3D coordinates of the Cα residues and 
backbone angles, e.g., phi, psi and alpha angles.

Few years back, we have built and continue to maintain 
the Post Translational Modification Structural Database 
(PTM-SD, http://​dsimb.​inserm.​fr/​dsimb_​tools/​PTM-​SD), a 
curated database that provides access to proteins for which 
PTMs are both experimentally annotated and structurally 
resolved (Craveur et al. 2014). It combines different PTM 
information and annotation gathered from other databases; 
it crosses information from the PDB, UniProt, PTMCuration 
and dbPTM.

While most databases and web servers concerning PTMs 
are dedicated to their compilation and prediction, PTM-SD 
is probably the only database that focuses on the experi-
mentally resolved amino acid modifications in view of the 
proteins 3D structures as retrieved from the PDB.

PTM-SD can be browsed using different criteria and users 
can compute statistics and conduct some analyses on the 
selected subset of data. PTM-SD gives valuable informa-
tion on observed PTMs in protein 3D structures facilitating 
sequence–structure–function analyses in light of PTMs and 
could provide insights for comparative modeling and PTM 
prediction protocols.

We can also notice the existence of novPTMenzy (http://​
202.​54.​249.​142/​~shrad​ha/​PTM/​master.​html), a database 
cataloging information on the sequence, structure, active site 
and genomic neighborhood of experimentally characterized 
enzymes involved in five novel PTMs, namely AMPylation, 
Eliminylation, Sulfation, Hydroxylation and Deamidation 
(Khater and Mohanty 2015). Based on a comprehensive 
analysis of the sequence and structural features of these 
known PTM catalyzing enzymes, an interesting feature of 
novPTMenzy is the availability of Hidden Markov Model 
profiles for the identification of similar PTM catalyzing 
enzymatic domains in genomic sequences.

Other databases are specific to a particular PTM type. 
ADPriboDB (http://​adpri​bodb.​leung​lab.​org) is a database 
dealing with ADP-ribosylation; it was firstly developed 
in 2016 by Vivelo et al. to facilitate studies in uncovering 
insights into the mechanisms and biological significance of 
ADP-ribosylation (Vivelo et al. 2017). This protein modi-
fication refers to the addition of one or more ADP-ribose 
units onto proteins and is responsible for many biological 
processes such as DNA repair, RNA regulation, cell cycle 
and biomolecular condensate formation. Its dysregulation is 
implicated in cancer, inflammatory diseases, and neurologi-
cal disorders. This database was updated in 2020 by Ayyap-
pan et al. (2021). ADPriboDB 2.0 comprises 48 346 entries 
and 9097 ADP-ribosylated unique proteins, of which 35,946 
and 6708 were newly identified, respectively, since the origi-
nal database release, showing an acceleration of ADP-ribo-
sylation related research. In addition, the authors have cre-
ated a new interactive tool to visualize the local context of 

ADP-ribosylation, such as structural and functional features 
as well as other post-translational modifications.

Another interesting, specialized database is dbSNO 2.0 
(http://​dbSNO.​mbc.​nctu.​edu.​tw) that firstly released in 
2012 (Lee et al. 2012; Chen et al. 2015); it focuses only 
on S-nitrosylation (SNO). This reversible PTM involves 
the covalent attachment of nitric oxide (NO) to the thiol 
group of cysteine (Cys) residues, regulating protein activ-
ity, localization and stability. SNO is associated with a 
large panel of pathologies like cancers (Bignon et al. 2018). 
298 3D S-nitrosylation are included in the database and 
are presented with a Java applet, in addition to secondary 
structure assignment and surface solvent accessibility cal-
culation using DSSP (Kabsch and Sander 1983), modified 
residues positions, link to PubMed and experiments if avail-
able. This website does not allow multiple queries, but only 
individually.

Many databases are dedicated to phosphorylation, one of 
the most abundant PTM in proteins. Phospho.ELM (Din-
kel et al. 2011) (http://​phosp​ho.​elm.​eu.​org) is an anciently 
established database, manually curated, dedicated to eukary-
otic phosphorylation sites in proteins. The data is extracted 
from the literature and phospho-proteomics analyses. Its 
last version comprises more than 42,500 non-redundant 
phosphorylation sites in more than 11,000 different protein 
sequences. The user can query the database by keyword or 
sequence identifier (UniProt or Ensembl) to get the infor-
mation about single proteins/substrates, or by kinase name 
to retrieve all the phosphorylated substrates of a particular 
kinase. It is also possible to restrict the query to different 
taxonomy groups. Figure 2 illustrates the usage of Phospho.
ELM with the similarity search feature. At first, a sequence 
is provided in the Phospho.ELM Blast search (see Fig. 2a); 
different hits can be found by the search engine (see Fig. 2b); 
the selection of one of these hits (see Fig. 2c) provides many 
information such as the potential interactions with other 
proteins. In this case, a PDB file is also available, and the 
user can follow the link to the PDBe (Gutmanas et al. 2014; 
Velankar et al. 2010) website (see Fig. 2d).

Phospho3D (http://​phosp​ho3d.​org), a database of three-
dimensional structures of phosphorylation sites (P-sites), is 
derived from Phospho.ELM database previously discussed. 
It collects information on the P-site instance, its flanking 
sequence (10 residues) and the P-site 3D zone (the set of 
residues in a 12 Å radius surrounding the P-site in space). 
The database uses the latter to conduct large-scale struc-
tural comparison to identify structurally similar sites in other 
proteins (Zanzoni et al. 2011, 2007). It was also enriched 
with structural annotation at the residue level, including 
secondary structure and solvent accessibility as defined by 
DSSP (Kabsch and Sander 1983) and residue conservation 
as from the Consurf-HSSP database (Glaser et al. 2005). In 
the same field, we must note the defunct mtcPTM database 

http://dsimb.inserm.fr/dsimb_tools/PTM-SD
http://202.54.249.142/~shradha/PTM/master.html
http://202.54.249.142/~shradha/PTM/master.html
http://adpribodb.leunglab.org
http://dbSNO.mbc.nctu.edu.tw
http://phospho.elm.eu.org
http://phospho3d.org
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(mitocheck.org/cgi-bin/mtcPTM/) that stored a large number 
of structural models of phosphorylatable structures (Jimenez 
et al. 2007).

PhosphoSitePlus (PSP) (http://​phosp​hosite.​org) (Horn-
beck et al. 2015) is an open and continuously curated data-
base for studying experimentally observed PTMs in the 
regulation of biological processes. It was reengineered from 
the PhosphoSite (Hornbeck et al. 2004) resource that was 
solely dedicated to phosphorylation in proteins. PSP now 
covers other commonly studied PTMs including acetylation, 
methylation, ubiquitination, and O-glycosylation. The inter-
face provides the users with multiple features to browse the 
database. For each specific modification sites, PSP provides 
structural and functional information, and many powerful 
tools for interpreting this data in different contexts: diseases, 
tissues, subcellular localization, protein domains, sequences, 
motifs, etc. When available, a list of PDB ids for the protein 
in question is provided with the possibility of download-
ing a PyMOL or Chimera script to visualize the location of 
the different modified residues on the protein structure. It is 
important to note that not all the PDB structures have the 
PTM experimentally resolved.

Another database providing structural data on phospho-
sites is Scop3P (http://​iomics.​ugent.​be/​scop3p) (Ramasamy 
et al. 2020) developed by Ramasamy et al. Scop3P integrates 
sequences (UniProtKB/Swiss-Prot), structures (PDB), and 
uniformly reprocessed PRIDE (Perez-Riverol et al. 2019) 
phospho-proteomics data to annotate all known human 
phosphosites. Furthermore, these sites are put into bio-
physical context by annotating each phosphoprotein with 
per-residue structural propensity, solvent accessibility, dis-
ordered probability, and early folding information. The web 
interface presents a 3D plugin for visualization and analysis 
of phosphosites, and for the understanding of phosphosite 
structure–function relationships.

Finally, carbohydrates constitute a specific research 
area of PTMs by themselves due not only to the impressive 
diversity of saccharides, links, and dispersion in every clade 
in addition to their biotechnology applications and impli-
cations in multiple diseases. The number of databases is 
impressive with the large majority focusing mainly on the 
carbohydrates without their target macromolecules i.e. Car-
bohydrate Structure Database (http://​csdb.​glyco​scien​ce.​ru) 
(Egorova et al. 2015), while others take into account both the 
proteins with their glycosylation. One particularly interest-
ing web portal is Glycosciences.DB (http://​glyco​scien​ces.​de/​

datab​ase/) (Bohm et al. 2019) that provides databases and 
tools to support glycobiology and glycomics research. Its 
focuses on 3D structures, including 3D structural models as 
well as references to PDB entries that feature carbohydrates. 
Another website is Glyco3D (http://​glyco​3d.​cermav.​cnrs.​fr) 
(Pérez et al. 2015) that have a large number of information 
on free carbohydrates and some on linked ones, such as the 
recent GAG database (http://​gagdb.​glyco​pedia.​eu) (Perez 
et al. 2020) that contains the 3D structure of glycosamino-
glycan (GAG) binding proteins that have been crystallized 
with their ligands.

We will not delve into the structural databases on gly-
cosylation in this manuscript as Scherbinina and Toukach 
have dedicated a recent review to approaches of chemo- 
and glyco-informatics towards 3D structural data genera-
tion, deposition and processing in regard to carbohydrates 
and their derivatives (Scherbinina and Toukach 2020). They 
focus on the important aspects of carbohydrate 3D structure 
availability to researchers including structural repositories, 
glycoinformatics tools and workflows, carbohydrate 3D 
structure presentation and visualization methods.

In silico applications

Many of the above-mentioned PTM structural databases 
have been employed in a variety of in silico applications 
and computational studies. In this section, we will be briefly 
reporting two types of applications. The chosen examples 
were selected based on their remarkability.

Predictions

One of the main applications is the computer-aided pre-
diction of PTM sites which is essential for the functional 
annotation of uncharacterized proteins (Eisenhaber and 
Eisenhaber 2010). During the last decades, machine learn-
ing has become a valuable approach for understanding the 
large amount of biological data being generated and made 
accessible to the scientific community; bibliographic data-
bases are witnessing an exponential growth of ML publica-
tions. Many methodologies based on machine learning and 
deep learning approaches have been developed to predict the 
modification sites for certain specific types of PTM and the 
PTM databases, highlighted above, constitute benchmark 
datasets for training the predictive tools and measuring their 
performance.

We can note the historical work of Wilkins et al. who 
developed a tool based on MS data, FindMod (http://​web.​
expasy.​org/​findm​od/), to predict 22 PTM types, includ-
ing acetylation, phosphorylation, and less classical ones 
(Wilkins et al. 1999a, 1999b). As the main purpose of this 
manuscript is not to review PTM prediction methods, we 

Fig. 2   Presentation of Phospho.ELM with the example of BLAST 
Search feature. a The sequence is provided, b a list of results is 
returned, c by selecting one of them multiple information such as 
SMART and MINT interactions are provided, but also sequences, 
PMID, disorder prediction and link to the structure that is d link to 
PDBe

◂

http://phosphosite.org
http://iomics.ugent.be/scop3p
http://csdb.glycoscience.ru
http://glycosciences.de/database/
http://glycosciences.de/database/
http://glyco3d.cermav.cnrs.fr
http://gagdb.glycopedia.eu
http://web.expasy.org/findmod/
http://web.expasy.org/findmod/
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decided to only list a few recent works: Wang R. et al. have 
employed Support Vector Machine (SVM) and Random For-
est (RF) machine learning methods to identify lysine cro-
tonylation sites in both plant and mammalian (Wang et al. 
2020c). Zhang et al. have developed a succinylation site pre-
diction tool based on protein sequences (Zhang et al. 2020). 
The training data were collected from dbPTM. Another 
study by Wang H. et al. have applied an improved word-
embedding scheme based on the transfer learning strategy 
incorporated with the multilayer convolutional neural net-
work (CNN) for identifying protein ubiquitylation sites in 
plant (Wang et al. 2020b). Finally, Wang D. et al. have devel-
oped MusiteDeep (http://​musite.​net) (Wang et al. 2020a); 
it combines deep learning approaches with evolutionary 
information to predict 13 different PTM types (including 
N6-acetyllysine, methylarginine, methyllysine and pyrro-
lidone-carboxylic-acid), with excellent results. It integrates 
an interesting feature, supported by the NGL viewer (Rose 
and Hildebrand 2015), to visualize the predicted PTM sites 
in the 3D context of homologous proteins that have known 
3D structures. It is important to mention that no structural 
information is used in the prediction by itself.

However, since these methods operate through a learning 
process with positive and negative observations, it is essen-
tial to construct clean datasets for training purposes. Ideally, 
the positive set should only consist of protein sites where 
experimental proof of their modification has been found. On 
the other hand, creating a negative dataset is a difficult task, 
because experimental negative results are rarely described in 
scientific papers and the protein to be included in the nega-
tive set must be located in the same cellular compartment 
as the modification enzyme, to make sure that the sequence 
motif is not recognized by the enzyme. Readers are advised 
to consider these various ML studies with caution and check 
whether all the good practices of ML (including data collec-
tion and splitting, features engineering and selection, model 
training and optimization with parameters and hyperparame-
ters tuning, model performance and generalization on unseen 
data with the appropriate evaluation metrics) were applied 
properly. Other issues to consider are the comparison of the 
performance of a certain ML predictor with other similar 
tools and the reproducibility of the results. This type of com-
parison is likely to be biased because these models were not 
trained on the same datasets or using the same evaluation 
metrics. As for reproducibility, it is often impossible due to 
the unavailability of the source code and the used dataset, 
and the lack of details in the original publications.

In a study published in 2012, Schwartz discussed the 
metrics and procedures used to assess predictive tools and 
surveyed 11 online computational tools aimed at the predic-
tion of the four most widely studied lysine post-translational 
modifications (acetylation, methylation, SUMOylation and 
ubiquitination) (Schwartz 2012). His findings suggested that 

nine of the 11 tools performed no better than random or have 
false-positive rates which make them unusable by the experi-
mental biologist when assessed using unbiased testing data-
sets. Another similar study was recently published in which 
proline hydroxylation was considered as a case study to 
compare the performance of seven predictors on two newly 
constructed independent datasets (Piovesan et al. 2020). The 
self-reported performance is found to widely overestimate 
the real accuracy measured on independent datasets indicat-
ing overfitting and lack of generalization to detect new sites.

To counter these above-mentioned phenomena, recom-
mendations for machine-learning-based analyses applied 
to biological studies have recently been proposed for non-
experts in the field to help improve machine learning assess-
ment and reproducibility focusing on four aspects related to 
data, optimization, model and evaluation (DOME) (Walsh 
et al. 2021). Finally, some PTM types are limited by the size 
of the training data. A close collaboration between data sci-
entists and experimentalists could help generate appropriate 
experimental datasets for model training and the experimen-
tal validation of these ML methods.

Impact of PTMs on protein structure

Appending PTMs repositories with 3D structural data opens 
the way for the computational modeling of PTMs struc-
tures at atomic resolution. Such studies allow to examine 
the association of PTMs with the structural rearrangements 
of their target proteins and to provide critical insights into 
the mechanics behind the dynamic regulation of protein 
function.

Recently, we have investigated the local and global 
impacts of PTMs on the backbone conformation of the mod-
ified proteins (Craveur et al. 2019). We have considered two 
main PTM types (N-glycosylation and phosphorylation) in 
non-redundant datasets extracted from PTM-SD, and four 
examples of proteins were selected to illustrate our find-
ings and compare the backbone flexibility in the presence 
and absence of PTMs. We used a structural alphabet to ana-
lyze the structural local protein conformations, namely the 
Protein Blocks, able to approximate in a very fine way the 
structural architecture (Etchebest et al. 2005). We observed 
that PTMs could either stabilize or destabilize the backbone 
structure, at a local and global scale, and that the impact of 
multiple PTMs is not additive on protein structure flexibil-
ity and lastly that these effects depend on the PTM types. 
A similar study was conducted by Xin and Radivojac (Xin 
and Radivojac 2012). Their results provide evidence that 
PTMs induce conformational changes at both local and 
global level. However, the proportion of large changes is 
unexpectedly small.

It had also been broadly discussed that many PTM sites are 
found in intrinsically disordered regions (IDRs) (Tompa et al. 
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2014; Bah and Forman-Kay 2016). Some studies have inves-
tigated the correlation between protein disorder and PTMs by 
integrating data from different databases (UniProt/Swiss-Prot 
and 3D structures solved by NMR from Protein Data Bank) 
(Gao and Xu 2012). These studies shed light on the significant 
preference of PTMs to occur in disordered regions (phospho-
rylation, hydroxylation, …) or ordered regions (S-nitrosocyst-
eine, most of ADP-ribosylation, …), while acetyllysine does 
not show any significant preference. Further analysis of NMR 
structures suggested disorder-to-order transitions might be 
introduced by some type of modifications. Intrinsically Dis-
order Proteins (IDPs) are found in sequence databases, the 
most famous being DisProt (Hatos et al. 2020) and MobiDB 
(Piovesan et al. 2021). However, the number of resolved cases 
of IDRs with PTMs remains limited in the PDB. To work with 
IDP, structural models are often considered (structural mod-
els must be handled cautiously as they are theoretical and not 
experimental) and must be complemented with experimental 
data; it is one of the most complex art of PTM research using 
3D structures.

Lastly, molecular dynamics (MD) simulation is an interest-
ing computational method that is being increasingly used by 
many research groups in the last few years to investigate the 
impact of PTM on the dynamics of the modified proteins. Just 
to cite couple of these studies: Yalinca et al. (2019) have used 
MD simulations to study the effects of phosphorylation and 
acetylation as well as cross-talk between these modifications 
on the energy landscape of huntingtin N-terminus. Their find-
ings provide insights to understand the structural basis under-
lying the effect of PTMs in the aggregation and cellular prop-
erties of huntingtin protein and its implications in Huntington 
disease. In a more recent study, Rao et al. has investigated 
the effects of changes in glycan composition on glycoprotein 
dynamics by considering the example of N-glycans on insulin 
receptor (Rao et al. 2021). However, it is important to note 
that one of the challenges in MD simulation is the selection 
of appropriate force field parameters to correctly simulate the 
dynamics of the biological systems involving PTMs. Many 
tools were developed to explore non-standard amino acids and 
protein modifications using MD simulations such as Privateer 
(Bagdonas et al. 2020), CHARMM-GUI (Jo et al. 2008) and 
Vienna-PTM (Margreitter et al. 2013); but for unconventional 
and rare PTMs, their parameters are not present in the existing 
force fields and therefore must be calculated using quantum 
mechanics approaches; the latter can be cumbersome and com-
putationally expensive.

Conclusion and prospects

In this review, we have discussed the existing PTMs struc-
tural databases and highlighted their importance in pro-
viding the scientific community with the data needed to 

advance PTM-related research and more specifically to assist 
structure–function relationship studies.

We first noticed that PTM structure databases are in lim-
ited numbers and this observation was confirmed by the 
2021 Nucleic Acid Research Database issue (Rigden and 
Fernandez 2021) that contains 189 papers with only one 
database on glycan structures (GlycoPOST). Secondly, these 
databases also suffer from classical database issues such as 
availability and sustainability. A recent study, screening the 
availability of thousands of bioinformatics web services 
published from 2010 to 2020, has shed the light on the fac-
tors affecting their lifetime (Kern et al. 2020). Some of the 
databases we have tested and reviewed became unreachable/
unavailable during the writing of the manuscript.

The analysis and correct identification of the modified 
residues encounters many difficulties that are intrinsic to 
the properties of the PTM in question. These modifications 
are dynamic and change over time. A single protein (like the 
Human CDK2 example discussed in the introduction) can 
also have several PTM sites that can be modified in differ-
ent combinations. The analysis of the peptides by the mass 
spectrometer can also produce doubtful results because it is 
not possible to identify the exact modified residue and its 
location especially when the peptide contains several possi-
ble modification sites. Some studies have revealed the extent 
of differences in PTM patterns for the same protein between 
different species [i.e., Myelin basic protein (MBP) between 
mammals and lower vertebrates (Zhang et al. 2012)], making 
the automatic annotation of PTM inferred by similarity and 
predictions prone to errors. Finally, the major issue severely 
limiting the structural studies of PTMs are the deficiency 
of structural data in general and the absence of PTM in 
resolved structures; these are often over-expressed in sys-
tems quite different from their original organisms.

Because of all the above-mentioned reasons, care must be 
taken when analyzing and interpreting PTMs data in public 
repositories. Further advances in this field will help building 
a better understanding of PTMs implications in biological 
processes. Finally, we expect that the unprecedented per-
formance of AlphaFold2 (Jumper et al. 2021) in CASP14 
and their partnership with EMBL-EBI in releasing the most 
complete database of predicted protein 3D structures, Alpha-
Fold DB, covering almost the entire human proteome (98.5% 
of human proteins). (Tunyasuvunakool et al. 2021), will be 
a great hub of information to assist scientists in studying 
and modeling PTMs in their three-dimensional context. It 
is possible to model some of the PTM annotated with care 
in UniProt on the AlphaFold models as done recently for 
glycosylations (Bagdonas et al. 2021). However, it is always 
necessary to carefully check the experimental data behind 
the annotation carried out (difference between publication 
and sequence analysis) and the proposed modeling which 
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should be analyzed in a precise manner (some models are 
erroneous).
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