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Abstract
L-proline catabolism is emerging as a key pathway that is critical to cellular metabolism, growth, survival, and death. 
Proline dehydrogenase (PRODH) enzyme, which catalyzes the first step of proline catabolism, has diverse functional roles 
in regulating many pathophysiological processes, including apoptosis, autophagy, cell senescence, and cancer metastasis. 
Notably, accumulated evidence demonstrated that PRODH plays complex role in many types of cancers. In this review, we 
briefly introduce the function of PRODH, then its expression in different types of cancer. We next discuss the regulation of 
PRODH in cancer, the downstream pathways of PRODH and the therapies that are under investigation. Finally, we propose 
novel insights for future perspectives on the modulation of PRODH.
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TRAIL	� Tumor necrosis factor-related apoptosis induc-
ing ligand

NAC	� N-acetyl-L-cysteine
L-THFA	� L-tetrahydro-2-furoic acid
AICAR​	� 5-Aminoimidazole-4-carboxamide 

ribonucleoside
NF-κB	� Nuclear factor κB

Introduction

Cancer cells trigger metabolic reprogramming during their 
initiation and progression in response to the tumor microen-
vironment stimuli by directly or indirectly activating aber-
rant growth and survival signals (Pavlova and Thompson 
2016; Agnihotri and Zadeh 2016; He et al. 2016; Chen et al. 
2019; Yu et al. 2020; Y et al. 2019; He et al. 2019). The 
high rate of aerobic glycolysis and glutamine utilization are 
the two most significant features of cancer cell metabolic 
reprogramming (Byun et al. 2020; Bernfeld and Foster 2019; 
Lunt and Vander Heiden 2011; Chen et al. 2014). In addi-
tion to glutamine, other amino acids (e.g., serine, glycine, 
alanine, proline, etc.) are consumed in cancer cells for the 
generation of nucleotides, reactive oxygen, proteins, and 
oncometabolites (Muhammad et al. 2020). Based on dietary 
necessity, amino acids can be divided into essential amino 
acids (EAAs) and non-essential amino acids (NEAAs) (Choi 
and Coloff 2019). Several recent reports have uncovered the 
important role of NEAAs in the pathology of cancer (Coloff 
et al. 2016). Strategies that target NEAAs metabolism are 
still in clinical trials and therapy. For example, the allos-
teric inhibitor of glutaminase, compound BPTES (bis-2-(5-
phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide) that 
blocks glutamine utilization has been reported to play an 
anti-tumor role in a variety of cancers (Rajeshkumar et al. 
2017; Yuneva et al. 2012; Le et al. 2012; Gross et al. 2014; 
Xiang et al. 2015). Other inhibitors of glutaminase, like 
CB-839 and compound 968, that block glutaminase activity 
inhibit the growth of transformed/cancer cells (Gross et al. 

2014). Except for blocking glutamine utilization, limiting 
cellular cysteine could induce a unique cell death program 
known as ferroptosis and result in an anti-tumor effect(Mao 
et al. 2018). Inhibitors of the transporter xCT, like sorafenib 
and sulfasalazine, that block the transport of cystine, an 
oxidized dimer form of NEAA cysteine, have been already 
approved by the U.S. Food and Drug Administration (FDA) 
for tumor treatment (Koppula et al. 2020; Lei et al. 2020; 
Lo et al. 2008).

As one of the NEAAs, proline is the sole proteinogenic 
secondary amino acid that endows several functions not pos-
sible with other amino acids (Liu et al. 2020). Hence, proline 
is essential for collagen synthesis to support collagen physi-
cal stability (Shoulders and Raines 2009). Proline can also 
act as a ‘helix breaker’, as it contributes to the 3D structure 
of proteins by introducing a kink to disrupt the α-helix con-
formation (Cordes et al. 2002; Williams and Deber 1991; 
Burke et al. 2020). It is well established that proline plays 
a critical role in molecular recognition, protein stability, 
signaling transduction and cell redox reactions (Phang et al. 
2010). Because proline has α-amino nitrogen within a pyrro-
lidine ring, proline has its own enzyme family that is distinct 
from most amino acids.

Proline dehydrogenase (PRODH), also known as proline 
oxidase (POX), is a mitochondrial inner-membrane protein 
that catalyzes proline to produce pyrroline-5-carboxylate 
(P5C) in the first step of proline catabolism. In this reac-
tion, generated electrons transferred to the mitochondrial 
electron transport chain (ETC) for ATP or ROS generation, 
which finally mediates downstream signal pathways and 
biological processes (Fig. 1). For instance, PRODH gener-
ates ATP to promote tumor cell survival in some nutrient 
stress like hypoxia and glucose depletion (Liu and Phang 
2012). In other cases, PRODH also induces apoptosis and 
autophagy in cancer cells through ROS generation, and func-
tions as a tumor suppressor (Liu et al. 2006, 2009). As the 
complex and integral role of PRODH in cancer, PRODH has 
sparked great attention in the proline metabolism research 
field. Interestingly, recent reports suggested that PRODH 

Fig. 1   Potential roles of 
PRODH in cancer cells through 
different mechanisms. PRODH 
has been demonstrated regu-
lated by miR-23b*, AMPK, p53 
and PPARγ. Inducible PRODH 
results in ATP/ROS generation 
via catalyzing L-proline to P5C. 
Then, the increasing ROS and 
ATP contribute to a broad range 
of cell actions that depend on 
microenvironment
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may play a promote tumor or anti-tumor role depending on 
the environment and cell types.

A series of new discoveries have reported noval effects 
and mechanism of PRODH and proline catabolism in cancer. 
Hence, we will conclude the previous studies and related 
discoveries during the last few years. The principal focus 
of this review is the specific relationship between proline 
catabolism and cancer progression. We will discuss the regu-
lation of PRODH in cancer, the downstream pathways of 
PRODH, and therapies that are under investigation. Finally, 
we will explore the possible potential mechanism of PRODH 
function in inhibiting cancer or promoting cancer in some 
circumstances.

Proline metabolism in cancer

PRODH is identified as one of the p53-induced genes related 
to apoptosis, which binds to mitochondrial inner membranes 
and catalyzes the oxidation of proline to P5C. P5C is an 
intermediate in the metabolic interconversions between the 
tricarboxylic acid (TCA) cycle and urea cycle (Adams 1970; 
Phang 2019). P5C converts to glutamic-γ-semialdehyde 
(GSA) spontaneously and carries out two dehydrogena-
tion  reactions for α-KG generation, a critical intermediate 
of the TCA cycle. In the other reaction pathway, P5C con-
verts to ornithine catalyzed by ornithine aminotransferase 
and participates in the urea cycle (Phang 2019). The reverse 
conversion of P5C to proline is proline biosynthesis that 
contains three isoform P5C reductases (PYCRS), which also 
play important roles in cancer progression. Existing stud-
ies have identified the protumor role of PYCR1 in differ-
ent cancers, including melanoma (De Ingeniis et al. 2012; 
Ye et al. 2018), renal cell carcinoma (Weijin et al. 2019), 
breast cancer (Loayza-Puch et al. 2016; Ding et al. 2017), 
hepatocellular carcinoma (Zhuang et al. 2019) and colorectal 
cancer (Yan et al. 2019; Burke et al. 2020). Several reviews 
conclude the unequivocal role of PYCR1 and proline bio-
synthesis in cancers based on different mechanisms (Burke 
et al. 2020; Phang 2019). However, PRODH seems to play 
complex roles which depend on cancer types and microen-
vironment. Hence, this review will concentrate on PRODH 
and proline catabolism in cancer.

PRODH is the enzyme in the first step of proline catab-
olism, which donates electrons to the electron transport 
chain for ROS or ATP production contributing to a series 
of biology reaction including signaling transduction, oxida-
tion reaction, immune-inflammatory reaction, etc. Previous 
studies have established a series of observations focus on 
PRODH-mediate proline metabolism on several cancers 
(Phang 2019; Liu et al. 2008, 2005, 2010). Recent reports 
have discovered novel aspects of PRODH in different cancer 
types (Burke et al. 2020; Cappelletti et al. 2018; Fang et al. 

2019); it is necessary to sum up the roles and mechanisms 
related to PRODH.

Regulatory mechanisms of PRODH

Transcriptional regulation of PRODH 
by transcriptional factors

To ensure appropriate functioning of PRODH in cancer cell 
regulation, the expression and activity of PRODH are sub-
jected to a variety of pathways regulation. PRODH was first 
identified as a p53-induced gene-6 (PIG6) in a model for 
apoptosis(Polyak et al. 1997), and this discovery opened a 
new direction with a surge of reports related to the proline 
metabolism in subsequent studies. Since this discovery, the 
p53 response elements (REs) in the promoter and introns 
of PRODH were identified (Maxwell and Kochevar 2008; 
Raimondi et al. 2013; Liu et al. 2020). Interestingly, one of 
the p53 Res, located in PRODH introns, is efficiently trans-
activated by p53 members, p63 and p73 (Raimondi et al. 
2013). The transcriptional activation of PRODH by p53 
also has been demonstrated in other independent investiga-
tions (Nagano et al. 2016; Donald et al. 2001). Mutant p53 
has been shown to reduce mRNA expression of PRODH in 
renal cancer (Maxwell and Rivera 2003). Similarly, mutant 
p53 reduced PRODH expression in colon cancer cell lines 
compared with wild-type p53 (Liu et al. 2020). However, 
p53 may not be the only factor that transactivates PRODH 
expression; other factors may also result in the variation of 
expression and activity of PRODH. The characteristics of 
PRODH finally showed in cancer cells mainly depended on 
the roles of predominant factors which may counteract the 
role of others. This transformation might account for dis-
crepancies of PRODH in different cancer types.

PRODH expression can also be promoted by peroxisome 
proliferator activated receptor gamma (PPARγ), a ligand-
dependent transcription factor that belongs to the nuclear 
hormone receptor superfamily (Pandhare et  al. 2006). 
PPARγ can play a role in controlling the expression of net-
works of genes related to inflammation, lipid metabolism, 
adipogenesis, and metabolic homeostasis through form-
ing obligate heterodimers with retinoid X receptor (RXR) 
and binding to specific response elements in the promoter 
regions of target genes (Ahmadian et al. 2013). PRODH 
promoter was found to be activated by PPARγ ligand tro-
glitazone in colon cancer cells with both PPARγ-dependent 
and independent mechanisms (Pandhare et al. 2006). The 
oxidized low-density lipoprotein (oxLDL) is a potential fac-
tor that increased cancer risk(Tian et al. 2019). oxLDL could 
markedly increase PRODH expression based on one of its 
components, 7-ketocholesterol, through PPARγ in several 
cancer cells(Zabirnyk et al. 2010).
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Posttranscriptional regulation 
and post‑translational modification of PRODH

Apart from transcriptional regulation of PRODH as dis-
cussed above, PRODH expression can also be regulated at 
mRNA levels by microRNAs. MicroRNAs were first dis-
covered in 1993 (Lee et al. 1993), and many studies have 
identified microRNAs roles in cancer biology for patients’ 
prognosis, disease classification, and clinical treatment trials 
(Rupaimoole and Slack 2017; Bertoli et al. 2015). Micro-
RNAs negatively regulate mRNA level through binding 
to complementary sequences in the 3′ untranslated region 
(UTR) of target mRNAs (Krol et al. 2010; Hayes et al. 
2014). PRODH expression was found to be suppressed by 
miR-23b* in renal cancer (Liu et al. 2010). Moreover, onco-
gene Myc suppresses PRODH expression indirectly through 
miR-23b*-mediated pathway (Liu et al. 2012b). However, 
there are no more studies related to posttranscriptional regu-
lation of PRODH in cancer. Considering the multi-functions 
of microRNAs in regulating cancer biology, further inves-
tigations about searching for potential microRNA target to 
PRODH is worthy.

To date, accumulating evidence demonstrate that PRODH 
is specifically regulated by several transcriptional factors like 
tp53 and PPARγ. There are few studies focus on PRODH 
related post-translational modification, including ubiquit-
ination, phosphorylation, acetylation, methylation, etc. An 

epigenome-wide gene–age interaction analysis reveals that 
the elderly LUAD patients have better survival with lower 
methylation of PRODH (Chen et al. 2020). However, no 
more related studies and experiments reports the regulation 
of PRODH by post-translational modification. The underly-
ing mechanisms of its enzyme activity and protein stability 
may be the key diver cause complex roles of PRODH on 
specific cancer. The post-translational regulation has been 
proved to contribute to tumor metabolism regulation, immu-
nological tumor microenvironment (TME) modulation and 
cancer stem cell (CSC) stemness maintenance (Telerman 
and Amson 2009; Deng et al. 2020). Hence, the post-trans-
lational modification of PRODH, which mediates the “quan-
tity” and “quality” of PRODH, needs further investigations.

PRODH expression and cancer

Since PRODH was first identified as a p53-induced gene-6 
(PIG6) in 1997(Polyak et al. 1997), there have been several 
reports demonstrating its down expression in various can-
cers and multiple effects on cancer cell cycle arrest, cell 
senescence, apoptosis, and autophagy. Subsequently, some 
findings have reported that PRODH is up-regulated in some 
challenging circumstances and contributes to cancer pro-
gression through influencing tumor growth, EMT, metasta-
sis, and T cell infiltration (Table1).

Table 1   The role of PRODH in cancer

Tumor types Functions Characteristics

Breast cancer Pro-tumor Supports 3D growth and metastasis (Elia et al. 2017), generates ATP and as a drug target in MCF10A cell 
(Elia et al. 2017)

Anti-tumor PRODH was correlated with better prognoses in BRCA patients  (Wang et al. 2020). Induced PRODH 
increases anti- apoptotic autopghagy in TNBC cells  (Fang et al. 2019). PRODH promotes apoptosis in 
MCF7 cells  (Zareba et al. 2017)

Prostate Cancer (PCa) Pro-tumor The up-regulation of PRODH inhibits T cell proliferation and functions  (Yan et al. 2018). The expression 
of PRODH is up- regulated in PCa tissues and higher in the advanced tumors  (Yan et al. 2018). PRODH 
increased tumor growth in animal model (Yan et al. 2018)

Pancreas cancer Pro-tumor PRODH is overe-expressed in PDAC tissues (Olivares et al. 2017). PRODH supports cell survival and 
proliferation in glucose and glutamine-restricted conditions, promotes PDAC growth, and supports TCA 
metabolism  (Olivares et al. 2017)

NSCLC Pro-tumor PRODH is up-regulated in NSCLC tumor tissues (Liu et al. 2020). Low methylation of PRODH plays a 
protective effect for LUAD patients survival(Chen et al. 2020)

Renal cancer Anti-tumor The expression of PRODH is reduced both in renal cancer cell lines and renal carcinoma tissue samples 
(Liu et al. 2010; Maxwell and Rivera 2003). PRODH induces apoptosis (Maxwell and Rivera 2003)

Tongue Squamous 
Cell Carcinoma

Anti-tumor Propolis promote PRODH-dependenat apoptosis in CAL-27 cells. (Celińska-Janowicz et al. 2018)

Colorectal cancers Anti-tumor PRODH induces apoptosis in DLD-1 cell lines (Liu et al. 2006, 2005). PRODH induces G2 cell cycle arrest 
to inhibit cell growth and inhibites tumor development in a mouse xenograft model (Liu et al. 2009). 
PRODH is down-regulated (Liu et al. 2009)

Rectum cancer PRODH is down-regulated (Liu et al. 2009)
Stomach cancer PRODH is down-regulated (Liu et al. 2009)
Liver cancer PRODH is down-regulated (Liu et al. 2009)
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PRODH expression is markedly down-regulated com-
pared to the corresponding normal tissues in renal and diges-
tive tract tumors, including colorectal, rectum, stomach, and 
liver (Liu et al. 2009). Indeed, subsequent reports confirmed 
the ability of PRODH to trigger apoptosis through both 
intrinsic and extrinsic apoptotic pathway, and demonstrated 
that PRODH functions as a tumor suppressor in a variety of 
cancer cell type such as colorectal, renal, and tongue squa-
mous cell cancer (Maxwell and Rivera 2003; Liu et al. 2005, 
2009; Celińska-Janowicz et al. 2018). Several reports have 
proved this characteristic of PRODH independently (Hu 
et al. 2007; Liu et al. 2008; Toloczko-Iwaniuk et al. 2020). 
Intriguingly, PRODH activates apoptosis through multiple 
mechanisms, most of which are mediated by ROS produc-
tion. By this mitochondrial (intrinsic) apoptotic pathway, 
cytochrome c is released from mitochondria into cytosol and 
results in the activation of caspase-9 and caspase-3. What 
is more, PRODH was shown to activate the extrinsic apop-
totic pathway via increasing the expression of NFATc1, a 
transcription factor, and promoting its localization to the 
nucleus, which results in the induction of the death recep-
tor TRAIL (extrinsic) and activation of caspase-8 (Liu et al. 
2006). In addition to inducing apoptosis, PRODH also plays 
a role in arresting DLD-1 cells in G2 phase via upregulating 
the expression of GADDs, a gene that affects growth arrest 
and DNA damage (Liu et al. 2009). However, the potential 
mechanism of PRODH upregulating GADDs to block cell 
cycle was not carried out for further research.

Autophagy, a multistep lysosomal-mediated pathway that 
eliminates damaged organelles and invading pathogens to 
support nutrient recycling, is intimately linked to a cell’s 
live/die decision(Amaravadi et al. 2019; Zhang et al. 2019). 
Follow-up experiments showed that PRODH was involved 
in autophagy and promoted cells survival when cells coun-
teract nutrient deprivation or hypoxia. PRODH has been 
identified as an important regulator in oxLDL-mediated 
prosurvival autophagy through the generation of superox-
ide and subsequent up-regulation of beclin-1(Zabirnyk et al. 
2010). PRODH also acts as an energy source for provid-
ing ATP under nutrient stress conditions. The expression 
of PRODH is up-regulated in various cancer cells including 
colon, breast, prostate, melanoma, lung, and ovarian under 
hypoxia tumor microenvironment which is mainly dependent 
on AMPK activation (Liu et al. 2012a). Similarly, glucose 
deprivation increased PRODH expression and promoted 
PRODH catalytic activity for maintenance of ATP levels 
that is AMPK dependent (Pandhare et al. 2009).

Although PRODH is down-expressed in renal and diges-
tive tumor samples, PRODH is up-regulated in non-small 
cell lung cancer (NSCLC), pancreatic ductal adenocar-
cinoma (PDAC), prostate cancer (PCa), and some breast 
invasive carcinoma (BRCA) subtypes (Table 1). This up-
regulation of PRODH in tumor tissues promotes cell growth, 

survival or metastasis through another mechanism. PRODH 
has been reported to induce IKKα activity through gen-
eration of ROS and results in the up-regulation of related 
inflammatory genes (Liu et al. 2020). PRODH has also been 
shown to promote NSCLC cell growth, migration and inva-
sion (Liu et al. 2020). An epigenome-wide gene-age inter-
action analysis has revealed the reversed role of PRODH 
on survival in different age stage of lung cancer patients 
(Chen et al. 2020). Young patients with high methylation of 
PRODH was the best survival group, and low methylation 
of PRODH takes as an increased protective effect on LUAD 
patients survival with increased age (Chen et al. 2020). Inter-
estingly, significant correlation was observed between the 
specific CpG probe and expression of PRODH in LUAD 
patients (r = -0.23, p = 3.38*10–5). This significant hetero-
geneity of PRODH methylation effect on different age stage 
may contribute to providing new evidence for researching 
the switch roles of PRODH in context and searching for new 
specific biomarkers and therapeutic strategies for improving 
prediction accuracy and treatment efficacy.

PRODH has also been shown to contribute to promoting 
breast cancer by supporting growth and metastasis of breast 
cancer cells (Fang et al. 2019). PRODH activity, depend-
ent on P5C recycling via PYCR1, was shown to support 
spheroidal growth by sustaining ATP production. What is 
more, PRODH is significantly higher expressed in metas-
tases compared to primary breast cancers in patients. Strik-
ingly, the number of metastases was significantly reduced 
once PRODH activity was inhibited by L-THFA, whereas 
the weight of primary breast tumors remained unchanged. 
These data indicated that PRODH seems to be more spe-
cifically important in metastatic growth compared to pri-
mary growth (Elia et al. 2017). In accordance, a differential 
analysis mentioned PRODH as one of the significantly up-
regulated genes in the multifocal/multicentric breast cancer 
( MMBC) patients between invasive MMBC and unifocal 
breast cancer (UFBC). However, this study did not present 
any actual data for PRODH expression (Lang et al. 2018). 
These data indicate that PRODH activity seems to be impor-
tant in supporting metastasis in this specific site or organ 
(Fang et al. 2019).

A role for PRODH in promoting prostate cancer has also 
been reported (Yan et al. 2018), which mainly focuses its 
role on inhibiting T cell infiltration. High levels of P5C, a 
metabolite converted from proline by PRODH, have shown 
to be released by prostate cancer cells and result in T cells 
signaling suppression by increasing ROS but decreasing 
cytokines and ATP production. Moreover, these aforemen-
tioned phenotypes were reversed with PRODH knockdown. 
Similarly, the up-regulation of PRODH increased tumor 
growth in animal model and decreased CD3+, CD4+ and 
CD8+ T cells infiltration. The expression of PRODH was 
up-regulated in human prostate cancer tissues compared 



1896	 Y. Liu et al.

1 3

with its corresponding non-neoplastic tissue. Further, the 
expression of PRODH was higher in the advanced tumors 
among the different stages of PCa. Collectively, this study 
provides a novel perspective of PRODH on impairing 
immune cell functions through promoting the release of P5C 
from prostate cancer and finally creating a microenviron-
ment that improves cancer cell survival. In the other hand, 
this study provides a new standpoint of PRODH for tumor 
immunotherapy.

Given that PRODH is closely related to the pathological 
processes in multiple types of cancers by serving as an anti-
tumor or protumor member, mechanistic insights into how 
PRODH converts its dual role on specific context and cancer 
types could be valuable for its translational implications in 
clinical settings, such as the development of precision medi-
cine on gene-oriented treatment.

The role of PRODH and L‑proline catabolism 
in cancer

The physiological activity of PRODH is mainly involved in 
regulating redox statues, inflammatory reaction, intercellular 
signaling and cell death fate. As aforementioned, PRODH 
is up-regulated in some challenging circumstances, such as 
hypoxia or glucose restriction, or some specific type of can-
cer; whereas, PRODH is down-regulated in several tumors 
and plays an anti-tumor role through different signaling 
pathway. In this part, we will summarize the above specific 
functions of PRODH and the related mechanism in cancer.

PRODH functions in tumor process 
through ROS‑mediated mechanism

ROS is identified as a group of molecular oxygen in different 
patterns, which are formed by a series of reduction–oxida-
tion reactions and the electron transport chain (Sabharwal 
and Schumacker 2014). H2O2 and O2

− are the most key 
terms of ROS generated by the ETC and various enzymes, 
including NADPH oxidases, pyruvate dehydrogenase, 
acyl-CoA dehydrogenase, proline oxidase and et al. (Prasad 
et al. 2017; Srinivas et al. 2019). With the variation of ROS 
intracellular concentration stimulated by various stressors 
or metabolic enzymes, ROS seems to play in a beneficial 
or deleterious role by various mechanisms(Sies and Jones 
2020). The low concentration of ROS is associated with 
some cellular responses like proliferation, migration and dif-
ferentiation. The high concentration ROS exposure leads to 
inflammation, metastasis, growth arrest and cell death (Sies 
and Jones 2020). Because mitochondria are the major source 
of ROS (Sies and Jones 2020; Sabharwal and Schumacker 
2014), PRODH, an enzyme that located in mitochondrial 
inner membrane, which donates an electron to the ETC for 

generating ROS via oxidizing proline to P5C, may contrib-
ute to triggering redox signaling under normal condition or 
the initiation of cancer under pathophysiological conditions.

As mentioned above, multiple experiments indepen-
dently revealed that PRODH activates apoptosis through 
ROS generation both in intrinsic and extrinsic pathways in 
a variety of cancer types (Fig. 1) (Celińska-Janowicz et al. 
2018; Liu et al. 2005, 2006; Maxwell and Rivera 2003). 
Previous works have demonstrated that PRODH activates 
apoptosis through both p53-dependent and p53-independent 
pathways (Rivera and Maxwell 2005; Maxwell and Davis 
2000). Although PRODH was not up-regulated in DECV, 
a derivative cell line of ECV-304 cell that is resistant to 
p53-mediated apoptosis, apoptosis was induced in both cell 
lines for P5C production, which indicates that PRODH is 
capable of inducing apoptosis in a p53-independent pathway 
(Maxwell and Davis 2000). Interestingly, this study revealed 
the contribution of P5C but not ROS in inducing apoptosis. 
The potential role and mechanism of P5C for apoptosis still 
need further elucidation.

Other reports demonstrated the role of ROS for serving 
as an intracellular second messenger in signaling cascades 
and regulating gene expression through stimulating signal 
transduction and protein phosphorylation (Chio and Tuve-
son 2017). PRODH activates nuclear factor of activated T 
cells (NFAT), an indicator of activated calcineurin, through 
ROS production, and induces cytochrome c release from 
the mitochondria into the cytoplasm which finally results in 
apoptosis (Rivera and Maxwell 2005). Another study based 
on this finding has discovered that PRODH also stimulates 
the expression of tumor necrosis factor-related apoptosis 
inducing ligand (TRAIL) mediated by NFAT. Additionally, 
PRODH was involved in blocking MAPK signaling through 
reducing the phosphorylation of ERK, JNK and p38 (Liu 
et al. 2006). MnSOD, an antioxidant enzyme that defense 
against oxidative stress, reverses this reduction of MAPK 
signaling and inhibits PRODH-induced apoptosis (Liu et al. 
2006). However, the detailed mechanism by which PRODH 
blocks the phosphorylation and the interaction of these path-
ways that mediates PRODH-induced apoptosis still need fur-
ther investigation.

In addition to NFAT and TRAIL, COX-2/PGE2, EGFR 
and β-catenin signaling have shown to play important roles 
in PRODH-induced apoptosis. COX-2/PGE2 pathway 
contributes to metastatic spread, tumor development and 
maintenance (Greenhough et al. 2009; Echizen et al. 2018; 
Luo and Zhang 2017). PRODH suppresses COX-2/PGE2, 
EGFR and β-catenin/APC activities, and this suppression 
was reversed by MnSOD, indicating that ROS/superoxides 
generated by PRODH was involved in this process (Liu et al. 
2008). Similarly, phosphorylation of EGFR and COX-2 was 
reduced with PRODH addition. Furthermore, this study sug-
gested that celecoxib, a COX-2 inhibitor, could increase the 
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expression of PRODH and induce apoptosis in oral squa-
mous cell carcinoma (Toloczko-Iwaniuk et al. 2020).

Accumulated evidence suggest that ROS contributes 
to the induction and maintenance of cellular senescence 
through diverse pathways including mitochondrial DNA 
damage, signaling pathways and induction of microRNAs 
(Davalli et al. 2016). PRODH has also been identified as a 
senescence-specific gene induced by low dose of etoposide 
treatment (Nagano et al. 2016). The following study explored 
PRODH functions in senescence process; they revealed that 
PRODH promotes senescence and DNA damage via ROS 
production. And this promotion effect could be impaired by 
N-acetyl-L-cysteine (NAC), a potent ROS scavenger, which 
indicates that ROS may be involved in PRODH-mediated 
senescence. Moreover, etoposide-induced senescence and 
ROS production were suppressed by L-tetrahydro-2-furoic 
acid (L-THFA), an inhibitor for PRODH enzymic activity, 
which indicates that PRODH induces senescence through its 
enzymic activity (Nagano et al. 2017).

Autophagy (Nazio et al. 2019) is a process that promotes 
cell survival in response to multiple stimuli like viral infec-
tion, nutrient deprivation and genotoxic stress. ROS has been 
demonstrated to be involved in sustaining autophagy for its 
signal transduction role (Filomeni et al. 2015). Contrary to 
the anti-tumor roles described above, PRODH also serves 
as a survivor in some stress circumstance through ROS. For 
instance, PRODH is induced by AMPK pathway to initiate 
protective autophagy under hypoxia via generating ROS. 
However, PRODH switches its way from generating ROS 
to ATP under low glucose for cell energy to promote cell 
survival (Liu and Phang 2012). The potential mechanism of 
this switch needs more further investigation.

In addition, increased ROS with PRODH promotes phos-
phorylation of IKKα, which results in the up-regulation 
of several inflammatory genes in NSCLC cells (Liu et al. 
2020). As previously described, ROS production by PRODH 
is intracellular and affects phosphorylation level of MAPK 
and COX-2. These findings indicate PRODH-mediated ROS 
may function as a signaling molecule that contributes to 
activating multiple critical elements of pathway. PRODH-
mediated ROS generation whether inhibits or supports tumor 
progression depends on certain circumstance and cancer 
types; therefore, PRODH takes a complicated and flexible 
role in cancer.

PRODH functions in the tumor process 
through ATP‑mediated mechanism

Proline catabolism via PRODH switches to support ATP 
production in several condition. Under nutrient stress con-
ditions, especially with glucose deprivation, proline func-
tions as a stress substrate accompanied with increased 
PRODH enzyme activity for ATP production to maintain 

cellular energy levels (Pandhare et al. 2009). Glucose deple-
tion induced phosphorylation of AMPK, which indirectly 
induced PRODH activity through inhibiting mTOR (Pand-
hare et al. 2009). Consistently, PRODH activity was induced 
in a time- and dose-dependent tendency with a synthetic 
AMPK activator—5-aminoimidazole-4-carboxamide ribo-
nucleoside (AICAR), addition (Pandhare et al. 2009). In 
addition to response to nutrient stress conditions, PRODH 
contributes to ATP production for supporting energy during 
spheroidal growth (Elia et al. 2017). Consistently, inhibition 
of complex III of ETC by antimycin A impaired spheroidal 
growth, which indicates the critical role of ATP in sustaining 
spheroidal growth (Elia et al. 2017).

However, additional related reports focus on PRODH-
ATP axis functions and triggering mechanisms on cancer 
progression still need to be further studied.

PRODH regulates tumor process 
through pyrroline‑5‑carboxylate generation

P5C is conversed from proline in the first step of proline 
catabolism, and can be converted into glutamate catalyzed 
by the P5CDH enzyme (Yan et al. 2018). Glutamate-derived 
α-Ketoglutarate (α-KG) is a key intermediate of the TCA 
cycle. Hence, PRODH may take regulatory functions for 
tumor processes by contributing to P5C-glutamate-α-KG 
generation. In yeast and plants, P5C seems to cause ROS 
accumulation, stress response, and cell death (Zhu 2002; 
Zareba and Palka 2016; Borsani et al. 2005). However, 
P5C regulates these tumor processes directly or indirectly 
through multiple mechanisms. P5C plays a harmful role on 
T cells by inhibiting proliferation and function via inducing 
SHP1 expression in prostate cancer cells (Yan et al. 2018). 
Interestingly, P5C recycling to proline via PYCRs sustains 
PRODH activity during spheroidal growth, which contrib-
utes to energy production and metastasis formation in breast 
cancer cells (Elia et al. 2017). Some studies also found that 
PRODH generated α-KG by P5C conversion and increased 
α-KG led to HIF-1 signaling suppression (Verma 2006; Koi-
vunen et al. 2007). Moreover, α-KG decreased the expres-
sion of HIF1α and Wnt/β-catenin target genes significantly 
through enhancing α-KG-mediated degradation of HIF1α 
in colon cancer (Wen et al. 2019). On the other hand, α-KG 
has been shown to directly bind to IKKβ and nuclear factor 
κB (NF-κB) signaling, which results in the increasing uptake 
of glucose and tumor cell survival by upregulating GLUT1. 
This finding reveals a critical role of α-KG-mediated signal 
pathway in brain tumor, and also provides a potential inter-
pretation for the dual role of PRODH in some context (Wang 
et al. 2019). α-KG is also a cofactor of the KDM5, which can 
actively remove lysine trimethylation of H3K4me3. Hence, 
α-KG could enhance KDM5 activity for H3K4 demethyla-
tion. Given that α-KG plays an important role on histone 
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modifications, the study that connects proline catabolism to 
histone modifications may be a novel area for investigation 
(Su et al. 2021).

Therapeutic strategies targeting PRODH 
in cancer

So far, various anticancer chemicals and molecules approach 
to activate or inhibit PRODH activity have been explored, 
including succinate, MnSOD et al.(Table 2). It is challenging 
to decide appropriate treatments targeting PRODH. Thus, 
summarizing the role and mechanism of PRODH and the 
potential therapeutic drug may provide alternatives to step 
out dilemma.

It is conceivable that PRODH could be indirectly regu-
lated by compounds targeting upstream pathways. One study 
showed that etoposide activates p53 and promotes p53-medi-
ated induction of PRODH, causing apoptosis and cell 
senescence (Maxwell and Davis 2000). Additionally, TZDs 
treatment markedly increased PRODH activity and protein 
through promoting the binding of PPARγ to the PRODH 
promoter, leading to PRODH-mediated ROS generation and 
apoptosis (Pandhare et al. 2006; Kim et al. 2007).

Moreover, compounds targeting PRODH activity directly 
have shown anticancer pharmacological properties. L-lactate 
is a reversible competitive inhibitor of PRODH in several 
bacterial (Kowaloff et  al. 1977). L-THFA, a compound 
reported to inhibit PRODH activity in several studies, has 
also been shown to reduce spheroidal growth. Moreover, 
L-THFA treatment on mice significantly inhibits metastasis 
formation via impairing PRODH activity without any obvi-
ous adverse effects in normal cells and organ functions (Elia 

et al. 2017). Interestingly, inhibition of PRODH activity by 
L-THFA impairs cell migration and invasion formation in 
non-small lung cancer cells (Liu et al. 2020). L-THFA has 
also been reported to be a competitive inhibitor of PRODH 
in bacterial (Lee et al. 2003) and other mammalian cells. 
These data suggest that PRODH may function as a promis-
ing drug target in specific cancer types.

Other molecules targeting PRODH downstream sig-
nal have also been reported. N-acetyl cysteine, a ROS 
scavenger that is widely used as a pharmacological anti-
oxidant (Ezeriņa et al. 2018), reduced ROS level gener-
ated by PRODH (Yan et al. 2018; Hancock et al. 2016), 
blocking apoptosis or reversing T cell cytokines secretion 
(Yan et al. 2018). MnSOD has also been found to inhibit 
PRODH-mediated apoptosis through reducing the release 
of cytochrome c (Liu et al. 2005).

As PRODH plays a complex and important role in tumor 
process, the detailed therapeutic schedules targeting PRODH 
are subjected to future investigation.

Conclusions and future perspectives

Recent discoveries have solidified the importance of 
PRODH and proline catabolism in cancer process. PRODH 
promotes apoptosis and tumor suppression in several cancer 
cells such as renal and colorectal cancer cells. The expres-
sion of PRODH is often down-regulated in these tumors, 
limiting PRODH-mediated apoptosis and anti-tumor roles. 
However, PRODH also functions as an oncogenic protein 
to support tumor cells survival, growth and metastasis in 
other contexts. The expression of PRODH are up-regulated 
in these cancer cells like PCa and PDAC. Hence, searching 

Table 2   The role of PRODH activator/inhibitor treatment

Treatment Functions Modes Mechanism

Etoposide Activator Increases expression Activates PRODH in p53-dependent and induces apoptosis/senescence  (Maxwell 
and Davis 2000; Rivera and Maxwell  2005)

TZDs Activator Increases expression Activates PRODH through PPARγ signaling (Pandhare et al. 2006)
AICAR​ Activator Increases activity A synthetic AMPK activator, increases PRODH activity through AMPK-mediated 

signal  (Pandhare et al. 2009)
Celecoxib Activator Increases expression A COX-2 inhibitor, increases PRODH and PPARγ expression (Toloczko-Iwaniuk 

et al. 2020)
L-THFA Inhibitor Inhibits PRODH activity A competitive inhibitor of PRODH enzymic activity, reduces metastatic spread 

in breast cancer (Elia et al. 2017), and impairs cell migration and invasion in 
NSCLC (Liu et al. 2020)

Lactate Inhibitor Inhibits PRODH activity A competitive inhibitor of PRODH, forms the complex with PRODH to inhibit 
PRODH activity (Zhang et al. 2004; Kowaloff et al. 1977)

NAC Inhibitor Inhibits PRODH- dependent ROS An antioxidant, inhibits ROS generation by PRODH (Hancock et al. 2016)
Succinate Inhibitor Inhibits PRODH-dependent ROS An uncompetitive inhibitor of PRODH/POX activity, inhibits ROS generation by 

PRODH (Hancock et al. 2016)
MnSOD Inhibitor Reduces the release of cytochrome c An antioxidant, reduces the release of cytochrome c from mitochondria into cyto-

sol by PRODH (Liu et al. 2005)
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for clinical pharmacological compounds that target the pro-
line pathway is meaningful for tumor-targeted therapy in 
different types of tumor.

Although pioneering studies of PRODH have advanced 
our understanding of its fundamental functions and roles 
in pathological process, studies of post-translational modi-
fications of PRODH are still in blank area. Hence, further 
studies should focus on investigating post-translational mod-
ifications that controls PRODH expression and biological 
functions in pathophysiological conditions.

In summary, PRODH is involved in the pathogenesis of 
various cancers. The upstream regulators, downstream signal 
pathway, biological function, and potential targeted drugs of 
PRODH are required for prospective therapeutic approach 
in the future.
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