
Vol.:(0123456789)1 3

Amino Acids (2019) 51:1409–1431 
https://doi.org/10.1007/s00726-019-02787-2

REVIEW ARTICLE

Susceptibility of protein therapeutics to spontaneous chemical 
modifications by oxidation, cyclization, and elimination reactions

Luigi Grassi1,2 · Chiara Cabrele1,2 

Received: 12 May 2019 / Accepted: 7 September 2019 / Published online: 1 October 2019 
© The Author(s) 2019

Abstract
Peptides and proteins are preponderantly emerging in the drug market, as shown by the increasing number of biopharmaceu-
tics already approved or under development. Biomolecules like recombinant monoclonal antibodies have high therapeutic 
efficacy and offer a valuable alternative to small-molecule drugs. However, due to their complex three-dimensional structure 
and the presence of many functional groups, the occurrence of spontaneous conformational and chemical changes is much 
higher for peptides and proteins than for small molecules. The characterization of biotherapeutics with modern and sophisti-
cated analytical methods has revealed the presence of contaminants that mainly arise from oxidation- and elimination-prone 
amino-acid side chains. This review focuses on protein chemical modifications that may take place during storage due to (1) 
oxidation (methionine, cysteine, histidine, tyrosine, tryptophan, and phenylalanine), (2) intra- and inter-residue cyclization 
(aspartic and glutamic acid, asparagine, glutamine, N-terminal dipeptidyl motifs), and (3) β-elimination (serine, threonine, 
cysteine, cystine) reactions. It also includes some examples of the impact of such modifications on protein structure and 
function.

Keywords  Amino acid · Spontaneous posttranslational modification · Oxidation · Cyclization · Elimination · Protein 
degradation

Introduction

The market value of peptide and protein drugs has been 
experiencing a significant expansion, as reflected by the 
increasing number of approved synthetic peptides and 
recombinant monoclonal antibodies (mAbs) for the therapy 
of different types of human health disorders and diseases 
(Ecker et al. 2015; Lau and Dunn 2018). To this regard, the 
introduction of a drug into the market implies that all the 
regulatory requirements in terms of safety and quality have 
been addressed. In the case of peptides and proteins, which 
are medium-to-large molecules with high susceptibility to 

a number of spontaneous or enzyme-dependent chemical 
modifications, the full analytical characterization of the final 
product as well as the efficient implementation of the so-
called quality-by-design concept (Juran 1992) in the manu-
facturing process are a big challenge.

Enzyme-catalyzed posttranslational modifications 
(PTMs) of proteins are used by Nature to expand the chem-
ical space beyond the limit set by the 20 encoded amino 
acids. However, the presence of PTMs (i.e., glycosylation) in 
recombinant and isolated proteins gives rise to heterogene-
ous preparations of biotherapeutics. In addition, spontaneous 
chemical changes may occur due to the inherent reactivity of 
peptides and proteins. Therefore, the detection and charac-
terization of any modification at the amino-acid side chain 
and backbone level is crucial for both regulatory compliance 
and reliability of the drug potency assessment (Wang et al. 
2007). To date, the most powerful technique to assess the 
chemical identity of biotherapeutics is mass spectrometry 
(MS): for example, 79 out of the 80 biologics license appli-
cations electronically submitted to the FDA in the period 
2000–2015 provide quality attributes determined by MS, the 
following being found in more than 50% of the applications: 
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amino-acid sequence, molecular mass, disulfide bonds, gly-
cosylation, N-/C-terminal sequence variants, deamidation, 
and oxidation (Rogstad et al. 2017).

The most common MS workflows rely on three types of 
approaches that utilize MS alone or hyphenated MS, like 
liquid chromatography–MS (LC–MS) or LC–MS/MS (Beck 
et al. 2013; Berkowitz et al. 2012; Terral et al. 2016; Zhang 
et al. 2014): (1) top-down (MS fragmentation of the intact 
protein under native or denaturing conditions), (2) middle-
down (MS fragmentation of subunits), and (3) bottom-up 
(MS fragmentation of the peptides obtained by protein 
digestion) (Lermyte et al. 2019). Each workflow presents 
advantages and disadvantages: for example, the top-down 
workflow does not require long protocols to prepare the MS 
sample, but it suffers from inefficient fragmentation due 
to the large size of the proteins, especially of mAbs with 
molecular mass close to 150 kDa. This results in incomplete 
amino-acid sequence coverage, despite the use of sophis-
ticated MS methods such as electron-transfer dissociation 
(ETD) with quadrupole time-of-flight (qTOF) or orbitrap 
high-resolution MS (Fornelli et al. 2012; Tsybin et al. 2011), 
electron-capture dissociation (ECD) with electrospray ioni-
zation (ESI) Fourier-transform ion cyclotron resonance 
(FTICR) MS (Mao et al. 2013), ESI-FTICR-MS coupled to 
electrochemistry for the online reduction of disulfide bonds 
(Nicolardi et al. 2014), matrix-assisted-laser-desorption-
ionization (MALDI) in-source decay (ISD) with FTICR-MS 
(van der Burgt et al. 2019), combined ECD, and collision-
ally activated dissociation (CAD) with FTICR-MS (Jin et al. 
2019). The middle-down MS workflow allows increasing the 
sequence coverage significantly, but it requires the partial 
proteolysis and deglycosylation of the protein: in the case 
of mAbs, the enzymes IdeS (immunoglobulin-degrading 
enzyme of Streptococcus pyogenes) (von Pawel-Rammin-
gen et al. 2002) and GingisKHAN™ (recombinant gingi-
pain K from Porphyromonas gingivalis (Okamoto et al. 
1996; Scott et al. 1993), commercialized by Genovis AB, 
Lund, Sweden), which cleave the heavy chain, respectively, 
below or above the hinge region, as well as glycosidases 
and sialidases are used to obtain large subunits that are then 
analyzed under denaturing (Jin et al. 2019; van der Burgt 
et al. 2019) or native conditions (Wohlschlager et al. 2018). 
The bottom-up MS workflow is routinely used for sequence 
determination, but it requires long sample preparation, with 
the risk of introducing modifications, for example during 
trypsin digestion, like additional deamidation of asparagine-
glycine (Asn-Gly) motifs and of N-terminal glutamine (Gln) 
(Bongers et al. 2000; Krokhin et al. 2006).

Several spontaneous PTMs have been characterized by 
bottom-up and middle-down protocols: for example, scram-
bled disulfide bonds in heat-stressed humanized mAb HER2 
(human epidermal growth factor receptor 2) have been found 
by analyzing the tryptic and Lys-C-digested peptides with 

LC-ETD/CAD-MS (Wang et al. 2011a). Methionine (Met) 
oxidation of three different biotherapeutics treated with 
H2O2 (the mAbs rituximab and adalimumab, and the IgG1-
Fc fusion protein etanercept) has been detected and quan-
tified by applying a middle-down approach with LC–MS 
analysis (Regl et al. 2017). Furthermore, a systematic study 
on the stability of IgG1-Fc glycoforms containing 8–12, 5, 
or no mannose units under various stress conditions (photo-
irradiation, oxidation with H2O2, CuCl2/ascorbate, or a free-
radical initiator, and long storage at 40 °C) has shown by a 
bottom-up approach that different degradation profiles are 
obtained, depending on the mannose content and the stress 
condition: for example, a deamidation product (already 
detectable in the control) has been found to accumulate 
faster in the absence than in the presence of mannose units 
at 40 °C (Mozziconacci et al. 2016a). Surprisingly, also a 
tryptophan (Trp) degradation product (glycine hydroperox-
ide) was already detectable in the control, but after 1 month 
at 40 °C, it was more abundant in the presence than in the 
absence of mannose units. Regarding the oxidation stress, 
the highest amount of oxidized Met was obtained with H2O2, 
but only for the high-mannose and no mannose glycoforms, 
clearly showing that both the stress protocol and the type 
of glycan may strongly affect the formation of impurities 
(Mozziconacci et al. 2016a).

It is well recognized that biotherapeutics carry the intrin-
sic risk of being immunogenic (Büttel et al. 2011; Pineda 
et al. 2016), a characteristic that is the likely consequence of 
multiple factors (type of production, impurities, and mode of 
administration of the drug, as well as patient’s conditions) 
(Pineda et al. 2016) and, thus, difficult to control or even to 
suppress. Nevertheless, it would be very important, to moni-
tor the drug immunogenicity not only before but also after 
drug approval, as shown, for example, by the case of the two 
mAbs adalimumab (Bartelds et al. 2011; Bender et al. 2007) 
and infliximab (Pascual-Salcedo et al. 2011): rheumatoid 
arthritis patients long-treated with these two drugs have been 
found to produce anti-drug Abs negatively affecting the drug 
response and efficacy. However, immunogenic responses of 
patients have been reported for several other approved mAbs 
(Baker et al. 2010; Kuriakose et al. 2016).

As mentioned above, drug impurities may increase the 
risk of undesired immunogenicity: these also include pro-
tein aggregates and PTMs (Baker et al. 2010; Büttel et al. 
2011; Krishna and Nadler 2016; Kuriakose et al. 2016). The 
relationship between PTMs and immunogenic events is well 
known, although this is especially investigated in the area 
of autoimmune diseases (e.g., citrullination of myelic basic 
protein in rheumatoid arthritis, oxidation of insulin in type 
I diabetes, and deamidation of transglutaminase in celiac 
disease) (Doyle and Mamula 2012; Eggleton et al. 2008). 
PTMs may induce changes of the protein structure (Mal-
lagaray et al. 2019), but they might also modify the type of 
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antigens generated (Krishna and Nadler 2016; Kuriakose 
et al. 2016): for example, the presence of an iso-aspartyl 
(iso-Asp) residue as deamidation product of cytochrome c 
has led to a different digestion profile with cathepsin D com-
pared to the native protein (Doyle et al. 2007). In addition, 
mice immunized with an iso-Asp-containing cytochrome c 
peptide antigen developed Abs cross-reacting with both the 
iso-Asp-containing peptide and the native protein (Mamula 
et al. 1999). Two other examples are related to the oxida-
tion of the collagen-like complement component C1q and 
collagen type II: in the first one, animal immunization with 
C1q treated with H2O2 generated Abs cross-reacting with 
unmodified C1q or with collagen type II, suggesting a role 
of C1q oxidation (e.g., by reactive oxygen species) in the 
induction of arthritis (Trinder et al. 1997). In the second 
one, a collagen type II peptide antigen containing a galac-
tosylated hydroxylysine, as product of lysine oxidation fol-
lowed by O-glycosylation, has been proposed to be immuno-
dominant in collagen-induced arthritis (Corthay et al. 1998).

All together, these findings clearly indicate the implica-
tion of spontaneous PTMs in protein immunogenicity. In 
the case of biotherapeutics, while it is not possible to avoid 
their chemical modification in vivo, it is at least possible 
to control the presence of PTMs in the drug formulations 
thanks to the impressive advances made especially in MS, 
as briefly mentioned above.

Being the chemical space of spontaneous modifications 
of peptides and proteins very broad, only the most common 
by-products from three types of reactions, which may occur 
during storage, will be reviewed in the following sections: 

(1) oxidation of Met, cysteine (Cys), histidine (His), tyros-
ine (Tyr), Trp and phenylalanine (Phe), (2) intra- and 
inter-residue cyclization involving aspartate (Asp), Asn, 
glutamate (Glu), Gln and N-terminal dipeptidyl motifs, 
(3) β-elimination of serine (Ser), threonine (Thr), Cys, and 
cystine.

Oxidation of sulfur‑containing and aromatic 
amino acids

Mechanisms generating reactive oxygen species 
(ROS)

Among the 20 natural amino acids, the sulfur-containing 
Met and Cys, as well as the aromatic His, Trp, Tyr, and Phe 
contain the most oxidation-prone side chains (Davies and 
Truscott 2001). Oxidation may arise from photosensitiza-
tion processes that can be distinguished in direct (type I) and 
indirect (type II) photo-oxidation, depending on whether the 
oxidation of the target occurs via direct absorption of light 
followed by electron transfer, or through interaction with sin-
glet oxygen (1O2) (Scheme 1a). In the first mechanism, direct 
interaction of an endogenous chromophore (e.g., an aromatic 
moiety) with UV light results in the production of excited 
states, followed by electron transfer to suitable acceptors 
such as molecular oxygen (O2) or disulfides (Benasson et al. 
1983) to give the corresponding radical cations and reac-
tive oxygen species (ROS), including the superoxide radi-
cal anion (O2

–·) and its disproportionation products hydrogen 

Scheme 1   Oxidation processes 
generating reactive oxygen spe-
cies (ROS) by a photosensitiza-
tion and b metal catalysis

(a)

(b)
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peroxide (H2O2) and hydroxyl radical (OH·) (Davies and Gil-
bert 1992), or disulfide radical anions in equilibrium with 
thiolates and thiyl radicals (Schöneich 2012, 2016).

The second mechanism, by which photo-oxidation 
may occur in proteins, involves indirect energy transfer 
to O2 from a photosensitizer, which generates 1O2 in situ 
(Scheme 1a). This reacts with sulfides and aromatic residues 
of proteins, producing sulfoxides, hydroperoxides, and other 
derivatives (Davies and Truscott 2001; Ghogare and Greer 
2016).

Besides photosensitization processes, transition metals, 
such as Fe(II) or Cu(I), have been also widely recognized as 
efficient catalysts for oxidative processes in proteins, which 
are referred to as metal-catalyzed oxidations (MCOs). The 
latter involve either direct metal-induced oxidation of the 
target, or, most commonly, the reaction of the target with 
ROS that are produced by transition-metal complexation of 
molecular oxygen in the presence of an appropriate electron 
donor (e.g., ascorbate) (Scheme 1b) (Li et al. 1995).

Oxidation processes may occur during production, puri-
fication, and storage, leading to the conversion of oxida-
tion-prone residues to the corresponding oxidized species 
(Table 1), and, eventually, to substantial alteration of the 
protein stability and folding (Torosantucci et al. 2014).

Mechanisms of methionine oxidation

Oxidation of solvent-exposed Met residues in proteins has 
long being object of study, and significant efforts have been 
made to gain deeper insights into the mechanistic features of 
this reaction as well as the biological consequences result-
ing therefrom (Torosantucci et al. 2014). Formally, Met 
can undergo oxidation through a double- (by non-radical 
oxidants such as peroxides or hypochlorous acid) or single-
electron transfer (e.g., by metal catalysis or photo-irradia-
tion) (Schöneich 2005). In the presence of H2O2, the double-
electron oxidation occurs at the sulfur atom producing the 
corresponding diastereomeric sulfoxide products in equal 
amounts (Sharov et al. 1999), which may further oxidize 
to sulfones under strong oxidizing conditions (Garner et al. 
1998; Schöneich 2005) (Scheme 2a). The reaction follows a 
pH-independent mechanism involving a nucleophilic attack 
of the Met sulfide on the oxygen atom of the oxidant to form 

a water-stabilized intermediate, followed by proton transfer 
(Chu et al. 2004).

Met oxidation may also involve the hydroxyl radical OH·, 
which affords different products depending on pH, substrate 
concentration, and/or neighboring groups. It has been shown 
that addition of OH· occurs predominantly at the sulfur atom 
to yield a hydroxysulfuranyl radical (Bonifacic et al. 2000). 
The latter may be protonated at acidic pH and eliminate a 
water molecule, generating the corresponding sulfide radical 
cation that is stabilized by association with a non-oxidized 
Met residue in a sulfur–sulfur three-electron-bonded com-
plex (Schöneich 2005; Yashiro et al. 2005) (Scheme 2b). An 
intramolecular sulfur-amide oxygen three-electron bonded 
complex can also be formed during the Fenton reaction 
of the Met-His sequence, which leads to hydrolysis of the 
Met-His peptide bond (Mozziconacci et al. 2013, 2016b). At 
neutral pH, the hydroxysulfuranyl radical may undergo an 
intramolecular acid–base reaction with a protonated amino 
group, which leads to water elimination and a stabilized 
sulfur-nitrogen three-electron-bonded complex. However, 
this species is in equilibrium with sulfide or amino-radical 
cations that may decompose via heterolytic cleavage of 
neighboring bonds (Scheme 2c) (Schöneich et al. 1994).

Besides water elimination by protonation of the OH 
group, the hydroxysulfuranyl radical may eliminate water 
by hydrogen abstraction from neighboring alkyl groups, 
generating alkyl radicals that can be converted into peroxyl 
radicals by reaction with O2. These, in turn, can oxidize 
a second Met residue to sulfoxide (Schöneich et al. 1993) 
(Scheme 2d). Alkyl radicals of Met residues can be built 
also by the corresponding sulfide radical cation upon proton 
abstraction (Schöneich et al. 1993).

Generation of the Met sulfide radical cation can also be 
triggered by light (Scheme 2e). For example, in a type I 
photo-oxidation, electron transfer from the sulfur atom to a 
triplet sensitizer like benzophenone or 4-carboxybenzophe-
none occurs, leading to the sulfide radical cation that can 
additionally produce Met alkyl radicals by proton abstrac-
tion (Pedzinski et al. 2009). Type II oxidation has also been 
reported (Scheme 2f): in this case, the reaction with 1O2 
builds a zwitterion intermediate that may either oxidize a 
second Met residue with the production of two Met(O) at 
acidic pH, or be converted into Met(O) with formation of 

Table 1   Common oxidation 
products of oxidation-prone 
amino acids

Residue Oxidation product

Met Sulfoxide, sulfone
Cys Sulfinic and sulfonic acid, di- and trisulfide
His 2-oxo-His, cross-linked adducts
Trp Hydroxy-Trp, kynurenine (Kyn), 3-hydroxy-Kyn, N-formyl-kynurenine (NFK), 3-hydroxy-NFK
Tyr 3,4-Dihydroxyphenylalanine (DOPA), 2-amino-3-(3,4-dioxocyclohexa-1,5-dien-1-yl) propanoic 

acid (DOCH)
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H2O2 at basic pH by an intramolecular or intermolecular 
mechanism (Sysak et al. 1977).

Susceptibility of mAbs to methionine oxidation

Met oxidation in protein therapeutics has been correlated 
with a number of adverse effects, including loss of function 
(Hsu et al. 1996), decrease in folding stability (Mulinacci 
et al. 2011), as well as increase in aggregation propensity 
(Mulinacci et al. 2013). Met oxidation in vitro is generally 
obtained by treatment with oxidizing agents such as H2O2 
(Li et  al. 1995; Regl et  al. 2017), t-butylhydroperoxide 
(tBHP) (Li et al. 1995), or with UV light irradiation (Lam 
et al. 1997; Wei et al. 2007). However, the susceptibility 
of a Met residue to oxidation significantly depends on its 
location within the protein structure. For example, when 
subjecting the recombinant IgG1 antibody HER2 to a 20 h 
treatment with tBHP, light-chain Met-4 and heavy-chain 
Met-107 and Met-361 were only slightly oxidized, whereas 

the two solvent-exposed heavy-chain Met-255 and Met-431, 
both located in the Fc region, underwent significant oxida-
tion (Shen et al. 1996). Interestingly, when a fully human 
recombinant IgG1 monoclonal antibody was incubated in 
formulation buffer for 12 months at 25 °C, the preferential 
oxidation of Met-255 and Met-431 occurred only on one 
heavy chain, differently from a chemically stressed sample 
subjected to tBHP treatment, which was oxidized at both 
heavy chains (Chumsae et al. 2007).

Due to the structural perturbation induced, oxidation 
of Met-255 and Met-431 has been associated with altered 
thermal stability as well as to aggregation and deamida-
tion propensity of the Fc part (Liu et al. 2008). In addition, 
decreased binding affinity for protein A, protein G and neo-
natal Fc receptor (FcRn) has been observed (Bertolotti-Ciar-
let et al. 2009; Gaza-Bulseco et al. 2008; Pan et al. 2009), 
together with a reduction of the serum half-life for highly 
oxidized species (Wang et al. 2011b). Besides IgG1 Met-431 
oxidation, also fragmentation between Met-431 and His-432 

(a)

(c) (b)

(d)

(e)

(f)

Scheme 2   Possible oxidation processes of Met. a Double-electron and b–d single-electron transfer as well as e, f photo-oxidation mechanisms 
are shown
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upon MCO conditions was detected, which resulted in the 
formation of soluble and insoluble aggregates (Mozzicon-
acci et al. 2016b).

Mechanisms of cysteine oxidation

Due to the nucleophilicity and the different oxidation states 
of the sulfur atom, Cys residues are the most oxidation-prone 
sites in proteins. Disulfides, which represent one of the most 
abundant oxidation products of Cys, may undergo type I 
photo-ionization, leading to the formation of radical ions 
(RSSR˙+ and RSSR˙−). Alternatively, they can also act as 
quenchers of excited states of Tyr and Trp residues. Radical 
disulfide anions (RSSR˙−) may either dissociate into thi-
olates and thiyl radicals (RS˙), or react with molecular oxy-
gen to produce superoxide radical anions (O2

–·) (Scheme 3a) 
(Davies and Truscott 2001; Millington and Church 1997; 
Wardman and Vonsonntag 1995).

The thiyl radicals (RS˙) can give rise to a series of reac-
tions including hydrogen abstraction from C–H bonds or 
reactions with O2 to generate an intermediate thiyl per-
oxyl radical (RSOO˙) that rearranges into a sulphonyl 
radical (RS(O)O˙) as precursor of sulfinic acid (RS(O)
OH) (Scheme 3b). Alternatively, the formation of sulfenic 
(RSOH) and sulfonic (RS(O)2OH) acids from RSOO˙ has 
also been observed (Scheme 3c) (Becker et al. 1988; Mil-
lington and Church 1997; Schöneich 2012; Sevilla et al. 
1988; Tamba et al. 1995; Wardman and Vonsonntag 1995).

The reaction of Cys with H2O2 in aqueous solution pro-
duces a sulfenic acid intermediate that, depending on the 
thiol density and pH of the microenvironment surrounding 
the Cys residue, may either form disulfide bonds or further 

oxidize to sulfinic and sulfonic acids, or undergo cyclization 
to sulfenamide (Scheme 3d).

Noncanonical disulfide and trisulfide bridges 
in mAbs

Thiol–disulfide exchange reactions, which favor the forma-
tion of native from non-native disulfide bonds, occur during 
the oxidative folding of proteins and are usually mediated 
by specialized enzymes like protein disulfide isomerase 
(PDI) (Hudson et al. 2015; Moroder and Buchner 2008). 
In contrast, the accumulation of non-native disulfide bonds 
favors protein misfolding and aggregation (Hawe et al. 2009; 
Jordan et al. 1994). Occurrence of noncanonical disulfide 
bonds has been observed in mAbs and has been correlated 
with the existence of half molecules (Bloom et al. 1997; 
Schuurman et al. 2001), hybrids (Schuurman et al. 1999; 
Yoo et al. 2003), as well as structural isoforms presenting 
different hydrodynamic size, higher order structures, and 
potency (Dillon et al. 2008; Martinez et al. 2008).

Besides noncanonical disulfide bonds, also trisulfides 
have been detected in all subclasses of recombinant IgGs, 
which were mostly formed between light and heavy chains 
or two heavy chains to an extent directly dependent on the 
fermentation parameters employed (Gu et al. 2010). A non-
enzymatic mechanism based on a thiol–disulfide exchange 
has been proposed (Nielsen et al. 2011), in which the reac-
tion of a disulfide with a sulfhydryl anion (HS−) generates 
a perthiolate and a thiol; the perthiolate can reduce another 
disulfide-containing molecule to form a mixed trisulfide 
that can further undergo reshuffling to a new trisulfide or a 
disulfide (Scheme 4).

(d)

(a)

(b)

(c)

Scheme 3   Possible oxidation processes of a–c cystine and d cysteine
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Mechanisms of histidine oxidation

Oxidation of His occurs mainly via type II photo-oxidation 
or MCO mechanisms (Davies and Truscott 2001; Schö-
neich 2000). In the first case, the reaction follows a [2 + 4] 
cycloaddition mechanism, in which the imidazole ring of 
His reacts with 1O2 and forms 2,4- or 2,5-endoperoxide 
intermediates, depending on the pH and, consequently, on 
the protonation state of the imidazole ring (Huvaere and 
Skibsted 2009; Liu et al. 2014a). At basic pH, the reac-
tion pathway involves the formation of a 2,4-endoperoxide 
intermediate, which rapidly converts into 4-hydroxy-2-
oxo-His (Scheme 5a). The latter presents an electrophilic 
site at C-5 that may undergo nucleophilic attack either 
by the α-amine to form the corresponding intra-residue 
bicyclic product, or by another nucleophile from the sur-
rounding environment, giving rise to cross-linked prod-
ucts (Amano et al. 2014; Lei et al. 2017; Xu et al. 2017). 
Instead, water addition at C-5 (directly or via epoxide for-
mation) leads to 4,5-dihydroxy-2-oxo-His that may further 
decompose to aspartic acid, asparagine and urea via the 
4-hydroxy-2,5-dioxo-His intermediate (Scheme 5a) (Agon 
et al. 2006; Tomita et al. 1968).

Different products are obtained at neutral pH, where the 
2,5-endoperoxide precursor converts into the correspond-
ing 2-hydroxy-5-oxo-His and 5-hydroxy-2-oxo-His, which 
do not undergo any cyclization or other nucleophilic attack 
due to steric hindrance at the C-4 position (Scheme 5a).

In the case of MCO of His, the hydroxyl radical may 
react quite randomly and attack the imidazole ring of His 
at C-2, C-4 or C-5 positions to build 1,3-dihydro-2-oxo-
His, and, in case of C-4 or C-5 addition, also other degra-
dation products (Schöneich 2000) (Scheme 5b).

Susceptibility of biotherapeutics to histidine 
oxidation

His photo-oxidation was observed in an IgG1 mAb as a 
result of light exposure or of treatment with H2O2 in the 
presence of molybdate for 1O2 generation, and it was shown 
to occur preferentially at His-289 due to the high solvent 
accessibility and, also, to the catalytic effect exerted by the 
surrounding amino acids (Amano et al. 2014). In another 
study, photocross-linking of the two IgG1 heavy chains via 
His-228 in the hinge region was detected, suggesting alterna-
tive processes for His oxidation to 4-hydroxy-2-oxo-His that 
then undergoes cross-linking (Liu et al. 2014b). Similarly, 
in high-molecular-weight (HMW) fractions of a 1-year-old 
IgG1 sample that was not light-stressed, His-228, His-289, 
and His-437 were identified as hot-spots for cross-linking 
reaction with Lys or Cys (Xu et al. 2017).

For a monoclonal IgG2, 1,3-dihydro-2-oxo-His was the 
preferential MCO product of His-304 and His-428 upon 
treatment with Cu2+/ascorbate, which was attributed to a 
putative copper-binding site between these His residues and 
the neighboring Met-246 (Luo et al. 2011). In the case of 
the human growth hormone, treatment with Cu2+/ascorbate 
resulted in extensive oxidation of His-18 and His-21, which 
are both located in the metal-binding site. While His-21 pro-
vided also oxidation products other than 1,3-dihydro-2-oxo-
His, thus suggesting a C-4 and/or C-5 addition, His-18 was 
quantitatively oxidized to 1,3-dihydro-2-oxo-His, which is 
indicative of a direct C-2 addition and/or of initial addi-
tion on C-4 and/or C-5 followed by a hydroxyl radical shift 
mediated by efficient water elimination/addition (Schöneich 
2000; Zhao et al. 1997) (Scheme 5b). MCO products of His 
were also observed in insulin samples, where the reaction 
selectively occurred across the B chain with formation of 
1,3-dihydro-2-oxo-His at both residues involved in zinc ion 
binding (Hovorka et al. 2002; Sadineni and Schöneich 2007).

Mechanisms of tryptophan oxidation

With its indole group, Trp represents the strongest chromo-
phore in proteins, and its photo-oxidation gives rise to a 
complex mixture of products (Davies 2003, 2004; Ehren-
shaft et al. 2015; Langlots et al. 1986; Pattison et al. 2012; 
Saito et al. 1977). Type II photo-oxidation of Trp follows a 
[2 + 2] cycloaddition mechanism involving a C-2, C-3-di-
oxiethane intermediate that converts into N-formylkynure-
nine (NFK), kynurenine (Kyn) by deformylation of NFK, 
or a diastereomeric mixture of oxindolylalanine (Oia) and 
dioxindolylalanine (diOia) (Zhang et al. 1993). Alterna-
tively, 1O2 may add to the indole group through an ene-
reaction giving tryptophanyl-hydroperoxide, followed 
by a nucleophilic attack of the hydroperoxide or of the 
α-amino group at the imine, which leads, respectively, to 

Scheme  4   Possible thiol–disulfide exchanges leading to trisulfide 
bonds
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Scheme 5   Possible oxidation processes of His by a photo-oxidation and b MCO
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the dioxiethane intermediate or to a pyrroloindole deriva-
tive (Scheme 6a) (Gracanin et al. 2009; Nakagawa et al. 
1977).

Furthermore, type I photo-oxidation of Trp results 
in a radical cation (Trp˙+) that undergoes either Cα-Cβ 
homolytic cleavage (Schöneich 2018) or deprotonation 
of the NH group of the indole ring to generate a tryp-
tophanyl (indolyl) radical (Trp˙) (Creed 1984a). This spe-
cies may capture a superoxide radical anion (O2

–·) to form 
tryptophanyl-hydroperoxide that may undergo intramo-
lecular cyclization to generate a C-2, C-3-dioxetane inter-
mediate or a pyrroloindole derivative (Aspee and Lissi 
2000). Alternatively, also dimers and trimers arising from 
the tryptophanyl radical (Trp˙) have been detected upon 
photo-oxidation in the presence of riboflavin (Silva et al. 
2019) (Scheme 6b).

MCO mechanisms have been reported, as well, which 
lead to oxidized Trp species including hydroxy-Trp, NFK, 
and Kyn (Finley et al. 1998).

Susceptibility of mAbs to tryptophan oxidation

Oxidative modification of Trp has been shown to depend 
both on the identity of the neighboring amino acids and 
on its location in the protein structure (Pigault and Gerard 
1984; Tassin and Borkman 1980), and ad-hoc developed 
RP-HPLC-based methods have been employed for its deter-
mination and characterization in biopharmaceuticals (Yang 
et al. 2007). Irradiation of a mAb with near UV–visible light 
resulted in extensive oxidation of Trp-50 and Trp-104 in 
the heavy chain, and of Trp-90 in the light chain, with Trp-
104 exhibiting the fastest oxidation rate, with concomitant 
formation of Kyn, NFK, 5-OH-Trp, Oia, and diOia (Li et al. 
2014). Similarly, exposure of the humanized mAb MEDI-
493 to UV light caused substantial oxidation of heavy-
chain Trp-105, which was accompanied by a substantial 
decrease in binding affinity for the corresponding antigen 
(respiratory syncytial virus F protein), with a significant 
decrease in potency (Wei et al. 2007). Also in the case of 

(a)

(b)

(c)

Scheme 6   Possible oxidation processes of Trp by a, b photo-oxidation and c MCO
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the recombinant IgG1 antibody HER2, progressive oxidation 
of the solvent-exposed Trp-32 induced by treatment with 
tBHP was accompanied by a decrease in the binding affinity 
to the own target. Interestingly, the complementary deter-
mining region (CDR), where Trp-32 is located, was found 
to be more susceptible to the oxidation conditions used than 
the heavy-chain Met-429 and Met-107 (Hensel et al. 2011).

Mechanisms of tyrosine oxidation

Analogously to Trp, photo-oxidation of Tyr is one of the 
major oxidative degradation processes in peptides and pro-
teins. 1O2 mediated oxidation was reported to proceed under 
basic conditions with the formation of unstable endoperox-
ides that rearrange into hydroperoxides. The latter contain a 
Michael acceptor system that can react with various nucleo-
philes leading to intra-residue cyclization or inter-residue 
cross-linking (Scheme 7a) (Rizzuto and Spikes 1977; Wright 
et al. 2002).

Oxidation of Tyr side chains may also be mediated by 
radical species, resulting either from MCO (Ali et al. 2004) 
or type I photo-oxidative events (Creed 1984b). In the lat-
ter case, the reaction mechanism proceeds analogously to 

that observed for Trp, with the formation of a Tyr radical 
cation. This may undergo the homolytic cleavage of the 
Cα–Cβ bond, resulting in a protonated quinone methide 
and a Cα-glycyl radical (Kang et al. 2019), or it may build 
a phenoxyl radical through proton loss (Scheme 7b). The 
phenoxyl radical may either dimerize to give C–O or C–C 
dityrosine adducts (Aeschbach et al. 1976; Garrison 1987), 
or further oxidize to form p- or o-hydroperoxide intermedi-
ates that may react with vicinal nucleophilic residues (Gar-
rison 1987; Ito et al. 1988; Moller et al. 2012; Winterbourn 
et al. 2004). Alternatively, the o-hydroperoxide may form 
an o-benzoquinone (DOCH) that is susceptible to Michael 
additions (Ito et al. 1984), or it may further convert into 
dihydroxy phenylalanine (DOPA) (Bielski et  al. 1985; 
d’Alessandro et al. 2000; Song and Buettner 2010).

Susceptibility of biotherapeutics to tyrosine 
oxidation

Tyr oxidation has been detected in protein therapeutics after 
oxidative treatments. For example, in interferon β, oxidative 
modification of Tyr was induced with Cu2+/ascorbate and 
resulted in the formation of highly immunogenic aggregates 

Scheme 7   Possible type II (a) and I (b) photo-oxidation processes of Tyr



1419Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation,…

1 3

arising from 1,4- or 1,6-type addition of the N-terminus 
or Lys-105 side chain to the o-benzoquinone degradation 
product of Tyr-20, Tyr-60, Try-126, or Phe-11 (Torosantucci 
et al. 2013).

Oxidation of insulin with Cu2+/ascorbate resulted in the 
formation of the o-benzoquinone DOCH and DOPA at Tyr 
positions B16, B26, A14, and A19, with subsequent forma-
tion of cross-linked aggregates (Torosantucci et al. 2012). 
In another example, MCO of insulin with H2O2/Cu formed 
dityrosine, which resulted in a significant decrease in glu-
cose oxidation capability (Olivares-Corichi et al. 2005), 
similarly to what observed by comparing the decrease in 
biological activity of insulin following either Fenton oxi-
dation or incubation in diabetic patient´s plasma (Montes-
Cortes et al. 2010). UV light treatment of the Fc region of 
IgG4 was shown to produce degradation products of Tyr at 
positions 300, 373, and 436, corresponding to glycine and 
glyoxal amide (Kang et al. 2019).

Mechanisms of phenylalanine oxidation

Oxidation of Phe follows predominantly photo-oxidative 
mechanisms (Scheme 8) (Bent and Hayon 1975). Absorp-
tion of UV light may induce photodissociation generating 
the benzyl radical, or photo-ionization yielding, like in the 
case of Trp and Tyr, a radical cation and its hydroxylated 
ring products that, then, undergo degradation pathways in 
analogy to those observed for Tyr (Davies and Gilbert 1992).

MCO of Phe has also been observed (Ashraf et al. 1980): 
in this case, direct reaction with the hydroxyl radical was 
suggested to occur at the Cα position with formation of an 
α-keto acid that degrades to aldehyde products and CO2.

Intra‑ and inter‑residue cyclizations 
upon loss of water or ammonia

Mechanisms of asparagine and aspartic acid 
degradation

Both Asp and Asn residues are subjected to spontaneous 
degradation reactions that may lead to a variety of side 
products, depending on the environmental conditions and 
the local conformation (Clarke 1987; Geiger and Clarke 
1987; Patel and Borchardt 1990b). Under highly acidic 
conditions (pH < 4), Asn residues may be converted into 
Asp residues by acid-catalyzed deamidation (Oliyai and 
Borchardt 1993; Patel and Borchardt 1990a), which fur-
ther promotes the acid-catalyzed formation of succinic 
anhydride upon cleavage of the peptide bond following 
Asp, especially when the n + 1 position is occupied by Pro 
(Marcus 1985) (Scheme 9a). Peptide-bond cleavage may 
occur under acid conditions also before Asp, when Gly 
is present at the n-1 position, probably by formation of 
a six-membered cyclic intermediate (Marcus 1985; Patel 
and Borchardt 1990b) (Scheme 9a).

C-terminal Asn residues may be deamidated under 
acidic conditions also by a mechanism involving the for-
mation of a succinic anhydride intermediate via intramo-
lecular nucleophilic catalysis (Scheme 9b) (Darrington 
and Anderson 1994).

Under mildly acidic conditions (pH 4–5), Asn residues 
are mainly stable, whereas Asp residues are prone to form 
the succinimide (Snn) intermediate (Oliyai and Borchardt 
1993; Patel and Borchardt 1990a). At pH > 6, the forma-
tion of the Snn intermediate becomes significant also for 
Asn (Patel and Borchardt 1990b). According to a generally 
recognized mechanism, the reaction proceeds through a 
nucleophilic attack of the peptide bond on the β-carbonyl 
side chain of Asn or Asp to form a metastable tetrahedral 
intermediate, from which ammonia or water is eliminated 
(Aylin et  al. 2003; Capasso et  al. 1989, 1991b, 1993; 
Oliyai and Borchardt 1993; Patel and Borchardt 1990a) 
(Scheme 9c). Interestingly, deamidation of Asn residues 
via the Snn intermediate is kinetically favored around 
pH 6 or higher (Patel and Borchardt 1990b), whereas it 
becomes less favored for Asp, which reflects the negative 
effect of the increased ionization of the aspartyl side chain 
(Capasso et al. 1992; Oliyai and Borchardt 1993; Patel 
and Borchardt 1990a). Once formed, the Snn intermediate 
undergoes water attack on either side of the imide nitro-
gen, Cα or Cβ, followed by breakage of the corresponding 
C–N bond to lead to a mixture of Asp and iso-Asp, the lat-
ter being produced in a two-to-fourfold excess (Xie et al. 
1996). Furthermore, due to favorable inductive factors and 
resonance stabilization effects of the adjacent nitrogen 

Scheme 8   Possible type I (a) and MCO (b) processes of Phe
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and β-carbonyl carbon, respectively, the Snn structure has 
inherent tendency to undergo base-induced racemization 
at Cα carbon (Radkiewicz et al. 1996).

Interestingly, Snn or succinic anhydride formation by 
intra-residue cyclization of Asn or Asp followed by pep-
tide-bond cleavage was also observed, especially when the 
competitive mechanism leading to Asp and iso-Asp forma-
tion was slowed down by the presence of bulky residues at 
the n + 1 position, such as Thr, Val, Leu, or Pro (Geiger and 
Clarke 1987; Patel and Borchardt 1990b; Tyler-Cross and 
Schirch 1991), as well as of His that, besides the steric hin-
drance, also acts as general base catalyst at neutral or basic 
pH (Goolcharran et al. 2000) (Scheme 9c).

Beside the pH, other variables related to both external 
conditions and intrinsic properties of the chemical environ-
ment surrounding the Snn-prone site may affect the course of 
the reaction and the product profile. To this regard, the steric 
effect and electron-withdrawing properties of the amino acid 
adjacent to the sensitive site play a major role. Accordingly, 
amino acids with poor steric hindrance, above all Gly, at 
the n + 1 position, give the highest extent of Snn formation, 
whereas more sterically hindered residues like Leu, Pro, Ile, 
Phe, and Val offer higher degree of protection (Behrendt 
et al. 2016; Patel and Borchardt 1990b; Robinson et al. 
1973). Residues presenting a cationic side chain at physio-
logical pH such as Lys and Arg may promote Snn formation 

(a)

(b)

(c)

Scheme 9   Mechanisms of deamidation a–c of Asn and dehydration c of Asp



1421Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation,…

1 3

by stabilization of the anionic tetrahedral intermediate and/
or by general acid catalysis. In the case of His, both general 
acid and base catalysis can be observed, depending on the 
pH (Goolcharran et al. 2000). Other neighboring groups, 
including the β-hydroxyl groups of Ser or Thr at the n + 1 
position (Patel and Borchardt 1990b; Robinson et al. 1973), 
have showed catalytic effects in the formation of Snn.

Susceptibility of mAbs to asparagine and aspartic 
acid degradation

Asn and/or Asp degradation products have been observed 
in proteins, including mAbs, where they have been found 
both in Fab and Fc domains, and their impact on mAb stabil-
ity, potency, and/or safety has been considered as the object 
of study (Reissner and Aswad 2003; Wang 1999). In such 
complex systems, structural factors as well as the extent of 
solvent exposure may greatly affect the degradation of Asn 
and Asp residues (Wakankar et al. 2007). For example, the 
CDR region of mAbs contains several Asp and Asn resi-
dues that may be considered hot-spot degradation points, 
depending on their location within the protein (Huang et al. 
2005; Vlasak et al. 2009). In particular, Asn-30, Asn-55, and 
Asp-102 were shown to be particularly susceptible to iso-
Asp conversion, with consequent decrease in target binding 
affinity and potency of an antibody against HER/neu (Harris 
et al. 2001).

Deamidation has also been detected in the Fc region, 
particularly in the sequence motif Leu–Asn–Gly–Lys in the 
CH2 domain (Chelius et al. 2005; Mukherjee et al. 2010) 
and at Asn-384 and Asn-389 in the CH3 domain. Interest-
ingly, the latter two residues converted mainly into iso-Asp 
and Asp, respectively, which was attributed to a specific 
effect of the local structure on the Snn hydrolysis pathway 
(Sinha et al. 2009). Within the CH3 domain, deamidation 
events were also reported along the C-terminal part, particu-
larly at Asn-434 (Khawli et al. 2010), which is of biological 
relevance, as it has been shown that this residue is included 
in the binding site of human IgG1 to the FcRn (Shields et al. 
2001; Ying et al. 2014). Therefore, alterations of Asn-434 
may eventually alter the antibody presence in the circula-
tion. However, it should be also mentioned that charge vari-
ants of a recombinant humanized IgG1 mAb did not show 
significantly different pharmacokinetic properties in serum 
(Khawli et al. 2010).

Mechanisms of diketopiperazine formation

Diketopiperazine (DKP) formation has been found in tryptic 
digests (Jornvall 1974), and also as degradation product of 
peptide solutions or formulations upon long storage (Oyler 
et al. 1991; Sepetov et al. 1991; Straub et al. 1995). The 
intramolecular cyclization proceeds by initial trans → cis 

isomerization of the peptide bond between the first two resi-
dues, followed by nucleophilic attack of the α-amine of the 
first residue on the α-carbonyl of the second residue to pro-
duce a zwitterionic intermediate that evolves into the DKP 
upon elimination of the third residue (Capasso et al. 1998) 
(Scheme 10). Interestingly, the zwitterionic intermediate has 
been proposed to rearrange at high temperatures (100 °C or 
higher) and pH > 6 to possible bicyclic intermediates that 
convert into the inverted linear dipeptidyl moiety or to the 
linear dipeptidyl moiety with epimerization of the first resi-
due (Sepetov et al. 1991; Steinberg and Bada 1981, 1983) 
(Scheme 10a).

DKP formation can be both general base- and general 
acid-catalyzed (Capasso et al. 1998; Goolcharran and Bor-
chardt 1998; Suzuki et al. 1981), although at basic pH values 
the trans → cis isomerization of the peptide bond becomes 
the rate-limiting step (Capasso et al. 1998). Moreover, the 
cyclization is favored by the presence of Pro or Gly at the 
second position (Gisin and Merrifield 1972).

Interestingly, DKP formation has also been observed in 
peptides containing amino-acid residues prone to Snn forma-
tion at position 2, as a result of the intramolecular attack of 
the free N-terminal amine on the α-carbonyl of the Snn ring 
(Scheme 10b) (Brückner et al. 2012; Dehart and Anderson 
2007; Jornvall 1974; Schon and Kisfaludy 1979).

Mechanisms of glutamine and glutamic acid 
degradation

As already reported for Asn residues, also Gln residues 
undergo direct deamidation under acidic conditions in a 
sequence-independent manner (Joshi et al. 2005; Robin-
son and Rudd 1974) (Scheme 11a). At pH close to 6, Gln 
side chains exhibit the highest stability (Scotchler and 
Robinson 1974). At neutral and basic pH, Gln deamida-
tion proceeds via formation of a six-membered glutarimide 
intermediate (Scotchler and Robinson 1974; Robinson and 
Rudd 1974; Robinson et al. 1973). Water attack on one of 
the two carbonyl groups affords the corresponding γ-Glu-
peptide or α-Glu-peptide, with a preference for the γ-residue 
(Scheme 11b) (Capasso et al. 1991a).

However, the formation of glutarimide is much less 
favored than the formation of Snn due to the higher distance 
of the γ-carbonyl group from the backbone (Robinson and 
Rudd 1974; Robinson et al. 2004), in accordance with the 
fact that Gln deamidation has been mainly detected in long-
lived proteins like βB2-crystallin in the human lens, which 
causes dimer destabilization (Lampi et al. 2006).

Contrarily to the deamidation of internal Gln residues, 
the deamidation of N-terminal Gln residues may easily 
occur via intra-residue cyclization, which results in the 
formation of pyroglutamate (pGlu). Also N-terminal Glu 
residues may convert to pGlu, especially at pH around 4 
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or 8, whereas the conversion slows down around pH 6–7, 
suggesting weak-acid/base catalysis (Chelius et al. 2006; 
Dimarchi et al. 1982; Yu et al. 2006) (Scheme 11c).

Due to the more favored formation of the five-mem-
bered pyrrolidone than that of the six-membered gluta-
rimide, degradation of Gln and Glu residues is mainly 
restricted to N-terminal Gln/Glu (Kumar and Bachhawat 
2012; Perez-Garmendia and Gevorkian 2013). However, 
it should be taken into account that pGlu formation is not 
only a spontaneous reaction, but it can also be catalyzed 
by glutaminyl cyclase, an enzyme that is present in plants 
and mammalians (Fischer and Spiess 1987; Schilling et al. 
2004). Indeed, in the case of the amyloid β (Aβ) peptide, 
it was shown that inhibition of glutaminyl cyclase in vivo 
decreased the amount of the pGlu-containing Aβ (Schil-
ling et al. 2008), which is characterized by lower solubility 
(Schlenzig et al. 2009), higher proteolytic resistance (Rink 
et al. 2010) and more toxicity (Russo et al. 2002).

Susceptibility of mAbs to pGlu formation

The presence of pGlu is frequently detected in recombinant 
mAbs, which is mainly attributed to spontaneous cyclization 
during both production (fermentation and purification) and 
storage (Chelius et al. 2006; Dick et al. 2006; Yu et al. 2006), 
and it is a reason for charge heterogeneity (Lyubarskaya et al. 
2006; Moorhouse et al. 1997; Rehder et al. 2006). Never-
theless, no significant differences in comparison to the Gln/
Glu forms have been reported with regard to potency in vitro 
(Lyubarskaya et al. 2006), or clearance in humans (Liu et al. 
2011).

β‑Elimination reactions of β‑hydroxyl‑ 
and β‑sulfhydryl‑amino acids

Ser, Thr, Cys, and cystine may undergo an acid- or base-
catalyzed β-elimination reaction that results in dehydroa-
lanine (∆Ala), β-methyl-∆Ala, and, in case of cystine, 

Scheme 10   Mechanisms of DKP formation a at positions 1 and 2 of a peptide chain, and b in the presence of Snn at position 2
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also of thiocysteine (Scheme 12) (Bar-Or et  al. 2008; 
D’Hondt et al. 2014a). Due to the sp2 hybridization of 
the α-carbon, the α,β-dehydro amino-acid residue has a 
planar geometry, which forces co-planarity of the two 
planar peptide units centered at the sp2 α-carbon. This 

induces backbone conformations that are unusual for the 
native backbone (Ajo et al. 1980), which may influence 
the structural features of peptides and proteins (Palmer 
et al. 1992). Furthermore, due to the presence of the α,β-
unsaturated carbonyl moiety, α,β-dehydro amino-acid 

(a)

(b)

(c)

Scheme 11   Mechanisms of a, b deamidation of Gln, and cyclization of N-terminal Gln

Scheme 12   β-Elimination of 
Ser, Thr, Cys, and cystine
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residues enhance the reactivity of peptides and proteins: 
indeed, they may form covalent cross-linking via Michael 
addition of suitable nucleophiles like those of Lys, Cys, 
or His side chains, leading to lysinoalanine, lanthionine, 
and histidinoalanine linkages (Cohen et al. 2007; Costan-
tino et al. 1994; Linetsky et al. 2004; Nashef et al. 1977), 
respectively. In addition, the by-product thiocysteine may 
trigger disulfide bonds reshuffling in cystine-containing 
peptides and proteins (Scheme 4) (Costantino et al. 1994).

Furthermore, ∆Ala derivatives may lead to back-
bone cleavage between the αN and αC of the ∆Ala resi-
due, resulting in C-terminally amidated and N-terminally 
pyruvoylated fragments (Cohen et al. 2007; D’Hondt et al. 
2014b; Patchornik and Sokolovsky 1964; Sokolovsky et al. 
1964; Wisniewski et al. 2013).

Conclusions

Spontaneous modifications of amino acids are a well-
known problem in peptide and protein research. How-
ever, it is obvious that they become very important, when 
peptides and proteins are used as drugs. In this case, the 
presence of spontaneous chemical changes and their bio-
logical effects must be carefully investigated (D’Hondt 
et al. 2014a; Wu et al. 2017). As a matter of fact, a lot of 
efforts are made to develop analytical tools and chemical 
protocols for the detection of spontaneous modifications 
in proteins and biopharmaceuticals (Alcock et al. 2018; 
Beck et al. 2013; Berkowitz et al. 2012; Forstenlehner 
et al. 2015; Grassi et al. 2017; Kettenhofen and Wood 
2010; Regl et al. 2017; Schweida et al. 2019). Moreover, 
(semi)synthetic approaches are applied to reproduce pro-
teins containing the spontaneous modification of interest 
at selected positions, to evaluate its impact on the protein 
structure and biology: for example, an explorative study 
has been conducted to assess the synthetic accessibility 
of the Fc CH3 IgG1 region containing a modified residue, 
i.e., Met(O), at the desired position, to avoid the post-
production treatment with strong oxidants (Grassi et al. 
2018). Furthermore, the semisynthetic approach has been 
used to prepare the two site-selective glycated proteins 
Hsp27 (Matveenko et al. 2016) and Tau (Ellmer et al. 
2019): glycation refers to a class of non-enzymatic modi-
fications of biomolecules containing nitrogen nucleophiles 
that react with the carbonyl group of ketoses or aldoses to 
build a Schiff base. The latter can slowly isomerize to the 
Amadori product (from aldoses) or Heyns–Carson product 
(from ketoses), which undergo further transformations to 
so-called advanced glycation end-products (AGEs), like 
argpyrimidine and Nε-(carboxymethyl)-lysine. AGEs are 
believed to play a major role in aging and pathophysio-
logical processes (Fournet et al. 2018). Hsp27 (heat-shock 

protein 27) is a chaperone protein that plays a role in the 
regulation of apoptosis in cancer cells, e.g., by inhibit-
ing cytochrome c-mediated caspase activation and pro-
moting cell survival. However, a glycated form of Hsp27 
containing argpyrimidine at position 188 has been also 
isolated, which, contrarily to unmodified Hsp27, forms 
significantly smaller oligomers and is not able to counter-
act caspase activation by cytochrome c (Sakamoto et al. 
2002). Accordingly, the semisynthetic glycated variant 
has shown reduced chaperone activity in vitro (Matveenko 
et al. 2016). Tau is a protein that regulates microtubule 
assembly and disassembly in neurons and undergoes a 
number of PTMs, including phosphorylation and glyca-
tion, which may have an effect on its propensity to form 
pathogenic fibrils (Liu et al. 2016). A semisynthetic vari-
ant of Tau4 containing Nε-(carboxymethyl)-lysine at posi-
tion 294 has shown to negatively affect tubulin polymeri-
zation while displaying very similar fibrillization to the 
non-glycated variant, a behavior that has resulted to be 
opposite to that of phosphorylated Tau4 variants (Ellmer 
et al. 2019).

While many more spontaneous reactions of amino-acid 
residues are known than those mentioned, like revers-
ible hydrogen-transfer reactions involving thiyl radicals 
in Cys-containing peptides and proteins (Mozziconacci 
et al. 2010, 2011; Steinmann et al. 2017), still many oth-
ers are expected to occur, which will need to be detected 
and explored both mechanistically and biologically (Schö-
neich 2017). Future research in this field will enormously 
support the development of safe and potent peptide and 
protein drugs.
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