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transmethylation metabolism, thereby decreasing DNA dam-
age and carcinogenic processes and possibly preventing arte-
rial, neuropsychiatric, and neurodegenerative diseases. This 
review focuses on the role of methionine in metabolism, 
oxidative stress, and related diseases.
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Introduction

Mammals rely on nutrients such as amino acids, fatty acids, 
vitamins, and minerals from ingested food to maintain an 
adequate nutritional status for the regulation of metabolic, 
physiological, and neuronal homeostasis, as well as for the 
prevention of diseases (Trumbo 2008; Stover et al. 2017). 
Amino acids are natural compounds involved in various 
important biological processes, such as metabolism, growth, 
and immunity (He et al. 2011). They are the building blocks 
of proteins and precursors to functional molecules (Kim 
et al. 2007; Li et al. 2007; Wu et al. 2007). Some amino 
acids are conditionally indispensable/essential for certain 
developmental and physiological situations. Amino acids are 
crucial for normal physiology and must be supplied in suf-
ficient amounts by the diet (Blachier et al. 2013).

In the field of animal production, it is common for syn-
thetic amino acids to be added to feed to achieve rapid 
correction of any nutrient deficiencies. These “ideal com-
pounds” also help to reduce the emission of nitrogen into 
the environment. In addition, some essential amino acids 
are currently used as nutraceutical supplements to control 
enteric processes, reduce pathogenic microorganisms and 
harmful lipids, and improve growth performance (Vieira 
et al. 2004).

Abstract  Methionine is an aliphatic, sulfur-containing, 
essential amino acid, and a precursor of succinyl-CoA, 
homocysteine, cysteine, creatine, and carnitine. Recent 
research has demonstrated that methionine can regulate 
metabolic processes, the innate immune system, and diges-
tive functioning in mammals. It also intervenes in lipid 
metabolism, activation of endogenous antioxidant enzymes 
such as methionine sulfoxide reductase A, and the biosyn-
thesis of glutathione to counteract oxidative stress. In addi-
tion, methionine restriction prevents altered methionine/
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Many factors can influence the concentrations of amino 
acids required in the diet, such as the chemical composition 
of the feed, the ambient temperature of the feeding environ-
ment, the sex and age of the animal, and the grain size of 
the feed. All these parameters can alter the consumption 
of amino acids and their subsequent metabolic processing. 
Sulfur amino acids are important in mammalian nutrition, 
because they are limiting nutrients, especially when crystal-
line amino acids, such as lysine, tryptophan, and threonine, 
are supplemented (Dauer and Przedborski 2003). Methio-
nine sulfoxide reductase A (MsrA) is a key endogenous 
antioxidant enzyme that can promote longevity in animals. 
Many papers have reported that methionine plays a key role 
in antioxidant processes (Soares et al. 2017).

Oxidative stress is the result of an imbalance of pro-
oxidant and antioxidant homeostasis, causing irreversible 
damage to macromolecules and cells and resulting in serious 
damage to the organism as a whole (Gonsette 2008). Mam-
malian tissue has an innate antioxidant capacity that is made 
up of non-enzymatic systems and endogenous enzymes, 
such as superoxide dismutase (SOD), catalase (CAT), and 
glutathione peroxidase (GPx) (Gonsette 2008; Lowe 2014; 
Del et al. 2015).

Mitochondria are cellular organelles that are implicated 
in several physiological processes that are essential for cell 
survival, such as the synthesis of adenosine triphosphate 
(ATP), the control of intracellular Ca2+ homeostasis, the 
regulation of cell cycles, and neurotransmission and syn-
aptic activity in the brain (Serviddio et al. 2011; Kasahara 
and Scorrano 2014; Romano et al. 2017). The brain is highly 
susceptible to mitochondrial impairment because of its high 
energy requirements and vulnerability to oxidative stress 
(Uttara et al. 2009). Thus, oxidative stress and mitochon-
drial dysfunction can trigger many neuropsychiatric disor-
ders and neurodegenerative diseases, such as schizophrenia 
(Ben-Shachar and Laifenfeld 2004) and Alzheimer’s disease 
(Dauer and Przedborski 2003; Clay et al. 2011; Serviddio 
et al. 2011; Yao and Keshavan 2011; Cassano et al. 2012; 
Manji et al. 2012; Scola et al. 2013).

Stover et al. (2017) reported that it may be necessary to 
supplement the diet with essential nutrients (such as amino 
acids and fatty acids) to stem the development of disease, 
because the nutritional requirements change according to the 
health of the individual in question. Brain-specific nutrient 
deficiencies can initiate disease, its progression, and related 
comorbidities (Ho et al. 2010; Molero-Luis et al. 2015). The 
clinical management of brain nutrients can provide meaning-
ful therapeutic benefits (Papakostas et al. 2012).

The WHO has reported that cancer is the second leading 
cause of death globally, responsible for around 9 million 
deaths annually. The leading risk factors for cancer are a 
high body mass index, low fruit and vegetable intake, lack 
of physical activity, and the consumption of tobacco and 

alcohol (Torre et al. 2015). Recently, there has been great 
interest in the use of antioxidants such as vitamins (C and 
E), polyphenols (flavonoids), minerals (Zn), and amino acids 
(Met) to decrease oxidative stress and delay the onset of 
cancer (Nimse and Pal 2015). Because of the regulatory role 
of methionine in endogenous antioxidant enzymes and other 
metabolic processes, this amino acid may play a leading role 
in reducing the prevalence of cancer. The role of methionine 
restriction in methionine/transmethylation metabolism—
which directly influences the risk of cancer occurring and 
could be used as a palliative treatment—is currently being 
discussed (Xiao et al. 2014; Maddocks et al. 2016). This 
paper addresses the role of methionine in metabolism, oxida-
tive stress, and diseases.

Methionine in metabolism

An organism has many different proteins, which are made 
up of 20 amino acids in different sequences and combina-
tions. Other non-protein amino acids can also be found in 
living organisms. Of the 20 amino acids that are the basic 
components of the body’s proteins, nine are considered to 
be essential, as they cannot be synthesized endogenously via 
metabolic pathways and thus must be provided by dietary 
sources. Amino acids can be classified as aliphatic, aromatic, 
or heterocyclic, with aliphatic amino acids being the most 
common (Blachier et al. 2013).

It is known that beneficial gut microorganisms affect the 
digestion of proteins and the metabolism of amino acids (Li 
et al. 2004; Libao-Mercado et al. 2006; Yin and Bie 2010). 
The efficiency of proteins and amino acids is limited by the 
catabolism of luminal microbes (Li et al. 2008; Deng et al. 
2009; Fang et al. 2010; Yin et al. 2010). Furthermore, during 
some infections, the intestinal mucosa may need additional 
energy resources such as amino acids (Blachier et al. 2013). 
In these instances, branched-chain amino acids (leucine, iso-
leucine, and valine), histidine, lysine, methionine, phenyla-
lanine, threonine, and tryptophan are used by the intestinal 
cells (Yin et al. 2004). However, it is not yet fully understood 
how these amino acids are transported to and processed in 
the intestinal tract (Chen et al. 2007; Wang et al. 2009).

Methionine, a precursor of succinyl-CoA, homocysteine, 
cysteine, creatine, and carnitine, is an essential sulfur-con-
taining amino acid. It is necessary for the metabolism of 
polyamines, creatine, and phosphatidylcholine. Methionine 
is the precursor for cellular methylation and the synthe-
sis of cysteine, and can thus decrease the dietary cysteine 
requirement (Finkelstein et al. 1988; Mackay et al. 2012). 
The cysteine produced can be used in protein translation 
and the synthesis of the antioxidant glutathione and the 
osmolyte taurine (Rezzi et al. 2007; Nicholson et al. 2008). 
Methionine also participates in the recycling of the sulfur 



2093The role of methionine on metabolism, oxidative stress, and diseases﻿	

1 3

that is assimilated in energy-consuming reactions (Pirkov 
et al. 2008; Albers 2009). A deficiency of this amino acid 
suppresses epithelial growth in newborn animals by decreas-
ing intestinal activity in the l-methionine cycle (Bauchart-
Thevret et al. 2009).

Stoll et al. (1999) reported that the net portal balance of 
methionine in piglets represents 48% of the intake, which 
indicates that some of the methionine is used by the intes-
tine. The parenteral methionine requirement is thus approxi-
mately 69% of the enteral requirement in newborn piglets 
(Shoveller et al. 2003). In addition, Shoveller et al. (2003) 
found that cysteine is effective in conserving methionine: 
in the presence of excess dietary cysteine, the methionine 
requirement is around 70% of the enteral requirement. More-
over, Bauchart-Thevret et al. (2009) showed that a deficiency 
of sulfur-containing amino acids leads to fewer goblet cells 
and lower glutathione content in the small intestine. Simi-
larly, Riedijk et al. (2007) reported that approximately 20% 
of dietary methionine is used in the gastrointestinal tract 
(GIT), which is also a site for homocysteine production and 
whole-body transmethylation and transsulfuration. How-
ever, studies by Blachier et al. (2007) have revealed that 
less methionine is catabolized in pig enterocytes, but it is 
substantially catabolized in other cells of the portal-drained 
viscera and intestinal mucosa.

With regard to other animal species, Tsiagbe et al. (1987) 
reported that methionine directly influences growth and 
immunity response in broiler chickens. Moreover, Swain and 
Johri (2000) found a synergic relationship between methio-
nine and choline in antibody production; dietary methionine 
levels from 322 to 580 mg/day improved the serum levels 
of IgG. Likewise, Carew et al. (2003) demonstrated that 
methionine deficiency decreases the relative weight of the 
lymphoid organs, which in turn harms growth. However, 
excess consumption of methionine can also have an adverse 
effect on growth. In the study above, supplementation with 
20 or 40 g/kg excess methionine was found to decrease food 
intake and reduce weight gain (D’Mello and D’Mello 2003).

Methionine in oxidative stress

Reactive oxygen species (ROS) are produced by a variety of 
both physiological and non-physiological events, including 
the Fenton reaction, cellular respiration, mitochondrial dys-
functions, pathologies, phagocytes, neutrophils, and stress. 
However, cellular systems of detoxification easily eliminate 
low concentrations of ROS and free radicals by activating 
endogenous antioxidants such as SOD, CAT, GSH peroxi-
dase, and GSH reductase. Nonetheless, excessive production 
of ROS causes extensive cellular damage and affects DNA 
and membrane phospholipids, causing cell death, tissue 
injury, chronic inflammatory responses, and fibrogenesis 

(Freitas et al. 2016). High concentrations of free radicals 
and ROS-saturated cellular systems of detoxification can 
induce cellular damage in two ways: cell senescence or cell 
death. Cell senescence is characterized by the induction 
of autophagy and the arrest of the cell cycle, whereas cell 
death occurs through necrosis or apoptosis. Cell necrosis is 
induced by a deficiency in ATP content, whereas apopto-
sis is induced under good energy conditions (Romano et al. 
2017).

Methionine plays an essential role in the immune system 
through its metabolites. In this regard, Blachier et al. (2013) 
found that this amino acid directly influences the functioning 
of the immune system because of methionine catabolism 
leading to an increase in the production of glutathione, tau-
rine, and other metabolites. Methionine is also readily used 
by the hepatocytes for the direct synthesis of glutathione, 
which is a low-molecular-weight antioxidant (Blachier et al. 
2013). Meanwhile, methionine has been shown to chelate 
lead and removes it from tissues, which decreases oxidative 
stress (Patra et al. 2001). It has been also demonstrated that a 
lower concentration of methionine can prompt transsulfura-
tion. When the intake of methionine is increased, substrate 
flux through the transmethylation pathway decreases, and 
flux through the transsulfuration pathway increases (Garg 
et al. 2011; Hosseini et al. 2012).

Some researchers are currently investigating the impact 
of methionine restriction on immune system function and 
oxidative stress in mammals. It has been shown that restrict-
ing this amino acid stimulates the production of glutathione 
and reduces oxidative stress (Hosseini et  al. 2012, Liu 
et al. 2017). Campbell et al. (2016) observed an alteration 
of the oxidative activity in a branch of the pentose phos-
phate pathway (PPP) after increasing methionine supple-
mentation. They also found that pre-incubating cells with 
methionine increased cellular tolerance to the thiol oxidizing 
agent diamide with relation to oxidative pentose phosphate 
(Campbell et al. 2016). However, studies by Maddineni et al. 
(2013) revealed that mice with restricted dietary methionine 
intake display reduced oxidative stress but no changes in the 
activity of their antioxidant enzymes. This suggests that fur-
ther studies are needed to determine the effect of methionine 
restriction on antioxidant activity (Fig. 1; Table 1). 

Methionine in disease

Many studies have linked oxidative stress with the pathogen-
esis of several hepatic and renal diseases (Hyelin et al. 2010; 
Li et al. 2015). Stefanello et al. (2009) showed that chronic 
exposure to methionine leads to oxidative stress and histo-
logical changes in the liver in rat models. The acute admin-
istration of methionine and/or methionine sulfoxide (MetO) 
also significantly changes oxidative stress, as shown by the 
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thiobarbituric acid reactive substances (TBARS), total thiol 
content, and enzymatic antioxidant defense results (Costa 
et al. 2013). Meanwhile, chronic dietary methionine may 
induce vascular (Troen et al. 2003) and kidney damage with 
tubular hypertrophy (Kumagai et al. 2002). However, the 
effects of hypermethioninemia on the kidneys are still under 
investigated; this tissue can regulate plasma concentrations 
of amino acids, urea, and ammonia. In addition, high serum 
methionine concentrations have been found in patients with 
coronary, cerebrovascular, and arterial occlusive diseases. 
High concentrations of methionine and MetO in the plasma 
may cause a progressive increase in the rate of glomerular 
filtration, thus impairing renal function. These results may 
contribute to understanding the effects of hypermethionine-
mia on the mechanisms involved in hepatic and renal dis-
eases (Soares et al. 2017).

A direct relationship has been found between oxidative 
stress and cancer, because oxidative stress is present in vari-
ous cancer cells. The imbalance of redox pathways could 
be related to the stimulation of oncogenes. Furthermore, an 
increased level of 8-OH-G, an indicator of oxidative DNA 
lesions, induces DNA mutation, a critical element in car-
cinogenesis and various tumors. Therefore, oxidation is 
strongly implicated in the etiology of cancer (Jackson and 
Bartek 2009). According to Valko et al. (2006), DNA dam-
age and genome stability are predominantly associated with 
the carcinogenic initiation process.

It has been demonstrated that cancer cells are altered by 
methionine metabolism and transmethylation. When methio-
nine is replaced by homocysteine, the growth of cancer cells 

is inhibited. Furthermore, methionine dependence may indi-
cate an overall imbalance in transmethylation. Thus, the pre-
vention of altered methionine/transmethylation metabolism 
or compensation of the altered metabolism may be the main 
reason for the barrier effect of methionine against cancer 
(Hoffman 1985; Jackson and Bartek 2009). Recent research 
has shown that cancer cells have a “methyl-sink”, whereby 
methyl groups are diverted from DNA (Dash et al. 2016). In 
addition, methionine is seen to provoke alteration and exces-
sive transmethylation in cancer cells. However, Dash et al. 
(2016) have reported that decreased levels of methionine 
and its metabolites may decrease cellular function in multi-
ple organs at a systemic level. The effectiveness of methio-
nine restriction for treating cancer is dependent upon many 
factors, such as age, innate immunity, type and severity of 
cancer, intestinal health, diet, and nutritional requirements.

The role of methionine in lipid metabolism has also been 
discussed, mainly as a means of reducing obesity, type 2 
diabetes, and insulin resistance. In this sense, methionine 
restriction can reduce fat accumulation by caloric restric-
tion, which increases de novo lipogenesis, lipolysis, and 
fatty acid oxidation. However, the physiological mechanisms 
in the adipose tissue and liver are not well known (Zhou 
et al. 2016). In addition, the studies of Soares et al. (2017) 
found that MetO increases the serum triglyceride levels in 
rats due to increased production of acetyl-CoA by a higher 
circulation of Met in bloodstream. Likewise, Hidiroglou 
et al. (2004) demonstrated that hypermethioninemia causes 
a decrease in serum LDL cholesterol and Stefanello et al. 
(2007) reported that excess Met reduced serum and brain 
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Fig. 1   Main effects of the biological activity of the Met and methionine restriction on metabolism, oxidative stress, and diseases
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Table 1   Biological function of methionine on metabolism, oxidative stress, and diseases

Items Biological function References

Metabolism It is necessary for normal growth and development in mammals Blachier et al. (2013)
It is precursor of succinyl-CoA, homocysteine, cysteine, creatine, and carnitine. 

Participates in the biosynthesis of S-adenosyl-methionine (SAM), which is 
involved in polyamine, creatine, and phosphatidylcholine metabolism

Finkelstein et al. (1988) and Mackay et al. (2012)

It is precursor for cellular methylation reactions and participates in the recycling 
of the sulfur. It is also converted to l-methionine sulfoxide (MetO)

Finkelstein et al. (1988), Troen et al. (2003) and 
Mackay et al. (2012)

The cysteine produced is used in protein translation, and synthesis of glu-
tathione and the osmolyte taurine

Rezzi et al. (2007); Nicholson et al. (2008)

A deficiency atrophies the small intestine and suppresses epithelial growth in 
newborn animals, as well as fewer goblet cells and lower glutathione content 
in the small intestine

Bauchart-Thevret et al. (2009)

The 20% of the dietary methionine is used in the GIT Riedijk et al. (2007)
The parenteral methionine requirement is thus approximately 69% of the enteral 

requirement in newborn piglets
Shoveller et al. (2003)

It is less catabolized in pig enterocytes; it is substantially catabolized in other 
cells of the portal-drained viscera and intestinal mucosa

Blachier et al. (2007)

Directly influence of Met on growth and immunity response in broiler chickens Tsiagbe et al. (1987)
Synergistic effect of Met with choline on the production of antibodies (IgG) Swain and Johri (2000)
The deficiency of Met decreases relative weight of lymphoid organs in turn the 

growth performance
Carew et al. (2003)

Excess intakes of Met causes growth depressions D’Mello and D´Mello (2003)
Oxidative stress It is readily catalyzed by the hepatocytes for the direct synthesis of glutathione, 

which is a low-molecular-weight antioxidant
Blachier et al. (2013)

It has been shown to chelate lead and removes it from tissues Patra et al. (2001)
An increase in Met intake decreases the substrate flux through the transmethyla-

tion pathway
Garg et al. (2011) and Hosseini et al. (2012)

An increase of Met changes the oxidative activity in the branch of the pentose 
phosphate pathway and increases cellular tolerance to the thiol oxidizing agent 
diamide

Campbell et al. (2016)

Methionine restriction (MR) stimulates the production of glutathione and 
reduces oxidative stress

Hosseini et al. (2012)

MR reduces oxidative stress, but no changes in the activity of their antioxidant 
enzymes

Maddineni et al. (2013)

MR provokes a transsulfuration which leads to Met catabolism and remethyla-
tion, through homocysteine

Hosseini et al. (2012) and Romano et al. (2017)

Diseases The acute administration of Met and/or MetO modifies oxidative stress param-
eters, as shown in TBARS, total thiol content, and enzymatic antioxidant 
defense results

Costa et al. (2013)

Chronic exposure to Met induces oxidative stress and promotes histological 
changes in the liver of young rats

Stefanello et al. (2009)

Chronic dietary Met may induce vascular and kidney damage with tubular 
hypertrophy

Kumagai et al. (2002) and Troen et al. (2003)

High concentrations of Met and MetO in plasma cause a progressive increase in 
the rate of glomerular filtration, thus impairing renal function

Soares et al. (2017)

A high serum concentration of Met is associated with patients with coronary, 
cerebrovascular and arterial occlusive diseases

Soares et al. (2017)

Cancer cells are altered by Met metabolism and transmethylation, and when is 
replaced by homocysteine, the growth of cancer cells is inhibited

Hoffman (1985) and Jackson and Bartek (2009)

Cancer cells have a “methyl-sink”, whereby methyl groups are diverted from 
DNA

Dash et al. (2016)

Excessively low levels of Met and its metabolic products diminish cellular func-
tion in multiple organs at the system level

Dash et al. (2016)

MR increases de novo lipogenesis, lipolysis, and fatty acid oxidation Zhou et al. (2016)
Hypermethioninemia provokes a decreases of serum LDL cholesterol Hidiroglou et al. (2004)
Excess Met reduced serum cholesterol and brain in rat Stefanello et al. (2007) and Soares et al. (2017)
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total cholesterol in the rats; thus, more studies are needed to 
determine the regulatory effects.

This review has discussed the importance of methionine 
as a sulfur-containing essential amino acid that is indispen-
sable for various physiological and biochemical processes 
in organisms. In addition, methionine supplementation or 
restriction can intervene in the natural antioxidant capacity 
of an organism by leading to the production of endogenous 
enzymes that reduce oxidative stress and, in turn, DNA dam-
age, cancer, cardiovascular disease, neuropsychiatric disor-
ders, and neurodegenerative diseases.
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