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analysis. This short review will present current knowledge 
and recent research in PPII area. In a first step, the differ-
ent methodologies able to assign PPII are presented. In the 
second step, recent studies that have shown new perspec-
tives in PPII analysis in terms of structure and function are 
underlined with three cases: (1) PPII in protein structures. 
For instance, the first crystal structure of an oligoproline 
adopting an all-trans polyproline II (PPII) helix had been 
presented; (2) the involvement of PPII in different diseases 
and drug designs; and (3) an interesting extension of PPII 
study in the protein dynamics. For instance, PPIIs are often 
linked to disorder region analysis and the precise analysis 
of a potential PPII helix in hypogonadism shows unantici-
pated PPII formations in the patient mutation, while it is 
not observed in the wild-type form of KISSR1 protein.

Keywords  Secondary structure · Sequence structure 
relationship · Structural alphabet · Local protein 
conformations · Frameworks

Introduction

Protein sequences encompass the information needed to 
provide the right protein folding pathways to the biologi-
cally active protein fold. Nonetheless, it is the protein func-
tions at atomistic level that directs their structures, i.e., the 
biological functions need to find the proper set of local 
protein conformations to perform its activity. Three-dimen-
sional structure information is usually described as a sim-
ple succession of repetitive structures (see Fig. 1), namely, 
the α-helix and the β-sheet, connected by “random” coil 
(Eisenberg 2003; Pauling and Corey 1950). Helical struc-
tures are locally stabilized by hydrogen bond patterns of 
backbone atoms (between residues i and i +  4) (Pauling 
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et al. 1951), while extended structures are also maintained 
by hydrogen bonds but at longer distances (Pauling and 
Corey 1951a). They represent 1/3rd and 1/5th of the total 
residues, respectively. A third defined state, called β-turns, 
is characterized by the reversal of polypeptide chain and 

is stabilized by a hydrogen bond between the first and last 
residues (Richardson 1981; Rose 1978; Venkatachalam 
1968). 25% of the residues are associated with such struc-
tures (Bornot and de Brevern 2006).

However, another common repetitive conformation 
exists, characterized before the β-turns in the 1950s, but 
often forgotten, namely, Poly-l-proline-II helices II (PPII) 
helix (Cowan et  al. 1955; Pauling and Corey 1951b) (see 
Fig.  1b). It can be characterized as a left-handed heli-
cal structure with dihedral angle characteristic to that of 
β-strands and with an overall shape resembling a triangu-
lar prism (Arnott and Dover 1968; Sasisekharan 1959) (see 
Fig. 2 for a comparison with other local structure confor-
mations). The PPII helix has distinct trans-isomers of pep-
tide bonds with dihedral angles of [−75°, +150°]. The rise 
per residue of PPII helix is 3.1 Å with three residues per 
turn. Thus, this distinct helical structure rises at 9.3 Å per 
turn compared to 6.0 Å pitch of a 310 helix. The primary 
reason for such open and relatively elongated geometry of 
PPII is the absence of H-donor atoms due to the cyclic side 
chain of proline residues. Therefore, the PPII conformation 
is highly acceptable of H-donor atoms from its environ-
ment or third party moieties enhancing its solvation energy. 
PPII is observed commonly in the collagen triple helix and 
hence was deemed confined to fibrous proteins (Bochic-
chio and Tamburro 2002; Soman and Ramakrishnan 1983; 
Sreerama and Woody 1994, 2003). It would be found 
through circular dichroïsm studies that PPII is present in 
folded proteins and in other structural folding contexts as 
well. Later, Creamer et al. (Whittington et al. 2005) dem-
onstrated the existence of PPII in denatured proteins, while 
NMR studies (Toal and Schweitzer-Stenner 2014) estab-
lished PPII as a favoured local structure over α-helices in 
denatured states. Interestingly, the presence of proline resi-
dues is not a strict requirement for a PPII and that indeed 

Fig. 1   Structural characteristics of three secondary structures. a 
Right-handed α-helix, b left-handed PPII, and c three β-strands form-
ing sheet. The cartoon representation highlights the structural geom-
etry, while ball and stick represent the atomic arrangements of the 
three secondary structures. The proline rings can be observed in (b), 
and the comparison of oxygen (red) and nitrogen (blue) clearly indi-
cates the absence of intra H-bonding in PPII. In a and c, the close 
proximity of oxygen and nitrogen atoms makes it favourable for intra 
H-bonding. High helical rise of the PPII and lack of intra H-bonding 
make its backbone highly solvent accessible. Visualization is done 
with the PyMOL software (Delano 2013) (color figure online)

Fig. 2   Orientation and structural organization of the different heli-
ces. a α-helix: right handed with a spherical coiling. b 310 –helix, c 
π-helix, and d polyproline helix: left handed with a triangular prism 
coiling. Proline residues are marked in yellow. e PPII helix with min-
imum residues possible. Only three residues can adopt a PPII con-

formation. In this example, none of the residue is proline. The pro-
line rings can be observed in (d). High helical rise of the PPII can 
be clearly seen. Visualisation done with the PyMOL software (Delano 
2013) (color figure online)
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establishes PPII as a distinct class in secondary structures. 
Rather, it has been advocated since 1993 (Adzhubei and 
Sternberg 1993) to include PPII in mainstream secondary 
structures, such as α-helices and β-sheets. A striking fact 
is that residues associated with PPII conformations repre-
sent nearly 5% of the total residues in a structure (Mansi-
aux et  al. 2011), but the lack of popular PPII assignment 
approaches prevents their systematic analysis.

The structural properties of PPII make it highly suitable 
for partnered interactions. Since the backbone of PPII lacks 
any intra-hydrogen bonding, it requires external partners 
for hydration. This unique property is a reason for PPII 
conformation to interact with SH3 domain and thus play-
ing a regulating role in crucial signalling pathways and cell 
recognition involving SH3. The distinctive structural prop-
erties, such as open, elongated structure, suggest PPII to 
be involved in interaction with nucleic acids. PPII has also 
been observed to be involved in amyloid fibrillar patholo-
gies, such as Parkinson’s pathology. Since the PPII helix is 
relatively small and flexible, it is highly useful in design of 
cell-penetrating peptides (CPP). The current review aims at 
covering the different definitions of PPII based on contexts 
and the various methodologies that assign PPII helix. Later, 
it also reviews the role of PPII in protein–protein and pro-
tein–DNA interactions, involvement of PPII conformation 
in pathologies, and recent advances made in PPII scaffold 
applications.

Developments in PPII structural assignment

PPII dihedral angles are quite particular. The most clas-
sical way to analyse them is to use Ramachandran map 
(1963), as shown in Fig. 3. The map is based on calcula-
tions of dihedral angles between the two adjacent planes 
of protein backbone, hinged at Cα atoms. The dihedral 
rotation of the planes is restricted by the steric clashes 
that define the disallowed regions on the map. Therefore, 

the map is a very powerful tool to assess the stability of 
a structure based on the local analysis of degrees of free-
dom for dihedral planes. Further evolution of the map leads 
to the marking of areas for specific secondary structures, 
namely, α-helix, β-strands, and later β-turns (see Fig. 3a). 
Lately, allowed region for PPII was assigned from the 
north-western quadrant of the map, allowed for β-strands 
(see Fig. 3b). A recent review catalogues the evolution of 
Ramachandran map very efficiently (Carugo and Djinovic-
Carugo 2013). It is, however, very distinctive observation 
that Prof. Ramachandran incepted the idea based on the 
collagen hydrogen bonding argument (Bella et  al. 1994; 
Rich and Crick 1955), which arose due to the presence of 
hydroxyproline.

More than 20 secondary structure assignment meth-
ods (SSAM) had been published in 30  years (Aksianov 
and Alexeevski 2012; Cao et  al. 2016; Carter et  al. 2003; 
Cubellis et  al. 2005b; Dupuis et  al. 2004; Fodje and Al-
Karadaghi 2002; Frishman and Argos 1995; Hosseini et al. 
2008; Hutchinson and Thornton 1996; Kabsch and Sander 
1983; King and Johnson 1999; Kneller and Hinsen 2015; 
Labesse et al. 1997; Law et al. 2014; Majumdar et al. 2005; 
Martin et  al. 2005; Oluwatobi Salawu 2016; Parisien and 
Major 2005; Park et al. 2011; Richards and Kundrot 1988; 
Sklenar et al. 1989; Zacharias and Knapp 2014). They have 
been defined with various criteria (Offmann et  al. 2007): 
the most popular SSAM uses backbone hydrogen bonding 
pattern-based methods (Carter et  al. 2003; Fodje and Al-
Karadaghi 2002; Frishman and Argos 1995; Kabsch and 
Sander 1983; Zhang and Sagui 2015).

Nonetheless, very few SSAM assigns PPII to the protein 
coordinates. Only five SSAMs, to be more precise, include 
the assignment of PPII conformations. The first available 
approach was XTLSSTR (King and Johnson 1999), where 
a structure is assigned based on a simple approach similar 
to the visual inspection of secondary structures. It calcu-
lates three distances and two angles based on the backbone 

Fig. 3   Ramachandran plot. 
a From a non-redundant data 
set of the Protein DataBank. b 
Shows the allowed region for 
PPII helix assigned using modi-
fied DSSP approach (Chebrek 
et al. 2014; Mansiaux et al. 
2011). Visualisation is done 
with the R software (R Core 
Team 2013)
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geometry and then searches for amide–amide interac-
tions. It successfully assigns α-Helix, 310 Helix, Extended 
β-strand, hydrogen bonded and non-hydrogen bonded 
turns, and polyproline (type-II) helices.

SEGNO (Cubellis et al. 2005b) makes assignment based 
on distance and torsion angle calculation. For assign-
ing PPII, it uses dihedral angles between the two-peptide 
planes separated by one and two residues, respectively, 
named diheco and diheco2. An important observation 
is that PPII is assigned when a residue is not defined as 
β-strand by SEGNO and lies within predefined values of Φ 
and Ψ angles. Later, taking into account the range of the 
four diheco angles (220–270 and 100–140), the PPII helical 
conformation is assigned to the residue. These thresholds 
are relaxed for the termini of PPII with a minimum length 
of the helix to be three residues and the overall shape of 
PPII is deemed to be like a triangular prism.

PROSS (Srinivasan and Rose 1999) uses the concept of 
mesostates from a torsional grid for the assignments. The 
grid is described as the unit squares covering all areas in 
a Ramachandran plot. The grids are of two kinds based on 
their unit area: smaller unit square: fine grid and broader 
unit square: coarse grid. Based on the type, each unit grid 
is referred to as a coarse/fine mesostate. Therefore, in 
principle, the Ramachandran plot is converted into a Φ/Ψ 
grid with marked regions (allowed, favourable, and dis-
allowed) covering more than one mesostates. In a very 
similar approach related to SEGNO, PROSS also does not 
directly assign PPII conformation rather resolute it out after 
β-strand leftovers.

DSSP-PPII (Mansiaux et  al. 2011) is an extension of 
DSSP with included dihedral angle parameters for PPII 
assignment, thus isolating PPII from coils. Kabsch and 
Sander’s DSSP (Kabsch and Sander 1983) has been the 
most widely used method. It is based on detection of 
hydrogen bonds defined under an electrostatic criterion. 
It makes an elaborate eight state SSA: α-Helix, 310 Helix, 
π-helix, β-turn, bend, extended strand, β-bridge, and coil. 
DSSP has been implemented in numerous databases and 
softwares, e.g., PDB (Berman et al. 2000; Bernstein et al. 
1977) and GROMACS (Pronk et al. 2013; Van Der Spoel 
et al. 2005). Although being widely used and treated as a 
gold standard methodology, DSSP does not assign PPII. 
DSSP-PPII (Mansiaux et al. 2011) uses dihedral space (Φ 
and Ψ, −75° and +145°) to define the core of PPII while 
increasing by ε radiating out at 1 degree. The value of ε 
is chosen as an equilibrium between the number of amino 
acids assigned as PPII by the three previous approaches 
(with an extra constraints, two consecutive dihedral angles 
should be assigned as PPII. One of the major features of 
this method is to use DSSP that is already an established 
and trusted method for other secondary structure elements 
(SSE). Therefore, the code can be adapted to apparently 

any other assignment method, if and when required. A spe-
cific database had been proposed to the scientific commu-
nity (Chebrek et al. 2014).

ASSP (Kumar and Bansal 2015), an extension of helical 
geometry calculation program, HELANAL-plus (Bansal 
et al. 2000) that is used to calculate the local helical struc-
ture parameters: twist, rise, virtual torsion, and radii. ASSP 
uses the difference between these parameters calculated 
over two or more adjacent Cα windows of four residues. 
Later, in the protocol, the overlaps are resolved based on 
the established minimum lengths of helices: α(4), 310(3), 
π(5), and PPII(3). Therefore, PPII conformations are 
assigned based on the helical geometry of the local region. 
Since it uses HELANAL, which further is based on Sugeta 
and Miyazawa, and Shakarji methods for helical geometry, 
ASSP tends to assign β-sheets with less efficiency (Shakarji 
(1998); Sugeta and Miyazawa 1967). They applied their 
SSAM to analyse in detail the PPII (Kumar and Bansal 
2016) and found that near 3/4 of PPIIs occur in conjunction 
with α-helices and β-strands, and serve as linkers as well. 
They also underline a large number of CH···OH-bonds.

All these methods are well designed for PPII assign-
ments. However, the number of PPII assignment 
approaches is still limited compared to SSAM for other 
secondary structure elements, and remains a limitation for 
the use by scientific community.

Survey of amino acids in PPII conformation

The Adzhubei and Sternberg paper in 1993 (1993) had 
refreshed the interest in PPII as mainstream secondary 
structures, such as α-helices and β-sheets, but also under-
lined the non-obligation of PPII to be constituted with only 
proline residues. Numerous mutational studies, e.g., SH3 
domain—PPII peptide binding analysis provided a desired 
assertion that PPII conformations are favourable in dena-
tured space (Creamer 1998; Ferreon and Hilser 2003). 
Impact of residue level mutations on PPII concludes that 
PPII conformation is retained even after successive changes 
of proline with alanine or glycine residues, implying that 
PPIIs are not constituted by a succession of proline resi-
dues alone. Therefore, PPII should rather be understood 
as a structural conformation found with different residue 
propensities in folded and unfolded states. Others experi-
ments further establish PPII as a separate structural class 
(Adzhubei et al. 2013; Stapley and Creamer 1999).

Apart from these studies, restricted coiled library analy-
sis performed by Jha et al. explores the influence of neigh-
bours on the residues having favourable PPII propensities 
(Jha et  al. 2005). Examination of bias-free coiled library 
sets reveals dominant PPII conformation for ten of amino 
acid residues (Pro, Ala, Met, Glu, Leu, Asn, Cys, Gln, Lys, 
Gly, and Tyr). Another proposal of similar propensities 
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comes from Cubellis and coworkers which analyse posi-
tion specific propensities in 5700 PPII helices and classi-
fied data with peptide lengths (Cubellis et al. 2005a). Thus, 
residues, such as Ala, Met, Lys, Thr, and Leu, favour PPII 
conformation in longer peptides, while Asp, Ile, and Glu 
adopt the conformation in shorter peptides (<3 res). Trp, 
Phe, and Gly do not favour PPII; however, interestingly, 
Gly is present in a repetitive motif in collagen triple helix, 
while Trp and Phe have been crystallized in interaction 
with PPII–hydrophobic motif interactions. Thus, suppos-
edly, these residues could stabilize and mark the terminus 
of a PPII helix (Cubellis et al. 2005a). In the most recent 
survey, Kumar and Bansal show that 40% of PPIIs contain 
no Pro residues. Besides, aromatic amino acids are avoided 
within the helix, while Gly, Asn, and Asp residues are pre-
ferred in the proximal flanking regions (Kumar and Bansal 
2016).

Based on hard-sphere Monte Carlo simulations, the 
propagation of the PPII helix is logically explained by the 
interaction between the prolyl ring and the backbone (Cβ) 
of the previous residue. However, this logic breaks when a 
poly-Alanine adopts a PPII conformation, and therefore, a 
better explanation could be the neighbouring environment 
and the presence of polar residues (Creamer 1998). PPII 
does not have characteristic main chain H-bonding pat-
tern; thus arguably, Ser, Thr, Gln, and other polar residues 
can stabilize the PPII helix by non-local hydrogen bonding 
with the backbone (Creamer 1998; Cubellis et al. 2005a). 
The overall survey of amino acid propensities reveals that 
propensities of amino acids in PPII are highly context 
based. They seem to deviate according to the presence of 
PPII in fibrous or globular protein context.

Role of PPII in protein–protein (PPI) and DNA–protein 
interactions

The distinct feature of polyproline helices is that unlike 
other SSE, they do not have intra-hydrogen bonding, mak-
ing the backbone, as well as the side chains, highly sol-
vent accessible. Such conformations would be hankering 
for finding partners for hydrogen bonding and stabiliza-
tion. Therefore, the sequence and structural characteristics 
of PPII make it worth to be probed for partnered interac-
tions. One of the important tools to study the PPII role in 
protein–protein and DNA–protein interactions is the SH3 
domain models. SH3 (Src homology 3) domains are small 
yet important structural domains in proteins involved in 
cell signalling and regulation, e.g., Tyrosine kinases. SH3 
domains are also well known to interact with PPII confor-
mations (Agrawal and Kishan 2002). Hence, host-pathogen 
models designed with SH3 domains are critical to under-
stand interaction space of PPII conformation with respect to 
proteins and/or nucleic acids. Many such studies focusing 

on signal transduction and cell–cell recognition have been 
explored for potential PPII–protein and PPII–nucleic acid 
interactions (Hicks and Hsu 2004; Williamson 1994). 
For instance, C-terminus of Synapsin-I, a protein regulat-
ing synaptic vesicle transport in neurons, is proline-rich 
region. Synapsin-I interacts with the cytoplasmic polypro-
line region of membrane protein, vesicle-associated mem-
brane protein 1(VAMP-I) (Williamson 1994). Phosphoryla-
tion of a serine residue upstream of C-terminus PPII helix 
regulates the secretion of a synaptic vesicle, while VAMP-I 
helps in recognition. Similarly, in Ras-GTP signalling path-
way, the SH3 domains of the adaptor protein bind to the 
polyproline region of SoS protein (xPxxPPPψxPx) leading 
to exchange of GTP. Another set of interactions (Booker 
et  al. 1992) is in vacuolar sorting, where SH3 domain of 
phosphatidylinositol-3 kinase binds to the GTP-binding 
protein dynamic. Structurally, it is acknowledged that 
the PPII helix-binding region of SH3 domain is a smooth 
hydrophobic surface flanked by conserved charged residues 
(Booker et al. 1992). The PPII interactions also have a sig-
nificant structural–functional role in transcription, as many 
transcription factors have proline-rich terminals (Koleske 
et al. 1992). This could also indicate points to the role of 
PPII interactions in multimeric complex formation during 
transcription. A well-characterized case of PPII–protein 
interaction is the RNA polymerase II (RNApolII). C-ter-
minus of RNApolII has multiple copies of conserved motif 
YSPTSPS, which further is a two-fold SPXX motif. SPXX 
is a DNA binding motif found in DNA binding domains 
(Suzuki 1989; Suzuki et  al. 1990). Furthermore, Hicks 
and Hsu (2004) investigated the structural aspects of PPII 
in DNA binding and recognition (Hicks and Hsu 2004). 
Exemplifying with three DNA interacting proteins; viz. 
third K homology domain of NOVA-2 [see Fig.  4 (Lewis 
et  al. 2000)], the Epstein–Barr nuclear antigen-1, and the 
Drosophila paired protein homeodomain, they quantify 
the binding of PPII to the nucleotides’ minor groove and 
underline the specificity and non-specificity of recognition. 
The optimal size and specific recognition offered by PPII 
backbone residues strongly advocate to recognize PPII as a 
nucleic acid binding motif (Hicks and Hsu 2004).

Functional role of polyproline in diseases

Role of PPII in protein–protein and DNA–protein interac-
tions, and role in sorting and transport mechanisms have 
been investigated for its involvement in pathologies and 
diseases. KISS-1 Receptor (KISS1R) has in its intracellular 
domain three triplets of Proline–Arginine–Arginine (PRR). 
The addition of a fourth triplet induces the formation of a 
PPII, and inhibits KISS1R presentation on cell membrane. 
The retention of KISS1R in cytoplasm ceases the inter-
action with kisspeptin and thus abolishes the secretion 
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of GnRH leading to Hypogonadotropic hypogonadism 
(Chevrier et al. 2013). Besides, several studies using ROA 
(Raman optical activity) and VBD (vibrational circular 
dichroism) structural visualization techniques confirm 
the presence of PPII conformation in pathological fibril-
lar aggregates (Adzhubei et  al. 2013; Blanch et  al. 2000; 
Bochicchio and Tamburro 2002). Conversion of PPII to 
β-sheet conformation in amyloidogenic precursor of human 
lysozyme may indicate a highly potential role of PPII in 
numerous amyloid-based conformational disorders (Blanch 
et  al. 2000). For instance, phosphorylation of a threonine 
flanked by a PPII in Tau protein leads to the misfolding and 
aggregation of microtubular proteins in Alzheimer’s disease 
(Syme et al. 2002). A similar role of PPII has been found 
in α-synuclein, responsible for aggregation in Alzheimer’s 
and Parkinson’s pathologies (Adzhubei et al. 2013). Taken 
together, this emphasizes a deeper understanding of its 
structural features (Adzhubei et al. 2016).

Recent advances in polyproline research

The growing interest in physico-chemical and structural 
properties of PPII, especially their short extended-helical 
structure attracted the attention of pharmaceutical com-
panies. Very recently, cell-penetrating vector approaches 
are designed based on PPII scaffold (Eiriksdottir et  al. 
2010; Foged and Nielsen 2008; Franz et  al. 2016; Geisler 

and Chmielewski 2009; Ruzza et al. 2004; Yamashita et al. 
2016). As explained above, PPII backbone has a high sol-
vent accessibility and thus is highly hydrated in solvents. 
Therefore, use of PPII for cell penetration poses a chal-
lenge for hydrating the PPII-based moiety and their con-
venient uptake in hydrophobic membranes (Franz et  al. 
2016). Chmielewski’s group (Fillon et  al. 2005) addressed 
this by designing and introducing cationic and hydrophobic 
moieties on the PPII backbone and observed no structural 
change. The compactness and inherent flexibility of the PPII 
conformation is the key to their adaptability and accompa-
nied by cationic and hydrophobic moieties; they becomes 
highly suitable for a cell-penetrating vector (Foged and 
Nielsen 2008). The study observes a tremendous increase 
in PPII-based Cell-Penetrating Peptide (CPP) uptake com-
pared to the traditional ones. Another important difference 
is the claimed reduction in toxicity. This is based on the 
observations that PPII scaffold-based CPP: Sweet Arrow 
Peptides—SAP(E)—obtain a net negative charge unlike the 
traditional CPP which are positively charged (Franz et  al. 
2016; Geisler and Chmielewski 2009; Li et al. 2010).

Conclusion and perspectives

Polyproline II helix is arguably a distinct member in sec-
ondary structure elements, based on its geometry, sequence, 
and structure. PPII has a left-handed geometry compared to 
right-handedness of popular protein helices (see Fig. 2). Its 
sequence composition varies based on the presence in a glob-
ular or fibrous protein environment. It is quite an interesting 
observation that proline, a major α-helix breaker/kink, when 
in succession adapts a distinct helical form itself. Moreover, it 
dominates the α-helical form in denatured space. Such exam-
ples can be appreciated in light of the expanse of the second 
structural space. Although PPII conformation represents only 
5% of the conformational space, we highly advocate for it 
to be considered in regular secondary structures. Besides, 
its representation is equivalent if not more than the 310 heli-
ces. The involvement of PPII–protein and PPII–nucleic acid 
interactions in different pathologies, structural applications, 
and drug carriers makes it even more viable candidate to be 
included in the main regular secondary structures. Its poten-
tial role in Alzheimer’s and Parkinson’s could not be ignored, 
given recent publications on the subject. The presence of PPII 
in regular, ordered, and disordered regions while establishes 
that its distinctiveness is not sufficient to seize the complete 
structural space of PPII conformations. Therefore, more 
assignment approaches and coiled library experiments are 
needed to explore such conformations. This review addresses 
the neglect on conformations, such as PPII and bias towards 
“regular” secondary structures. Figure 5 shows the number of 
publications about PPII since 1968. The increase is clear, but 
remains limited. The number of papers had never been higher 

Fig. 4   Interaction of Nova protein K homology domain with RNA 
hairpin [PDB id: 1ec6_A (Lewis et  al. 2000)]. The conserved motif 
of the variable loop is colour in yellow. The two PPII helices are col-
oured in magenta. The occurrence of C-term helix is reported to be 
the difference between RNA bound and unbound form. Visualisation 
is done with the PyMOL software (Delano 2013) (color figure online)
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than 100 papers/per year. In regards to the interest of this 
“lost” secondary structure, we can expect a better representa-
tion in the future.
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