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Introduction

Peroxidases (EC 1.11.1.7) are heme-containing enzymes that 
catalyze oxidation of various organic and inorganic substrates 
by H2O2 (Poulos 1993). These enzymes are found widely in 
almost all organisms (Koua et al. 2009). Horseradish peroxi-
dase (HRP) is an important monomeric enzyme (Veitch 2004). 
HRP consists of thirteen α-helices and two short antiparallel 
β-strands (Gajhede et al. 1997), and includes a heme pros-
thetic group, two calcium binding sites, four disulfide bridges, 
and eight carbohydrate chains (Gajhede et al. 1997).

HRP has numerous medical and industrial applications 
(Azevedo et al. 2003; Krainer and Glieder 2015). It has 
been used in medical diagnosis, in histochemical staining, 
and in biosensors (Veitch 2004). Moreover, it has been used 
to synthesize organic polymers and to remove phenols and 
aromatic amines from wastewaters (Won et al. 2004; Wag-
ner and Nicell 2002). However, its industrial applications 
have been limited by its instability under various conditions 
such as elevated temperatures and excess H2O2. Although 
many experiments have been performed to increase the sta-
bility and activity of HRP by protein engineering, enzyme 
immobilization, and chemical modification (Ryan and 
O’Fagain 2007; Zakharova et al. 2011), more information 
concerning its structural stability is needed.

The stability of HRP is affected by several variables 
such as temperature, pH, glycosylation, and concentra-
tion of calcium ions (Chattopadhyay and Mazumdar 2000; 
Howes et al. 2001). Given that the catalytic activities of 
enzymes are dependent on their proper folding to generate 
three-dimensional structures, increased knowledge of the 
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denaturation mechanism of HRP under denaturing condi-
tions may guide design strategies to increase its conforma-
tional stability and to reduce loss of its activity.

HRP folds into an N-terminal domain and a C-terminal 
domain. The heme is located at the active-site cleft between a 
distal N-terminal domain and a proximal C-terminal domain 
(Fig. 1a), and is important to stabilize the conformation of 
HRP (Veitch 2004). Destruction of heme inactivates HRP; 
this result indicates that the heme molecule is important for 
HRP activity (Mao et al. 2013). However, the mechanism by 
which heme contributes to the stability of HRP and renders 
it resistant to denaturation remains largely unknown despite 
many investigations (Carvalho et al. 2003; Feng et al. 2008).

In this study, we analyzed the role of heme in HRP under 
highly denaturing conditions (9 M urea and 6 M guanidine 
hydrochloride (GdnHCl) because these conditions are com-
monly used to completely unfold proteins (Tanford 1968). 
To monitor the unfolding process, we used circular dichro-
ism (CD) and small-angle X-ray scattering (SAXS) methods. 
Holo-HRP retained a considerable amount of its secondary 
and tertiary structure, and maintained heme-binding ability 
in 9 M urea. Binding of heme at the interface between two 
domains contributed to the rigidity around the heme-binding 
site and thereby conferred this resistance to 9 M urea. Our 
results suggest that the heme contributes to the resistance to 
denaturation by providing a rigid binding site.

Materials and methods

Chemicals and sample preparation

All chemicals used in buffer were obtained from sigma. 
HRP was purchased from Roche as a lyophilized powder. 

Sample purity was assessed using SDS-PAGE analysis. 
The concentration of HRP was measured spectrophoto-
metrically considering a molar extinction coefficient of 
102 mM−1 cm−1 at 403 nm (Strickland et al. 1968). 
Apo-HRP was prepared from the holo-HRP by the acid 
butanone procedure (Yonetani 1967). The concentration of 
apo-HRP was estimated using an extinction coefficient of 
20,000 mM−1 cm−1 at 280 nm (Tamura et al. 1972).

Circular dichroism

CD experiments were conducted using a Jasco J-810 spec-
tropolarimeter at 25 °C. HRP was dissolved in a solution 
of 20 mM sodium phosphate (pH 7.4) and 1 mM CaCl2, in 
the absence and presence of 9 M urea or 6 M GdnHCl. Far-
UV CD spectra were measured in a quartz cell of 2-mm 
path length. The spectra of near-UV and Soret regions 
were obtained using a rectangular quartz cell of 1-cm path 
length. Each spectrum was an average of at least three 
scans, corrected by subtracting the spectrum of the buffer 
solution and smoothed using Jasco software. Results were 
expressed as mean residue ellipticity (Greenfield 2006). In 
all measurements, HRP concentration [HRP] was 5 μM.

Thermal transitions

Thermal denaturation experiments were performed using 
CD spectroscopy as described previously (Cha et al. 2013). 
CD spectra were recorded at protein concentration of 3 μM 
in a 2 mm-quartz cell. Protein samples were prepared in the 
solution containing 20 mM sodium phosphate (pH 7.4) and 
1 mM CaCl2, in the absence and presence of 9 M urea or 
6 M GdnHCl. The samples were heated from 30 to 90 °C at 
1 °C min−1 using a Peltier temperature control system. CD 
signals at 222 nm were collected every 1 °C.

Solution SAXS measurements

SAXS measurements were performed at the 4C SAXS II 
beamline of the Pohang Light Source II (PLS II) with 3 GeV 
power, Korea. A light source from an In-vacuum Undula-
tor 20 (IVU20: 1.4-m length, 20-mm period) of the PLS II 
storage ring was focused using a vertical focusing toroidal 
mirror coated with rhodium, and monochromatized by a 
Si (111) double crystal monochromator to yield an X-ray 
beam wavelength λ = 0.734 Å. The X-ray beam size at the 
sample stage was 0.1 × 0.3 mm (V × H). A two-dimen-
sional (2D) charge-coupled detector (Mar USA, Inc.) was 
used. For SAXS, sample-to-detector distances were 4.00 
and 2.00 m. The scattering angle 2θ was calibrated against 
a polystyrene-b-polyethylene-b-polybutadiene-b-polysty-
rene block copolymer standard. The magnitude of scatter-
ing vector q = (4π/λ)sinθ was 0.15 nm−1 < q < 3.00 nm−1. 

Fig. 1  Structure of HRP. a Ribbon representation of HRP structure 
(PDB code 1W4W). Orange stick heme group; yellow distal N-terminal 
domain; purple: proximal C-terminal domain. b B-factor-labeled struc-
ture of HRP. Low B-factors (blue) indicate that the region is rigid. Figure 
was generated using PyMol (http://www.pymol.org) (color figure online)

http://www.pymol.org
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We used quartz capillary with outside diameter of 1.5 mm 
and wall thickness of 0.01 mm as solution sample cells. 
Measurements of HRP protein solutions were performed 
over the range 2.0 ≤ [HRP] ≤ 7.0 g L−1. Each 2D SAXS 
pattern was averaged radially from the beam center and 
normalized to the transmitted X-ray beam intensity, which 
was monitored using a scintillation counter placed behind 
the sample. All scattering measurements were conducted 
at room temperature. The SAXS data were collected in 
six successive frames of 0.1 min each to monitor radiation 
damage, then processed as described previously (Cha et al. 
2014; Soh et al. 2015; Kim et al. 2013; Jang et al. 2006). 
The scattering of specific buffer solutions was used as the 
experimental background. The radii of gyration Rg,G were 
estimated by Guinier analysis of the scattering data (Glatter 
and Kratky 1982). The molecular mass (MM) was calcu-
lated from a BSA standard protein. The pair distance dis-
tribution p(r) function was obtained using indirect Fourier 
transform using the program GNOM (Semenyuk and Sver-
gun 1991).

Construction of 3D structural models

To reconstruct the molecular shapes, the ab initio shape 
determination program DAMMIF (Franke and Svergun 
2009) was used. For each reconstruction, 15 independ-
ent models were selected, then the program DAMAVER 
(Volkov and Svergun 2003) was used to filter the aver-
aged aligned model at a given cutoff volume. The pro-
gram CRYSOL (Svergun et al. 1995) was used to cal-
culate the SAXS curves from the atomic models. For 
comparison of the overall shapes and dimensions, the 

program SUPCOMB (Kozin and Svergun 2001) was 
used to superimpose the ribbon diagrams of the atomic 
crystal models onto the reconstructed dummy atom 
models.

Results and discussion

Comparison of far‑UV CD spectra between holo‑HRP 
and apo‑HRP

The far-UV CD spectrum of a protein can be used to evalu-
ate its secondary structure (Greenfield 2006), so we first 
measured the far-UV CD spectra of holo-HRP (Fig. 2a) and 
apo-HRP (Fig. 2b) in native condition, 9 M urea, or 6 M 
GdnHCl. The far-UV CD spectrum of native holo-HRP 
showed characteristic bands of α-helix structure, consist-
ent with previous reports that spectra of this enzyme had 
negative bands at 207 and 222 nm (Strickland 1968). CD 
spectrum of holo-HRP at 6 M GdnHCl showed the gen-
eral pattern of unfolded polypeptide; previous studies have 
also showed that HRP was completely denatured in 6 M 
GdnHCl (Pappa and Cass 1993). However, the spectrum 
at 9 M urea showed an unexpected minor decrease in the 
molar ellipticity in the far-UV CD spectrum of holo-HRP; 
i.e., the enzyme retained most of its secondary structure. A 
previous paper reported that HRP retained ~50% of its sec-
ondary structure even in 8 M urea (Pappa and Cass 1993). 
By contrast, the far-UV CD spectra of apo-HRP under 9 M 
urea and 6 M GdnHCl denaturing conditions showed that 
apo-HRP was completely unfolded in both conditions. This 
comparison of the far-UV CD spectra of holo-HRP and 

Fig. 2  Far-UV CD spectra of holo-HRP (a) and apo-HRP (b). CD spectra were obtained in a solution containing 20 mM sodium phosphate (pH 
7.4) and 1 mM CaCl2, in the absence (circle) and presence of 9 M urea (triangle) or 6 M GdnHCl (square)
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apo-HRP suggests that the heme may be important in main-
taining the secondary structure of holo-HRP in 9 M urea.

Analysis of tertiary structure and heme pocket 
of holo‑HRP by CD spectroscopy

CD spectroscopy also provides information about the 
tertiary structure and the binding of non-protein cofac-
tors, such as heme of protein (Kelly et al. 2005). The 
tertiary structure of protein and the binding of heme 
to protein can be estimated by CD spectroscopy in the 
near-UV and the Soret regions. Therefore, we further 
measured the near-UV and Soret CD spectra of holo-
HRP under different denaturing conditions (Fig. 3). The 
near-UV CD spectrum of native holo-HRP had a nega-
tive peak near 284 nm, which is attributed to overlap-
ping contribution from tyrosine and tryptophan residues. 
Although the CD signal of holo-HRP at 284 nm in 9 M 
urea decreased, the change was not significant; i.e., HRP 
maintained the majority of its tertiary structure in 9 M 
urea.

The Soret region CD spectra are sensitive to changes in 
heme surroundings, and, therefore, give information of the 
integrity of the heme pocket (Myer 1968). The CD bands 
in this region are due to the coupled interaction between 
the heme transitions and π–π* transitions in surround-
ing aromatic residues (Hsu and Woody 1971). The Soret 
region CD spectra of native holo-HRP showed a strong 

positive band at 407 nm, which is consistent with the pre-
vious report (Mogharrab et al. 2007). A slight decrease in 
the 406-nm CD band indicates that the holo-HRP in 9 M 
urea retains the integrity of the heme pocket. The intensity 
of the Soret CD signal is related to the catalytic activity of 
HRP (Akita et al. 2001); this may explain why holo-HRP 
retains its catalytic activity in 8 M urea (Haque et al. 1999). 
Our data together with previous published data suggest that 
9 M urea could not significantly affect the secondary and 
tertiary structures or the heme pocket of holo-HRP, so that 
some catalytic activity was retained under highly denatur-
ing condition.

Thermal unfolding of holo‑HRP

Thermal denaturation of holo-HRP under different denatur-
ing conditions was investigated by monitoring the molar 
ellipticity at 222 nm (Fig. 4). Native holo-HRP showed 
a cooperative unfolding transition, which indicates that 
the thermal unfolding process follows a simple two-state 
behavior. In 9 M urea the transition temperature of holo-
HRP was decreased, but the enzyme also exhibited coop-
erative thermal unfolding. In contrast, the thermally dena-
tured state of holo-HRP in 6 M GdnHCl had no signal in 
the far-UV CD spectrum. These results indicated that the 
holo-HRP at 9 M urea retained a considerable amount of 
secondary structure and, therefore, can undergo further 
cooperative thermal unfolding.

Fig. 3  Near-UV and Soret region CD spectra of holo-HRP under 
various conditions. The spectra were obtained at pH 7.4 in the 
absence (circle) and presence of 9 M urea (triangle) or 6 M GdnHCl 
(square)

Fig. 4  Thermal transitions of holo-HRP under different condi-
tions. Thermal scans at pH 7.4 in the absence (circle) and presence 
of 9 M urea (triangle) or 6 M GdnHCl (square). The scan rate was 
1 °C min−1
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SAXS data analysis of holo‑HRP

To investigate the structure of holo-HRP under differ-
ent conditions, synchrotron SAXS measurements were 
performed at room temperature in the range 2.0 ≤ [holo-
HRP] ≤ 7.0 g L−1. Guinier analysis (Glatter and Kratky 
1982) of the SAXS data revealed linearity in a small q 
region (Fig. 5). Straight lines were obtained from the lin-
ear regression of the scattering data in the q2-region. These 
analysis results suggest that holo-HRP in the respective 
conditions was present in a monodispersed state without 
aggregation. Rg,G (Table 1) was estimated from the slope 
of the plot, and gave information about the enzyme’s 
size in solution. Rg,G of holo-HRP in the native condi-
tion was 21.85 ± 0.20 Å, which is very similar to that 
(22.11 ± 0.01 Å) of the crystal structure of holo-HRP 
(PDB code 1W4W). Rg,G increased in the order holo-HRP 

in native condition (21.85 ± 0.20 Å) < holo-HRP in 
9 M urea (26.31 ± 0.36 Å) < holo-HRP in 6 M GdnHCl 
(40.50 ± 1.27 Å); i.e., holo-HRP molecules were partially 
unfolded in 9 M urea, but almost completely unfolded in 
6 M GdnHCl.

X-ray scattering profiles (Fig. 6) of holo-HRP were 
measured under different conditions, and compared with 
the theoretical SAXS curve calculated from the mono-
meric crystal structure of holo-HRP (PDB code 1W4W) 
using CRYSOL. The X-ray scattering pattern of holo-HRP 
in native condition (Fig. 6a) was very close to that of the 
holo-HRP crystal structure. The solution scattering pattern 
of holo-HRP in 9 M urea (Fig. 6b) was slightly different 
from that of the holo-HRP in native condition (Fig. 6a). 
The SAXS curve of holo-HRP in 6 M GdnHCl (Fig. 6c) 
differed completely from those of holo-HRP in native con-
dition or in 9 M urea; this result suggests that the holo-HRP 
molecules in 6 M GdnHCl had different size and shape 
than those of holo-HRP in native condition.

A Porod analysis (Rambo and Tainer 2011) was applied 
to the measured scattering data (Fig. 7). The X-ray scat-
tering curve of holo-HRP in native condition (Fig. 7a) 
revealed a Porod plateau at q ≈ 0.1 Å−1. A similar plateau 
was observed in the X-ray scattering curve of holo-HRP 
even in 9 M urea (Fig. 7b). The presence of plateaus usu-
ally implies that the protein exists with a sharp homog-
enous electron density contrast between the particle and 
solvent (Rambo and Tainer 2011). We, therefore, concluded 
that holo-HRP molecules even in 9 M urea are in a partially 
unfolded state that is different slightly from the state of 
the holo-HRP in native condition. However, in the case of 
the holo-HRP in 6 M GdnHCl, the analysis did not show 
this plateau in the X-ray scattering curve (Fig. 7c); this 
absence indicates that the secondary and tertiary structures 
were almost completely destroyed in this strong denaturing 
condition.

We used GNOM to estimate the pair distance distribu-
tion p(r) function (Table 1) of holo-HRP under different 

Fig. 5  Guinier plots of X-ray scattering profiles of holo-HRP under 
various conditions. a Holo-HRP in native condition, b holo-HRP 
in 9 M urea, c holo-HRP in 6 M GdnHCl. For clarity, each plot is 
shifted along the ln I(q) axis. The straight lines were obtained from 
the linear regression of the scattering data in the q2-region

Table 1  Structural parameters 
obtained from the SAXS data 
of holo-HRP under different 
conditions

ND Not determined
a Rg,G obtained by Guinier analysis of scattering data
b Rg,p(r) obtained by the program GNOM from the p(r) function
c Dmax obtained by the program GNOM from the p(r) function
d MMcalculated obtained from the amino acid sequence of protein
e MMSAXS estimated using a BSA standard
f Porod volume determined using the program PRIMUS

Sample Rg,G a (Å) Rg,p(r) 
b (Å) Dmax 

c (Å) MMcalculated 
d (kDa) MMSAXS e (kDa) Vp 

f (Å3)

Crystal 22.11 ± 0.01 21.93 ± 0.01 70 40.8 – 67,605

Native 21.85 ± 0.20 22.70 ± 0.06 68 44.2 39.7 66,403

9 M urea 26.31 ± 0.36 27.63 ± 0.37 109 44.2 ND 70,477

6 M GdnHCl 40.50 ± 1.27 42.25 ± 2.32 179 44.2 ND 152,151
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conditions from the indirect Fourier transform of the scat-
tering data (Fig. 8). This function provides the radius of 
gyration Rg,p(r), which is based on the full scattering curve, 
and gives the maximum dimension Dmax (Table 1) of the 
protein molecule as the distance at which p(r) approaches 
0. The resulting Rg,p(r) values are in reasonable agreement 
with those from the Guinier analysis (Table 1). We com-
puted a theoretical p(r) function for the atomic coordi-
nates of the holo-HRP (PDB code 1W4W) monomeric 

crystal structure and compared it with those measured for 
holo-HRP under different conditions. The p(r) function 
for the holo-HRP in native condition (Fig. 8a) exhibited 
a symmetrical peak pattern with Rg,p(r) = 22.70 ± 0.06 Å 
and Dmax = 68 Å, which is characteristic of a compact 
globular conformation, and is fairly similar to the peak 
(Rg,p(r) = 21.93 ± 0.01 Å, Dmax = 70 Å) of the crystal 
structure of holo-HRP. The p(r) functions for the holo-
HRP in both 9 M urea (Fig. 8b) and 6 M GdnHCl (Fig. 8c) 
appear to be quite different from that of the holo-HRP in 
native condition (Fig. 8a), because Dmax increased to 109 Å 
in 9 M urea and to 179 Å in 6 M GdnHCl.

We also used the program PRIMUS (Konarev et al. 
2003) to estimate the Porod volume Vp of holo-HRP 
under different conditions. The Vp value increased in the 
order holo-HRP in native condition (66403 Å3) < holo-
HRP in 9 M urea (70477 Å3) < holo-HRP in 6 M GdnHCl 
(152151 Å3). These Vp values were directly correlated with 
the p(r) analysis results (Table 1).

The correlation between the obtained p(r) functions and 
the molecular structure was further examined using DAM-
MIF to reconstruct structural models ab initio from the 
X-ray scattering data. To improve the reliability of the final 
solution models, multiple runs of DAMMIF were used. 
For the protein, 15 independent models were selected, then 
DAMAVER was used to filter the averaged aligned model 
at given cutoff volume. The structural models reconstructed 
for holo-HRP were affected by the conditions (Fig. 9). The 
p(r) function (Fig. 8a) suggests that the conformation in 
the holo-HRP in native condition appeared to be close to 
that of the monomeric crystal structure in overall shape and 
dimension. For the holo-HRP in 6 M GdnHCl (Fig. 9c), the 

Fig. 6  X-ray scattering profiles of holo-HRP under different con-
ditions, at room temperature. a Holo-HRP in native condition, b 
holo-HRP in 9 M urea, c holo-HRP in 6 M GdnHCl. Open symbols 
experimental data; solid lines X-ray scattering profiles obtained from 
dummy atoms models by the ab initio molecular shape determination 
program DAMMIF [χ2 = 0.714 for (a), 0.675 for (b), 1.631 for (c)]; 
dashed line theoretical SAXS curve calculated from the crystal struc-
ture of holo-HRP (PDB code 1W4W) using the program CRYSOL 
(χ2 = 2.355). For clarity, plots are shifted along the log I(q) axis

Fig. 7  Porod plots of X-ray scattering profiles of holo-HRP in Fig. 6. 
a Holo-HRP in native condition, b holo-HRP in 9 M urea, c holo-
HRP in 6 M GdnHCl

Fig. 8  The pair distance distribution p(r) functions for holo-HRP in 
solution, based on an analysis of the experimental SAXS data through 
the program GNOM. a Holo-HRP in native condition, b holo-HRP in 
9 M urea, c holo-HRP in 6 M GdnHCl. Areas under the curves were 
normalized to the molecular weight
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reconstructed domain appeared to be enormously extended 
along the vertical axis compared with that of the holo-
HRP in native condition (Fig. 9a). In consideration of the 
Guinier, p(r), and Porod analyses results, we concluded the 
holo-HRP molecules were fully unfolded and linear in 6 M 
GdnHCl. The structural models of the holo-HRP in 9 M 
urea (Fig. 9b) differed from those of holo-HRP in native 
condition (Fig. 9a) and in 6 M GdnHCl (Fig. 9c). Its recon-
structed 3D model seems to be somewhat extended in the 
upper and lower directions from the centre of the holo-HRP 
molecule (front view, Fig. 9b), when compared with the 
holo-HRP in native condition (Fig. 9a). This change sug-
gests that distal and proximal domains of HRP may par-
tially unfold, whereas the heme-binding site between both 
domains could maintain its tertiary structure. The B-factor 
was lower in the central region than in the outer region; this 
result means that the central region was more rigid than 
the outer region (Fig. 1b). The rigidity could be due to the 
interactions between heme and residues near the heme-
binding site. Given that rigidity contributes to stability (Yu 

and Huang 2014), the rigid central region around the heme-
binding site may confer resistance to denaturation.

Implication of heme retention ability under denaturing 
conditions

Many studies have shown that some proteins can retain 
stable under highly denaturation conditions, such as high 
concentrations of urea (Cockle et al. 1978; Monhemi et al. 
2014). However, the factors affecting the resistance to 
denaturation are largely unknown. A recent study showed 
that the maintenance of hydrogen bonds could be one of 
factors contributing to resistance to unfolding induced by 
urea (Wang et al. 2014).

In some heme-binding proteins, the heme cofactor also 
makes the protein resistant to denaturation. Previous find-
ings showed that the presence of heme in globins conferred 
increased resistance to denaturation induced by chemical per-
turbations (Hargrove and Olson 1996). In this study, we also 
observed that the heme retention contributed to maintain the 

Fig. 9  Structural models 
of holo-HRP in solution as 
reconstructed using the ab initio 
shape determination program 
DAMMIF. a Holo-HRP in 
native condition, b holo-HRP 
in 9 M urea, c holo-HRP in 
6 M GdnHCl. For protein, 15 
independent models were gener-
ated, compared, and averaged, 
and then the filtered model was 
calculated using the program 
DAMAVER (mean value of 
NSD = 0.947 for holo-HRP 
in native condition, 0.837 for 
holo-HRP in 9 M urea, 0.974 
for holo-HRP in 6 M GdnHCl). 
Surface rendering in the struc-
tural model was achieved using 
the program Discovery Studio 
3.0 (Accelrys Inc.). For com-
parison of overall shapes and 
dimensions, the ribbon diagram 
of the atomic crystal structure of 
holo-HRP were superimposed 
on the reconstructed dummy 
atoms models using SUPCOMB 
(NSD = 1.116)
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conformational stability of HRP under denaturing condition. 
This result suggests that evolution has yielded a heme-bind-
ing site in HRP that is rigid in such a way that it retains the 
heme, because this state confers stability in harsh conditions 
such as 9 M urea. The intrinsic stability of heme-binding site 
in HRP can give basic information that can guide search and 
design of peroxidases that are more stable than existing ones.

The retention of heme under denaturing conditions can 
be also enhanced by other factors. Heme-myoglobin affin-
ity might be the primary determinant of the resistance of 
holo-myoglobin to unfolding (Hargrove and Olson 1996). 
Furthermore, some crowding agents, such as sucrose 
increase the heme stability by increasing heme retention 
(Kundu et al. 2015).

Enhanced heme retention ability can be useful in medi-
cine and industry. For example, increasing heme retention 
ability would be useful in recombinant hemoglobin-based 
oxygen carriers for use as blood substitutes (Uppal et al. 
2015). Therefore, combined with our data, studies on heme 
retention under harsh conditions would expand knowledge 
of how to increase heme retention for medical applications.

In conclusion, a combination of SAXS, CD, and ther-
mal unfolding experiments indicated that under 9 M urea 
denaturing condition, the structure of holo-HRP unfolds 
only partially, and that holo-HRP maintains a considerable 
amount of secondary and tertiary structure; in particular, 
that it retains most of the tertiary structure of the central 
region that hosts the heme and, therefore, retains the heme. 
The heme group might provide the rigidity of the structure 
of HRP, especially the secondary helical structure around 
heme-binding site, thereby contributing to the conforma-
tional stability under denaturing conditions.
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