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ALL	� Acute lymphoblastic leukemia
Arg	� Arginine
AS	� Asparagine synthetase
Asn	� Asparagine
ASNase	� Asparaginase
BCAT1	� Branched-chain amino acid transaminase 1
Cys	� Cysteine
EGFR	� Epidermal growth factor receptor
G-CIMP	� Glioma-CpG island methylator phenotype
GBM	� Glioblastoma multiforme
GDH	� Glutamate dehydrogenase
GLA	� Glutaminase
Gln	� Glutamine
GLS	� Gls gene
Glu	� Glutamate
GSH	� (reduced) Glutathione
GSSG	� (oxidized) glutathione
IDH1	� Isocitrate dehydrogenase 1
IDH2	� Isocitrate dehydrogenase 2
JHDMs	� Jumonji-C-domain-containing histone 

demethylases
Met	� Methionine
MRS	� Magnetic resonance spectroscopy
mTOR	� Mechanistic target of rapamycin (or mamma-

lian target of rapamycin)
mTORC1	� mTOR complex 1
mTORC2	� mTOR complex 2
PDH	� Pyruvate dehydrogenase
PPP	� Pentose phosphate pathway
ROS	� Reactive oxygen species
siRNA	� Small interfering RNA
TCA	� Tricarboxylic acid
TET	� Ten-eleven-translocation
wt	� Wild-type
αKG	� α-Ketoglutarate

Abstract  Glioblastoma multiforme (GBM), or grade IV 
astrocytoma, is the most common type of primary brain 
tumor. It has a devastating prognosis with a 2-year-overall 
survival rate of only 26 % after standard treatment, which 
includes surgery, radiation, and adjuvant chemotherapy 
with temozolomide. Also lower grade gliomas are difficult 
to treat, because they diffusely spread into the brain, where 
extensive removal of tissue is critical. Better understand-
ing of the cancer’s biology is a key for the development 
of more effective therapy approaches. The discovery of 
isocitrate dehydrogenase (IDH) mutations in leukemia and 
glioma drew attention to specific metabolic aberrations in 
IDH-mutant gliomas. In the center of the metabolic altera-
tions is α-ketoglutarate (αKG), an intermediate metabolite 
in the tricarboxylic acid (TCA) cycle, and the associated 
amino acid glutamate (Glu). This article highlights the role 
of these metabolites in glioma energy and lipid production 
and indicates possible weak spots of IDH-mutant and IDH-
wt gliomas.
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Introduction

Glutamic acid is an amino acid that plays an important role 
in energy metabolism and as excitatory neurotransmitter 
in the central nervous system. In the context of molecu-
lar biology the name of its carboxylate anion glutamate 
(Glu) is used synonymously, because in the body glu-
tamic acid appears in its dissociated form. A link between 
Glu and energy metabolism was already described in the 
1920s (Thunberg 1920). In 1936—Malherbe showed that 
the reversible oxidation of Glu to α-ketoglutarate (αKG) 
could be found in brain tissue. He further hypothesized 
that in vivo the enzyme “glutamic acid deaminase”, today 
referred to as glutamate dehydrogenase (GDH), executes 
the synthesis of Glu more often than its degradation. One 
part of this article will elucidate under which circumstances 
Weil-Malherbe’s assumption is true.

αKG is an intermediate metabolite in the tricarboxylic 
acid (TCA) cycle (or citric acid cycle, or Krebs cycle). The 
TCA cycle is an evolutionary conserved pathway. In eukar-
yotic cells it takes place in the mitochondria and serves 
mainly the production of ATP by breakdown of macromol-
ecules. The reactions yield the reducing agents NADH and 
NADPH, which are used in the electron transport (oxidative 
phosphorylation) pathway for ATP production. In addition 
the TCA cycle is crucial for providing substrates for lipid 
and fatty acid synthesis. The transamination of αKG pro-
duces Glu and, dependent on the amino acid, a keto-acid 
(Fig. 1). Amino acids like alanine or aspartate are converted 
to pyruvate or oxaloacetate, respectively. These products 
are important metabolites in pathways like the TCA cycle 
or glycolysis. It became extremely relevant to the field of 

cancer metabolism when isocitrate dehydrogenase 1/2 
(IDH1/2) mutations in glioma and acute myeloid leukemia 
were discovered (Dang et al. 2010; Reitman and Yan 2010). 
Mutated IDH enzymes have a shifted functionality, with 
which αKG becomes the main substrate for 2-hydroxyglu-
tarate (2HG) synthesis.

Aside from oxidative deamination, Glu is often synthe-
sized from glutamine (Gln). Due to its role as neurotrans-
mitter, Glu is constantly released from neurons. Its syn-
thesis and degradation are part of the glutamate/glutamine 
cycle. After release Glu is taken up by astrocytes, where 
it is converted to Gln and released again (Bak et al. 2006; 
Hertz 1979; Hertz et al. 1999). In the cytoplasm Gln can be 
converted to Glu by the enzyme glutaminase (GLA).

Gliomas account for 50  % of intracranial tumors 
and are the most common primary form of cancer in the 
brain. Glioblastoma multiforme (GBM; WHO grade IV 
astrocytoma) accounts for most of them. 12 % of GBMs 
carry a mutation in the IDH1 gene, which encodes for 
the  metabolic enzyme isocitrate dehydrogenase (Parsons 
et  al. 2008). The discovery of IDH mutations in gliomas 
led the focus on cancer metabolism. A better understand-
ing of tumor genesis could increase the hope of finding 
effective treatments against it. Better treatment strate-
gies are urgently needed, because the prognosis for glio-
mas, especially for GBM is abject. Standard treatment for 
GBM includes resection via surgery, followed by radia-
tion and adjuvant chemotherapy with the alkylating agent 
temozolomide. Although administration of temozolomide 
improves overall survival significantly, median survival 
ranges in between 12 and 15 months and the 2-year sur-
vival rate averages 26 % (Stupp et al. 2005).

Fig. 1   Glutamate dehydrogenase mediates the NADH-producing conversion of glutamate to α-ketoglutarate. From https://www.david-bender.
co.uk (assessed 26-02-2016)

https://www.david-bender.co.uk
https://www.david-bender.co.uk
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Glutamate and α‑ketoglutarate in glioma 
metabolism

The Warburg effect

Otto Warburg described a metabolic switch in cancer cells 
concerning the use of glucose (Warburg et  al. 1926; War-
burg 1925, 1954). In recent times the shift from pyruvate 
oxidation to lactic acid fermentation is known as the “War-
burg-effect” and is considered a hallmark of cancer (Hana-
han and Weinberg 2011). The metabolic change to lactic 
acid fermentation is baffling at first, because it leads to a 
smaller net ATP production than pyruvate oxidation and 
therefore seems like a reduction of the cell’s energy pro-
duction. Today it is widely believed that the Warburg effect 
enables the cell to have building blocks like amino acids 
and nucleosides readily available. They are crucial for the 
synthesis of macromolecules and organelles, which enable 
the cancer cell to meet the special needs regarding fast 
growth and proliferation. The switch is accompanied by an 
increased glucose influx, possibly to make up for the less 
efficient ATP production.

Glutaminolysis

Glu plays an important role as intermediate metabolite of 
glutaminolysis. Glutaminolysis describes the sequence 
of enzymatic reactions that turn glutamine (Gln) into 
substrates that enter the TCA cycle. The first step of this 
sequence is the hydrolysis of the amino group of Gln, 
which turns it into Glu. The reaction is mediated by glutam-
inase and can be displayed as: Glutamine + H2O → Gluta-
mate + NH3. In cancer, glycolysis and glutaminolysis are 
the major mechanisms of ATP production, which means 
glucose and Gln are crucial nutrients. HIF1α activity can 
disrupt the function of the pyruvate dehydrogenase (PDH) 
complex (Kim et al. 2006). This will inhibit the introduc-
tion of glucose-derived metabolites into the TCA cycle and 
therefore renders the cell dependent on glutaminolysis. 

Glutaminolysis alone can rescue the cell from cell death. It 
is a key enzymic pathway for cancer metabolism, because 
it provides nitrogen for nucleotide and amino acid synthe-
sis, it offers an alternative carbon source to supply TCA 
cycle intermediates, and as a byproduct NADPH is formed 
for lipid and nucleotide synthesis (reviewed by DeBerardi-
nis and Cheng 2010).

Reductive carboxylation

Besides glutaminolysis, Gln can be a substrate for another 
distinct cytosolic pathway, which includes reversed flux 
through the TCA cycle. Where glutaminolysis mainly 
serves the production of energy in the form of ATP, 
reversed flux through the TCA cycle favors the synthesis 
of acetyl-CoA (Filipp et al. 2012). In regular cell metabo-
lism glucose-derived pyruvate will enter the TCA cycle and 
then serves as the main source of acetyl-CoA, a precursor 
of fatty acids and lipids (Fig. 2). Under conditional aerobic 
glycolysis or under hypoxic conditions cells convert glu-
cose to lactate. This will reduce the flux of pyruvate into 
the TCA cycle. Acetyl-CoA is then produced by break-
down of the TCA cycle-metabolite citrate. Hence, a lack of 
acetyl-CoA could also stem from disabled citrate formation 
by defective mitochondria, such as disruptions in the TCA 
cycle or electron transport chain (Mullen et  al. 2012). In 
hypoxia HIF1α activity interferes with glucose carbon use 
in citrate synthesis by hampering PDH. A study performed 
with a GBM cell line in hypoxia (0.5 % O2) came to the 
conclusion that Gln is the major source for carbon under 
hypoxic conditions (Wise et al. 2011). Additionally, it was 
shown that reductive carboxylation of αKG (from Gln) 
is IDH2-dependent (Fig.  2). IDH2 is known to catalyze 
the oxidative decarboxylation of isocitrate to αKG. Stud-
ies indicate that it is also crucial for the reverse reaction 
(Wise et al. 2011; Mullen et al. 2012). Although the studies 
showed that IDH2 is crucial for sustained reductive carbox-
ylation under hypoxia, they failed to assess the importance 
of IDH1 in that matter.

Fig. 2   Intact TCA cycle 
(green). When PDH is blocked, 
or the TCA cycle is disrupted 
for other reasons, IDH-depend-
ent reductive carboxylation 
sustains the formation of inter-
mediate metabolites and fatty 
acids (red). From Mullen et al. 
(2012) with permission
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In contrast to these results it was shown that there is a 
TCA cycle-independent cytoplasmic pathway of reductive 
carboxylation of αKG, which is mediated by IDH1 (Met-
allo et al. 2012). This pathway, too results in the formation 
of isocitrate, citrate, and finally in acetyl-CoA for lipid 
synthesis.

Another positive effect of reductive carboxylation for 
the cancer cells is that it decreases ROS levels and pro-
duces NADPH as a byproduct.

Glutaminase isoenzymes can exert contrary functions

As mentioned above, the first step of Gln degradation is 
catalyzed by glutaminase (GLA). The paralogous GLA 
isoenzymes are encoded by the Gls and the Gls2 genes 
(reviewed by Campos-Sandoval et  al. 2015). These genes 
are linked to tumor behavior, because oncogenes and tumor 
suppressor genes regulate them. Interestingly, differential 
expression of GLA isoenzymes alters the metabolism of 
nutrients. In brain tumor settings, however, the exact role 
of GLA isoenzymes is unclear, because these isoenzymes 
can exert contrary functions. For example, silencing the Gls 
gene (GLS) in glioblastoma cells LN229 and SFxL inhib-
ited growth, lowered survival ratios, and induced apoptosis. 

The growth inhibition was even stronger under oxidative 
stress. Similar observations were made when the liver-
type Gls2 gene was overexpressed in T98G glioma cells 
(reviewed by Campos-Sandoval et al. 2015).

IDH wt glioma cells release Glu

In IDH wild-type (wt) gliomas, Glu synthesis is catalyzed 
by high levels of branched-chain amino acid transaminase 
1 (BCAT1), which convert αKG into Glu (Tönjes et  al. 
2013). The byproduct of this reaction is ammonia. When 
intracellular Glu levels rise, excessive Glu is released via 
the glutamine/cysteine antiporter System xc

− (extensively 
reviewed by Lewerenz et al. 2013) in exchange for cysteine 
(Cys; Fig.  3). This exchange is favorable for the cancer 
cells, because Cys is a major component of the antioxi-
dant Glutathione (GSH), which in turn is an antagonist of 
reactive oxygen species (ROS). Elevated ROS levels trig-
ger apoptosis; hence to antagonize ROS is important for 
cancer cell survival. There are external and internal causes 
for elevated ROS levels. The main external cause in GBM, 
radiotherapy, directly induces ROS through radiation. Inter-
nal causes of ROS lie in the altered metabolism itself. In 
cancer cells large amounts of glucose are oxidized in the 
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TCA cycle, rendering the cell with superoxide anions as 
side products. These superoxide anions contribute to high 
ROS levels (Masui et al. 2014). High levels of GSH enable 
cancer cells to evade the induction of apoptosis through 
induced ROS.

Methionine–Cysteine double deprivation increases ROS 
levels in glioma cells

Recently it was shown that deprivation of amino acids like 
methionine (Met) or Cys leads to induction of ROS, too. 
Met or Cys deprivation alone already resulted in decreased 
proliferation of cells of the glioma cell lines U87 and U251 
(Liu et  al. 2015). Double deprivation had a synergistic 
effect.

When extracellular nutrient supply is scarce, autophagy 
enables the tumor cells to meet the demand for required 
amino acids and nucleotides. Also the induction of ROS 
can induce autophagy in cancer cells (reviewed by Bellot 
et al. 2013). Liu et al. (2015) studied the effects of double 
deprivation on autophagy. Met–Cys double deprivation led 
to an increased abundance of the autophagy-related protein 
LC3-II and autophagosomes. Furthermore, inhibition of 
autophagy increased the sensitivity of glioma cells to dou-
ble deprivation.

In vivo studies showed that glioma proliferation was 
lower in tumor-bearing mice that received a Met–Cys 
deprived diet compared to a standard diet. In addition, 
histologic examination of tumors from Met–Cys deprived 
mice showed signs of autophagy (Liu et al. 2015).

The induction of ROS in cancer cells through Met–Cys 
double deprivation offers a potential additional therapy 
option that would enhance the ROS inducing effects of 
chemo- and radiotherapy.

High levels of extracellular Glu impair healthy cells 
in the tumor microenvironment

The exchange of Glu for Cys is favorable for the cancer 
cell, but not for healthy cells in its vicinity, because Glu 
causes cell death in the tumor environment (Takano et al. 
2001; Ye and Sontheimer 1999). High levels of extracel-
lular Glu lead to an imbalance in the glutamate/glutamine 
cycle between astrocytes and neurons. The results can be 
astrocyte swelling, a block of astrocytic Glu uptake and 
neuronal cell death (Bak et al. 2006; Jayakumar et al. 2006; 
Albrecht et al. 2006). The challenge for the astrocytes does 
not seem to be the origin of Glu, but the amount. Yao et al. 
(2014) showed that astrocytes were able to take up Glu 
that was released by glioma cells. In a co-culture of astro-
cytes and glioma cells with the ratio 1:1, Glu released by 
glioma cells was taken up by astrocytes and no neuronal 
damage was observed. In these cultures extracellular Glu 

levels were reduced to 1–5 μM (compared to +30 μM in 
single glioma culture). Glu uptake by astrocytes reduced 
glioma cell proliferation, and prevented neuronal death by 
Ca2+ overload. These conditions might resemble the tumor 
environment at an early stage of tumor development. In late 
stage gliomas, the astrocyte to glioma cell ratio is more 
likely to be around 0.5:1 or smaller. In vitro this ratio led to 
an increase of extracellular Glu and ammonia levels, which 
resulted in a block of Glu uptake by astrocytes and cell 
death (Yao et al. 2014).

Block of system xc
− has positive effects on cells in the 

tumor vicinity

One approach to reduce the damaging effects of high 
extracellular Glu levels was to reduce the amount of 
secreted Glu by blocking the System xc

− (Savaskan et  al. 
2008). System xc

− is composed of xCT and CD98 in human 
primary gliomas and tested cell lines. In vitro Glu secre-
tion was successfully reduced by downregulation of xCT 
via small interfering RNA (siRNA), and with the selective 
xCT inhibitor S-4-CPG (Savaskan et al. 2008). Reduction 
of xCT had no impact on morphology, cell cycle progres-
sion, ROS formation or proliferation Brain slices chal-
lenged with conditioned media from xCT-silenced cells 
showed significantly less cell death than the control with 
conditioned media from glioma cells. In vivo studies con-
firmed that inhibition of xCT through S-4-CPG reduced 
Glu secretion. That resulted in a lower neuronal damage, 
later onset of neurological deficits, and prolonged survival 
compared to the vehicle control group (Savaskan et  al. 
2008).

Intracellular peaks of acetyl-CoA levels correlate with 
phases of growth and proliferation in the yeast metabolic 
cycle. Furthermore, the gene battery in yeast that is dif-
ferentially acetylated during high acetyl-CoA levels cor-
responds to target genes of c-Myc in mammalian cells (Ji 
et al. 2011). It has been concluded that acetyl-CoA levels 
directly influence epigenetic regulation through differential 
acetylation, which would describe an evolutionary con-
servative mechanism to link growth and proliferation to the 
nutritional state of the cell (Kaelin and McKnight 2013; 
Masui et al. 2014).

Metabolic compensations to anti‑tumor therapy

Key cancer metabolites have been the target of anti-tumor 
therapies, but most single target approaches have failed, 
because cancer cells can compensate for disturbed path-
ways and lacking metabolites. Here, we give some exam-
ples of adaptions made by glioma cells to deletion or 
impairment of metabolic pathways.
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Increased synthesis of asparagine halts apoptotic 
pathway in glutamine‑depleted glioma cells

The non-essential amino acid Gln is, beside glucose, the 
most important energy source for glioma cells. Zhang et al. 
(2014) reported that Gln withdrawal led to apoptosis in 
SF188 human glioma cells with MYC amplification. That 
is somewhat surprising regarding the theoretical ability of 
the cell to synthesize Gln when sufficient amounts of glu-
cose are available. Since Gln is crucial for asparagine (Asn) 
synthesis, it was tested if depletion of Asn has an effect 
on SF188 cells. Asn was depleted through knockdown of 
the enzyme asparagine synthetase (AS) that catalyzes the 
biosynthesis of Asn from aspartate and Gln. It has been 
reported that AS mRNA abundance is negatively correlated 
with glucose availability (Barbosa-Tessmann et  al. 1999). 
AS depletion led to apoptosis in SF188 cells (Zhang et al. 
2014). Addition of extracellular Asn completely restored 
survival and proliferation. These results are in line with 
the studies on the evasion of apoptosis through Asn in the 
case of sarcoma (Hettmer et  al. 2015), and human mela-
noma and epidermoid carcinoma cells (Li et al. 2015). The 
authors conclude that Asn is crucial for cellular adaption 
to loss of Gln (Zhang et  al. 2014). In Asn-deficient cells, 
translation of stress response RNAs like CHOP leads to 
apoptosis. Asn alone was sufficient to stop the apoptotic 
function of ATF4 through regulation of a pathway that 
induces translation-dependent apoptosis. Intracellular 
depletion of Asn alone resulted in apoptosis independent of 
Glu or glucose availability (Zhang et al. 2014).

Acute lymphoblastic leukemia (ALL) has been success-
fully treated through extracellular removal of Asn with 
l-asparaginase (Avramis 2012). Asparaginase (ASNase), 
an enzyme that hydrolyzes Asn, offers an option to deplete 
Asn intracellularly. Panosyan et  al. (2014) showed that 
reduction of Asn through ASNase led to growth inhibi-
tion in DAOY medulloblastoma cells, GBM-ES cells, 
U87 cells, and mouse glioma (GL-261) cells in vitro. Gln 
addition increased Asn synthesis and abrogated the effect. 
Moreover, ASNase treatment affected the formation of neu-
rospheres negatively.

Despite the promising in  vitro results, ASNase-treated 
mice showed the same DAOY tumor growth as controls. 
Moreover, co-treatment with ASNase and temozolomide 
resulted in growth inhibition compared to temozolomide 
alone.

Regulators of amino acid metabolism

Crucial amino acids can be acquired in various ways. The 
example of Asn shows that they can derive from breakdown 
of metabolites like Glu, or they can be taken up from the 
extracellular matrix. A more common source of free amino 

acids in the cytosol is the degradation and breakdown of 
proteins and peptides. This recycling process occurs con-
stantly in healthy and transformed cells and is orchestrated 
by proteasomes and aminopeptidases (Saric et  al. 2004). 
Aminopetidases such as serine aminopeptidase dipepti-
dyl peptidase (Busek et  al. 2012), leucine aminopepti-
dase 3 (He et  al. 2015) and methionine aminopeptidase 2 
(Dasgupta et al. 2005) play a role in glioma. However, no 
treatment that involves aminopeptidases has been proven 
to be effective in glioma. However, there is no effective 
aminopeptidase inhibitor registered, while those currently 
in clinical development have not yet been tested in glioma 
(Hitzerd et al. 2014).

There are several approaches to inhibit the protein deg-
radation pathway in cancer, such as E3 ubiquitin ligase 
inhibitors (Snoek et  al. 2013), proteasome inhibitors, and 
aminopeptidase inhibitors (reviewed by Hitzerd et  al. 
2014). Some of these have been tested in clinical trials, or 
are clinically approved like the proteasome inhibitor borte-
zomib. Insights that were obtained in these trials could help 
to develop a specific strategy for glioma treatment.

mTOR inhibitors have not been proven effective 
in glioma therapy

A central regulator of metabolism and cell growth is the 
kinase mechanistic target of rapamycin (or mammalian tar-
get of rapamycin; mTOR). mTOR is a downstream target 
of EGFR (epidermal growth factor receptor) through the 
PI3  K-Akt signaling pathway. 40  % of GBM have aber-
rant EGFR signaling; most carry the EGFRvIII mutant 
(Ekstrand et  al. 1991; Wong et  al. 1992). The mutant is 
characterized by a deletion of exons 2–7 of the EGFR gene, 
which results in an in-frame deletion of 267 amino acids 
from the extracellular domain of the receptor. EGFRvIII 
receptors are unable to bind growth factors, but are consti-
tutively active in downstream signaling.

mTOR is found in two major complexes; mTOR com-
plex 1 (mTORC1) and mTOR complex 2 (mTORC2). Both 
complexes promote increased c-Myc activity. mTORC1 
splices the MYC-interacting protein MAX, which enhances 
c-Myc action (Babic et al. 2013). mTORC2 controls c-Myc 
levels in a FOXO-acetylation-dependent manner (Masui 
et  al. 2013). Overexpressed Myc is a strong oncogene 
and has been explored in multiple types of cancer includ-
ing glioma and GBM. It has been shown that c-Myc neg-
atively regulates the tumor suppressor gene PTEN (Guo 
et  al. 2013) and is involved in resistance to temozolo-
mide therapy (Luo et al. 2015). Besides these effects it is 
strongly involved in metabolic reprogramming in glioma. 
It enhances GLS activity, which leads to increased glu-
taminolysis, higher Glu production and possibly increased 
reductive carboxylation.
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Targeted therapies with mTOR kinase inhibitors have 
not proven to be effective in glioma therapy. To elucidate 
underlying mechanisms, magnetic resonance spectroscopy 
(MRS) of 12 GBM patients was carried out (Tanaka et al. 
2015). The study indicated that Gln was strongly involved 
in metabolic reprogramming in GBM cells and the authors 
saw a connection between upregulation of Gln metabolism 
through increased GLS activity, and resistance to mTOR 
kinase inhibitors (Tanaka et al. 2015). The results indicated 
that mTOR-targeted therapy led to increased Gln metabo-
lism and rendered glioma cells Gln-dependent, which could 
be an approach for effective therapy options. Combinations 
of mTOR inhibitors with other drugs affecting signaling 
pathways may have promise for further development.

Another way to inhibit mTOR signaling is the use of 
aminopeptidase inhibitors. Compounds such as tosedostat 
or bestatin inhibit aminopeptidase, which results in low-
ering the free amino acid levels. This in turn decreases 
mTOR signaling (reviewed by Hitzerd et al. 2014).

Differences between IDH‑wt and IDH‑mutant 
gliomas

Although IDH mutations often occur in gliomas, not all gli-
omas carry IDH mutations. The gain-of-function mutation 
shifts IDH activity. Its mutant IDH mediates the conversion 
of αKG into 2HG.

Isocitrate dehydrogenase (IDH)

One of the most exciting discoveries of the past years in 
the field of cancer metabolism was the one of IDH1/2 
mutations in gliomas and acute myeloid leukemia (Dang 
et  al. 2010; Reitman and Yan 2010). Only few mutations 
in genes that encode for metabolic enzymes are linked to 
tumor genesis. Examples for homozygous loss-of-function 
mutations in metabolic tumor suppressors are fumarate 
hydratase or one of the five subunits comprising the suc-
cinate dehydrogenase complex (King et al. 2006). In con-
trast to these examples, heterozygous IDH mutations lead 

to a gain-of-function. Therefore, IDH is not a tumor sup-
pressor gene.

Due to the great number of recent reviews on this topic 
(Guo et al. 2011; van Lith et al. 2014; Molenaar et al. 2014; 
Bogdanovic 2015; Borodovsky et al. 2015; Parker and Met-
allo 2015), this report will be limited to a brief summary of 
main observations on IDH mutations and the consequence 
for cell metabolism in regard to Glu and αKG.

2‑Hydroxyglutarate is an oncometabolite

IDH enzymes catalyze the NADP+/NAD+-dependent con-
version of isocitrate to 2HG (also known as 2-oxoglutarate; 
Zhao et al. 2009). The cytoplasmic version of the enzyme, 
IDH1, acts in the cytoplasm; IDH2 and IDH3 act in mito-
chondria, mainly in the TCA cycle. 70–90 % of grades II 
and III glioma and secondary GBMs carry mutated IDH1 
or IDH2 genes (Parsons et al. 2008; Yan et al. 2009). Muta-
tions in the IDH3 gene have not been reported in connec-
tion with tumors; therefore, in this article the term IDH 
mutation refers only to IDH1 and IDH2. The most com-
mon amino acid substitution in glioma is the replacement 
of arginine with histidine in the IDH1 gene (IDH1R132H; 
Parsons et al. 2008; Yan et al. 2009; Borger and Zhu 2012; 
Hirata et al. 2015, Table 1). In the case of IDH2, the sub-
strate-binding arginine (Arg) residues Arg 140 and Arg 172 
are mutated. In both cases the mutation results in a gain-of-
function of the enzyme, which leads to an increased con-
version of αKG to 2HG and subsequently to an accumula-
tion of 2HG in the cell (Dang et al. 2009; Gross et al. 2010; 
Ward et  al. 2010). 2HG itself inhibits Ten-Eleven-Trans-
location (TET) family and Jumonji-C-domain-containing 
histone demethylases (JHDMs; Chowdhury et al. 2011; Xu 
et al. 2011; Fig. 3).

These enzymes are directly involved in demethylating 
processes in the genome. In that way high 2HG concentra-
tions in the cell lead to global DNA hypermethylation and 
altered gene expression (Figueroa et al. 2010; Sasaki et al. 
2012; Turcan et  al. 2012). Unsurprisingly there is a tight 
correlation between IDH1 mutations and a hypermeth-
ylated phenotype named glioma-CpG island methylator 

Table 1   Differences between wild-type and mutated IDH

Wild-type IDH Mutant IDH

Heterozygous point mutations  
in the catalytic site

None Arg to His in position 132 (IDH1, R132H)
Arg in position 172 and 140 (IDH2)

Substrate affinity Same affinity for isocitrate  
and α-ketoglutarate

Lower affinity for isocitrate, higher affinity for 
α-ketoglutarate

IDH-mediated reaction Isocitrate <−> α-ketoglutarate α-Ketoglutarate—>2-hydroxyglutarate

2-hydroxyglutarate levels Low High
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phenotype (G-CIMP; Noushmehr et al. 2010). Since these 
alterations provide the basis for cancer, 2HG is described 
as ‘oncometabolite’. The exciting fact about IDH mutations 
is that it seems likely that this metabolic alteration is more 
of a major contributor to cancer initiation and progression, 
than a mere side effect. This makes it a potential target for 
therapy. Inhibitors of mutant IDH1 have been effective in 
lowering 2HG levels in vivo (Popovici-Muller et al. 2012) 
and reducing growth of glioma cells in vitro (Rohle et al. 
2013). However, there is more to IDH-mutant cancer cells 
than just a shift in levels of two metabolites.

αKG and Glu in IDH‑mutant cancer cells

αKG levels should be low in IDH-mutant cancer cells com-
pared to IDH wt cells, due to increased conversion of αKG 
to 2HG. In fact they are relatively high, because mitochon-
drial biosynthesis makes up for missing cytoplasmic αKG 
(Van Lith et al. 2014). That in turn influences the mitochon-
drial TCA cycle considerably (Table 2).

Mutant IDH results in deployed lipid synthesis

Increased synthesis of αKG through mitochondria means 
decreased levels of αKG substrates like citrate. Citrate, 

however, is crucial for acetly-CoA synthesis and therefore 
directly involved in the build-up of fatty acids. It is con-
ceivable that the mutation of IDH leads to an altered ratio 
of fatty acid products like sphingolipids, or phospholip-
ids. Although no data have been published on this matter, 
it has been claimed that IDH1 mutations indirectly alter 
the levels of sphingomyelin in mouse brains (Bogdanovic 
2015).

As described earlier, IDH does not only assist the con-
version of isocitrate to αKG, but also the reverse reaction 
during reductive carboxylation. In IDH-mutant tumors 
one would expect reductive carboxylation to be idle, due 
to the partial loss of IDH activity. Indeed, in hypoxic con-
ditions heterozygous IDH1-mutant cells were impeded in 
their reductive carboxylation ability and increased their 
oxidative TCA metabolism (Table 3). IDH2 mutant cells, 
however, continued to perform reductive carboxylation 
(Grassian et al. 2014). It was shown that even an abundant 
amount of substrate for reductive carboxylation in IDH1 
mutant cells did not result in higher citrate levels, which 
suggest that the process itself is disrupted. IDH1 mutant 
glioma cells might be sensitive to mitochondrial stress, 
because the IDH1 mutation silences the cytoplasmic, 
Gln-dependent pathway for metabolites and fatty acids 
(Table 3).

Table 2   Versatile effects of IDH mutations on cell metabolism

Alterations through IDH mutation Affected pathway Negative effect on

αKG to 2HG-conversion αKG–2HG NADPH production

Increased 2HG levels αKG-2HG DNA methylation
ATP synthesis

Increased need for cytoplasmic αKG Glu-αKG Glu export
Cys import

Mitochondrial malate–αKG antiporter αKG levels in mitochondria

Reduced αKG availability Glutaminolysis ATP production

Distorted conversion of αKG to isocitrate Reductive carboxylation Lipid synthesis

Table 3   Lipids synthesis in 
cells with wild-type IDH and 
mutated IDH under different 
growth conditions

Wild-type IDH Mutant IDH

IDH-mediated reaction Isocitrate <−> α-ketoglutarate α-ketoglutarate—>2-hydroxyglutarate

Lipid synthesis under

 Normal conditions Good Good

  Main substrate  Glucose  Glucose

  Pathway  TCA cycle  TCA cycle

 Hypoxic conditions Good Compromised

  Main substrate  Glutamine  Glutamine

  Pathway  IDH-mediated reversed flux  Disturbed reversed flux

 Inhibited TCA metabolism Good Compromised

  Main substrate  Glutamine  Glutamine

  Pathway  IDH-mediated reversed flux  Disturbed reversed flux
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IDH‑mutant cells are susceptible to ROS‑induced 
damage

In cases of disrupted metabolic pathways, like an 
impeded TCA cycle, it is crucial for the cell to obtain a 
TCA cycle-independent source for αKG. Glu can easily 
be converted into αKG in the cytoplasm. Contrary to IDH 
wt glioma cells, IDH-mutant glioma cells do not release 
Glu on a large scale, because it is needed among others 
as substrate for the TCA cycle. Since IDH-mutant glio-
mas are “glutamate suckers” (Van Lith et al. 2014), they 
cannot import much Cys through the system xc

−. There-
fore, they might have a lack of GSH. Together with low 
levels of NADPH this can result in a hampered resistance 
to ROS. Since Glu levels are strongly affiliated with Gln 
levels, IDH-mutant glioma cells also experience a high 
demand for Gln.

The IDH1-mediated conversion of αKG to isocitrate 
goes along with the conversion of NADPH to NADP+. The 
reversed reaction creates NADPH. Mutant IDH1, however, 
does not mediate reactions with isocitrate anymore. Instead 
it mediates the unidirectional conversion of αKG into 2HG 
with NADP+ as abundant side product. Subsequently cyto-
plasmic production of NADPH or NADH, respectively, is 
decreased and available NADPH or NADH is consumed 
(Fig. 4). NADPH is the major metabolite to protect the cell 
from reactive oxygen species (ROS), because it is neces-
sary to turn oxidized glutathione (GSSG) into reduced glu-
tathione (GSH). GSH in turn directly neutralizes free radi-
cals and ROS.

As stated above, it is assumed that increased mitochon-
drial IDH2 activity makes up for cytoplasmic lack of αKG, 
which would increase NADPH availability. To what extent 
mitochondrial NADPH is transported to the cytoplasm 
remains to be elucidated. Whether the cancers with mutant 
IDH are more susceptible to ROS-induced stress (e.g., 
through radiation or temozolomide) is certainly depend-
ent on the effects of the altered metabolism on the pentose 
phosphate pathway (PPP). The PPP is the major source of 
NADPH in the cytoplasm (Eggleston and Krebs 1974), 
and has been linked to cancer metabolism (Tsouko et  al. 
2014).

2HG directly interferes with ATP synthase

Besides the tumor-initiating effects, both enantiomers of 
2HG have another substantial effect on cancer cell metabo-
lism. 2HG and αKG are capable of binding directly to ATP 
synthase. In this way the enzyme is inhibited and cannot 
exert ATP synthesis anymore. That has negative effects 
on mitochondrial respiration and mTOR signaling in ID- 
mutant cancers (Fu et al. 2015).

Conclusion

In this review we highlight that αKG and Glu are keystones 
in several crucial metabolic pathways. Next to glucose, Gln 
and αKG are important energy sources for the cancer cell. 

Fig. 4   In IDH1/2 wild-type cells, continuous NADPH production ensures low ROS levels (left). Mutant IDH1/2 activity consumes NADPH and 
lowers NADPH production. That results in increased ROS levels (right). ROS reactive oxygen species
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Especially in hypoxic conditions glutaminolysis and reduc-
tive carboxylation are needed to sustain cancer cell growth 
and proliferation. Glu and αKG are important links in the 
sequence of biochemical reactions. Furthermore, released 
Glu can have an impact on cells in the tumor vicinity, since 
high Glu levels lead to astrocytic swelling and apopto-
sis, which is believed to ease tumor expansion. Blockage 
of the efflux transporter System xc

− abrogates the negative 
effect of glioma cells on their microenvironment. How-
ever, it does not hamper the glioma cells’ viability. Simi-
larly, deprivation of amino acids has negative effects on 
cancer cells, but this is not sufficient to cause apoptosis. 
For example, Asn alone can block the apoptotic pathway 
on Glu-deprived glioma cells. Interestingly, when amino 
acids like Cys or Met are lacking in glioma cells, ROS lev-
els increase. When it would be possible to push ROS levels 
over a critical limit, glioma proliferation would be inhib-
ited. To achieve this, a combined approach of radiation, 
temozolomide and deprivation of amino acids and nutri-
ents would be optimal. However, it is questionable if this 
is applicable in a clinical setting, without severely damag-
ing healthy areas of the brain, regarding the neurotoxic side 
effects of anti-cancer drugs such as oxaliplatin, bortezomib, 
or epothilone-B (Ceresa et al. 2014).

Recently a meta-study of 55 observational studies 
has shown that glioma patients with IDH-mutant tumors 
have a higher overall survival rate compared to IDH-wt 
tumors. Furthermore their progression-free survival is sig-
nificantly increased (Xia et al. 2015). This report is in line 
with reports of higher degrees of cell death in IDH-mutant 
gliomas. Regarding the reports about metabolic changes 
through IDH mutations, it seems natural that tumors with 
IDH mutations perform worse than IDH-wt tumors. Here 
we summarize the ways in which IDH mutations impede 
cellular metabolism:

1.	 Mutant IDH1 cannot perform reductive carboxylation 
to allow macromolecule synthesis in hypoxia.

2.	 Mutant IDH enzymes enhance the NADPH-dependent 
conversion of αKG to 2HG; leaving the cell with low 
NADPH levels and therefore more susceptible to stress 
through free radicals and ROS.

3.	 2HG directly inhibits ATP synthase by binding to it 
and leads to unfavorable effects under glucose restric-
tion.

It became apparent that especially hypoxic conditions 
are highly unfavorable for IDH-mutant cells. IDH-mutant 
cells might not be able to survive or at least proliferate in 
hypoxic conditions (Fig. 3). That would explain why IDH 
mutations are not common in solid tumors and only have 
been documented in diffuse forms of cancer like glioma or 
leukemia. In diffuse cancer types cells do not stay in close 

vicinity and therefore have fewer problems with oxygen 
supply.

IDH mutations play a large role in tumor onset. Later 
on, however, the malfunction of the IDH enzyme seems to 
challenge the cell more than it aids it. The metabolic altera-
tions discussed in this article give a partial explanation at a 
molecular level for the effects of IDH mutations on overall 
survival that were reported in clinical studies. With regards 
to therapy approaches, it might be effective to enhance the 
problems the cell is confronted with by the mutant IDH 
enzyme.
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