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alterations induced by methionine, such as the reduction in 
brain Na+,K+-ATPase activity, and liver inflammation.
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Roles of methionine

Methionine (Met) is an essential sulfur-containing amino 
acid obtained from diet or degradation of endogenous 
proteins. Some of the main functions of Met in organism 
include: production of its derivative molecules cysteine, 
glutathione, carnitine, taurine, and creatine (Wesseling 
et al. 2009; Wyss and Kaddurah-Daouk 2000; Crill and 
Helms 2007), protein synthesis since Met composes pro-
teins and peptides and is the only natural initiating amino 
acid in the eukaryotic translation (Lucas-Lenard 1971), as 
well as donation of its methyl group to a variety of mol-
ecules such as nucleic acids, histones, amino acids, and 
lipid-derivatives (Chiang et al. 1996).

Besides, it has been reported that Met residues in pro-
teins also provide antioxidant protection since they are 
often positioned so that they establish an interaction, 
through hydrophobic bond, between their sulfur atoms 
and the rings of aromatic amino acids (Valley et al. 2012), 
which are much susceptible to oxidation by reactive species 
(El Refaey et al. 2015). Furthermore, the oxidation of sur-
face exposed Met protects the other residues because reac-
tive species may oxidize Met to Met sulfoxide, which may 
be reduced back by the enzyme Met sulfoxide reductase 
(Brot et al. 1981).

Abstract Hypermethioninemia is a condition defined as 
elevated plasma methionine levels and may be a conse-
quence of different conditions that include non-genetic and 
genetic causes. In severe cases, hypermethioninemia may 
lead to development of neurological and hepatic impair-
ments, but mechanisms are still not well elucidated. There-
fore, this review aims to reunite the knowledge acquired 
about the methionine-induced brain and liver toxicity 
focusing on the results obtained by studies from patients, 
in vitro experiments, and in vivo animal models. In gen-
eral, some studies have shown that methionine decreases 
Na+,K+-ATPase activity, induces oxidative stress, increases 
acetylcholinesterase activity, and leads to dendritic spine 
downregulation in brain. Concerning to liver, hyperme-
thioninemia seems to provoke changes in cell morphology, 
lipid accumulation, oxidative stress, inflammation, and 
ATP depletion. It is possible to infer that oxidative damage 
is one of the most important mechanisms responsible for 
methionine toxicity, since different studies showed that this 
amino acid induces oxidative stress in brain and liver tis-
sues. Besides, reactive oxygen species may mediate other 
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Metabolism of methionine

Met is mainly metabolized in the liver by the enzyme Met 
adenosyltransferase (MAT, EC 2.5.1.6), which is present 
in three isoforms. MAT I and III are encoded by the same 
gene MAT1A and predominate in adult liver. MAT II activ-
ity is present at smaller amount in adult liver and its activ-
ity is predominant in non-hepatic tissues, fetal liver, and 
hepatocellular carcinoma (Frago et al. 1998; Horikawa 
et al. 1990, 1993; Okada et al. 1981; Gil et al. 1996; Cai 
et al. 1996). This enzyme transfers the adenosyl group from 
ATP to Met, forming S-adenosylmethionine (AdoMet) and 
tripolyphosphate. AdoMet is reacquired as a methyl donor 
in reactions that include methylation of nucleic acids, pro-
teins, and lipids. The product of AdoMet transmethylation 
is the S-adenosylhomocysteine (AdoHcy), which is hydro-
lyzed by AdoHcy hydrolase (AHCY, EC 3.3.1.1), resulting 
in homocysteine (Hcy) formation (Mudd 1962; Cantoni 
1953; Finkelstein 1990; de la Haba and Cantoni 1959).

Hcy can be metabolized by two different pathways: rem-
ethylation or transsulfuration. Remethylation is catalyzed 
by Met synthase (MS, EC 2.1.1.13), a vitamin B12-depend-
ent enzyme that regenerates Met by transferring a methyl 
group to Hcy. The methyl group is derived from the endog-
enous 5-methyltetrahydrofolate (5-methyl-THF), which 
is formed during the metabolism of folic acid. Addition-
ally, betaine-Hcy-methyltransferase (BHMT) uses betaine 
derived from choline as a methyl donor for Hcy remethyla-
tion, which is considered a salvage pathway when toxins 
compromise the action of MS. BHMT transfers the methyl 

group from betaine to Hcy, forming Met and N,N-dimeth-
ylglycine (DMG). Transsulfuration pathway catalyzes the 
condensation of Hcy with serine to form cystathionine 
through the action of a vitamin B6-dependent enzyme 
named cystathionine β-synthase (CBS, EC 4.2.1.22). Cys-
tathionine is then converted to α-ketobutyrate and cysteine 
by the enzyme γ-cystathionase, which is also dependent of 
vitamin B6. Therefore, transsulfuration pathway is a very 
important source of non-enzymatic antioxidant protection 
to the liver, since it forms cysteine, the precursor of glu-
tathione (Finkelstein 2000; Selhub 1999; Beatty and Reed 
1980; Mosharov et al. 2000). The Met/Hcy cycle is shown 
in Fig. 1.

In cerebral tissue, Met is primarily metabolized through 
remethylation pathway. Some years ago, data published in 
literature indicated that the transsulfuration was incomplete 
in the brain due to absence of the enzyme γ-cystathionase, 
leading to cystathionine accumulation in this organ (Fin-
kelstein 1998). However, Vitvitsky et al. (2006) have dem-
onstrated the existence of a functional transsulfuration 
pathway in human neurons and astrocytes and in mouse 
brain, suggesting that this may contribute to the protection 
under oxidative stress conditions through brain glutathione 
synthesis.

Hypermethioninemia

Normal plasma concentration of Met range from 13 to 
45 µM (Stabler et al. 2002). Hypermethioninemia occurs 

Fig. 1  Pathways of Met 
metabolism in mammals. MAT 
Methionine adenosyltransferase, 
AdoMet S-adenosylmethionine, 
AdoHcy S-adenosylhomocyst-
eine, AHCY S-adenosylho-
mocysteine hydrolase, CBS 
cystathionine β-synthase, 
5,10-methylene-THF 5,10-meth-
ylenetetrahydrofolate, 5-methyl-
THF 5-methyltetrahydrofolate, 
THF tetrahydrofolate, BHMT 
betaine-homocysteine-methyl-
transferase, DMG N,N-dimeth-
ylglycine
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when Met levels increase in blood, which may be a con-
sequence of different conditions. Non-genetic causes for 
hypermethioninemia include liver disease, premature birth 
(frequently transient), and diet rich in proteins, which may 
increase plasma Met levels to 1206 µM when protein intake 
achieves 7 g/kg/day. On the other hand, hypermethionine-
mia from genetic causes (hereditary conditions) includes: 
MAT I/III deficiency, classical homocystinuria (due to CBS 
deficiency), deficiencies of glycine N-methyltransferase 
(GNMT, EC 2.1.1.49), AHCY, citrin, and fumarylacetoace-
tate hydrolase (tyrosinemia type I) (Mudd 2011; Levy et al. 
1969).

A characteristic that distinguishes MAT I/III deficiency 
from GNMT, AHCY, and CBS deficiencies is that the first 
one leads to isolated hypermethioninemia, with plasma 
Met reaching levels from 600 to 2541 µM in patients with 
homozygous mutations (Mudd et al. 1995; Chamberlin 
et al. 1996; Nagao and Oyanagi 1997). The term isolated 
hypermethioninemia designates elevated plasma Met 
levels which are not associated with the increase in Met 
metabolites, including AdoMet, AdoHcy, Hcy, and cys-
tathionine. As exception, patients with severe MAT I/III 
deficiency may have plasma Hcy slightly elevated, but the 
mechanisms involving this effect are still not well under-
stood (Stabler et al. 2002; Lagler et al. 2000). Besides, 
MAT I/III deficiency may lead to decreased AdoMet, while 
the other causes of hypermethioninemia often enhance 
AdoMet levels (Mudd 2011). Therefore, the reader should 
be clarified that the effects of hypermethioninemia may 
differ depending on the cause, since AdoMet may be 
involved in the pathological effects either when increased 
or decreased.

Pathological effects of hypermethioninemia

Met is crucial for normal growth and development, but 
when this amino acid and/or its metabolites are present at 
abnormally elevated plasma levels, potentially toxic events 
may occur. Although it may be asymptomatic, hyperme-
thioninemia can cause the following pathological effects: 
myopathy, hypotonia, altered erythrocyte morphology 
with consequent splenic hemosiderosis, facial dysmorphia 
associated to abnormal teeth and hair, anorexia and diges-
tive disturbances, development of neurological problems 
(tremor, dystonia, and cognitive deficit), and/or liver dis-
eases (Chamberlin et al. 1996; Gaull et al. 1981a; Guízar 
Vázquez et al. 1980; Benevenga and Steele 1984; Higashi 
1982; Lynch and Strain 1989; Labrune et al. 1990; Gout 
et al. 1977; Chamberlin et al. 1997; Harvey Mudd et al. 
2003; Mudd et al. 2001). In view of severity of the symp-
toms, this review will empathize the neurological and 
hepatic effects of hypermethioninemia.

Neurological effects

The increase in Met levels can be toxic to the brain regard-
less of the cause. In general, patients with severe hyperme-
thioninemia may present neurological dysfunction, includ-
ing mental retardation and cognitive deficit. It has been also 
reported that cerebral edema may be observed during CBS 
and MAT I/III deficiencies and during excessive Met diet 
when plasma Met achieves levels extremely elevated (Har-
vey Mudd et al. 2003; Mudd et al. 2001; Braverman et al. 
2005). However, the mechanisms involved in these altera-
tions are still not well elucidated. In the attempt to under-
stand such mechanisms, some studies have been developed.

Na+,K+‑ATPase activity and oxidative stress

Na+,K+-ATPase plays a crucial role in maintaining the 
ionic gradient required for neuronal excitability and regula-
tion of neuronal cell volume through the transport of Na+ 
and K+ ions in the nervous system (Glynn 1985). Inhibi-
tion of this enzyme may induce brain edema, neuronal 
death, and impairment of learning and memory (Wyse et al. 
2004; de Lores Arnaiz and Ordieres 2014). In this context, 
the decrease in brain Na+,K+-ATPase activity seems to be 
involved in neurological diseases, such as dystonia (Can-
non 2004), Alzheimer disease (Zhang et al. 2013), bipolar 
affective disorder (Mynett-Johnson et al. 1998), ischemia 
(de Souza Wyse et al. 2000), epilepsy (Grisar et al. 1992), 
depressive disorders in rats (Gamaro et al. 2003; Acker 
et al. 2009), hyperprolinemia (Ferreira et al. 2011), and 
phenylketonuria (Wyse et al. 1999).

Oxidative stress is characterized by an imbalance 
between reactive oxygen species (ROS) and the cellular 
antioxidant defenses that include non-enzymatic protec-
tion, such as vitamins C and E and reduced glutathione, 
and enzymatic protection, such as glutathione peroxidase, 
superoxide dismutase (SOD), and catalase (CAT) (Apel 
and Hirt 2004). Increased ROS production can directly 
cause tissue damage and lead to inflammation process 
(Geronikaki and Gavalas 2006). Besides, Na+,K+-ATPase 
activity may be affected by ROS through lipid peroxidation 
and sulfhydryl groups oxidation.

In this context, an in vitro study showed that Met inhib-
its Na+,K+-ATPase in synaptic plasma membrane from 
hippocampus of rats (Streck et al. 2002a). Posteriorly, 
Stefanello et al. (2005) verified that the preincubation of 
hippocampal homogenates with antioxidants (glutathione 
and tocopherol) prevented the inhibitory action of Met on 
Na+,K+-ATPase. In the same work, the evaluation about 
the in vitro effects of Met on some parameters of oxida-
tive stress demonstrated that this amino acid caused lipop-
eroxidation and reduced non-enzymatic antioxidant capac-
ity in rat hippocampus. Together, these results suggest that 
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Met-induced Na+,K+-ATPase inhibition is possibly medi-
ated by free radical formation.

Therefore, Stefanello et al. (2007a) extended the inves-
tigations and developed an in vivo model for hyperme-
thioninemia in which developing Wistar rats receive injec-
tions of Met leading to concentrations approximately 
30-fold the control levels. Using this experimental model, 
it was demonstrated that both chronic and acute admin-
istration of Met lead to lipoperoxidation and decreased 
Na+,K+-ATPase activity in Wistar rat hippocampus. Since 
Na+,K+-ATPase is embedded in cellular membrane, it is 
possible that peroxidative process could provoke changes 
of fluidity or other membrane properties, prejudicing the 
enzyme functioning and decreasing its activity (Stefanello 
et al. 2007b).

In a further study, Stefanello et al. (2007c) also demon-
strated that chronic injections of Met significantly reduced 
Na+,K+-ATPase activity in rat cerebral cortex accompanied 
by reduced amount of gangliosides (GM1, GD1a, GD1b, 
and GT1b), phospholipids (sphingomyelin, phosphatidyl-
choline, and phosphatidylethanolamine) and cholesterol. 
Lipoperoxidative process was also observed, strengthening 
the hypothesis that oxidative damage of the cellular mem-
brane lipids could provoke changes in lateral assembly of 
glycosphingolipids, unsaturated glycerophospholipids 
and cholesterol, leading to alteration in Na+,K+-ATPase 
activity.

The neurotoxic effects of Met were also demonstrated 
in Sprague–Dawley rats submitted to a Met-enriched diet 
during 8 weeks. The results from this study showed an 
enhance in the activity of the antioxidant enzyme SOD in 
cerebral cortex of the rats fed on 1 and 5 % Met, suggest-
ing a metabolic adjustment to combat a possible augment 
in ROS production. This alteration was accompanied by 
apparent impairment of locomotor skills and synaptic plas-
ticity in rats fed on 5 % Met (Viggiano et al. 2012).

More recently, an animal model for maternal hyperme-
thioninemia was developed. In this study, pregnant Wistar 
rats received injections of Met during gestational period. 
The administration of 2.68 μmol Met/g body weight 
increased encephalon Met levels (without Hcy elevation) in 
the offspring. Decrease in the activities of Na+,K+-ATPase, 
Mg2+-ATPase, and CAT, as well as in total sulfhydryl con-
tent was also found. However, cerebral lipoperoxidation 
was not observed and in this case, the reduction in Na+,K+-
ATPase activity may be associated to attack of reactive spe-
cies to the sulfhydryl groups present in the enzyme (Sch-
weinberger et al. 2014).

Acetylcholinesterase activity

Schulpis et al. (2006) published data showing that Met is 
able to increase hippocampal acetylcholinesterase (AChE) 

activity in vitro. At the following year, Stefanello et al. 
(2007d) showed that chronic subcutaneous injections of 
Met in developing Wistar rats increased AChE activity in 
cerebral cortex associated to an impaired working memory 
performance. Since AChE acts into the synapse by rapid 
hydrolysis of the acetylcholine (Ach), a neurotransmit-
ter whose adequate maintenance has been associated with 
cognitive manifestations (learning and memory) (Bartus 
et al. 1982), the stimulation of this enzyme activity could 
lead to a decrease in cerebral Ach levels and provide an 
explanation for the memory deficit found in the hyperme-
thioninemic rats. In agreement, studies showed that long-
term Met exposure caused an important increase in brain 
AChE activity and memory deficit in zebrafish (Vuaden 
et al. 2012). Since Ach has a role as an anti-inflammatory 
molecule, some studies have correlated increased AChE 
activity with neuroinflammation (Scherer et al. 2014), what 
could be also related to the pathogenic effects found in 
hypermethioninemia.

Dendritic spine downregulation

In 1952, Osmond and Smythies (1952) proposed the 
‘‘transmethylation theory’’ of schizophrenia, suggesting 
that this psychotic disease is a result of a disturbance in 
methylation. In 2009, Grayson et al. also reported that Met 
treatment could worsen schizophrenia symptoms, possibly 
because it increases brain levels of AdoMet. More specifi-
cally, excessive AdoMet could provoke hypermethylation 
of Reelin gene promoter. Since Reelin is a glycoprotein 
secreted by GABAergic neurons that stimulates dendritic 
spines development, this process could be impaired by Met 
(Levenson et al. 2008).

Indeed, it has been demonstrated that the treatment with 
Met causes a decrease in dendritic spine density of layer III 
pyramidal neurons in frontal cortex of mice, a pathologi-
cal alteration similar to the dendritic spine downregulation 
found in brain during schizophrenia (Tueting et al. 2010). 
In agreement, clinical studies have demonstrated that 
patients with psychotic disorders present increased Met 
levels in cerebrospinal fluid (Regland et al. 2004).

Besides, it should be noted that that learning and novel 
sensory experiences lead to spine formation and the new 
spines that are preserved seem to provide a structural 
basis for memory retention (Yang et al. 2009). Thus, when 
hypermethioninemia is associated with enhanced AdoMet 
levels, the reduction in dendritic spine density may occur 
and cause lifelong memory impairment.

Hepatic effects

Since Met is primarily metabolized in the liver (Finkelstein 
1990), it has been suggested that excess of Met may cause 
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liver injury, but mechanisms are still not well elucidated. In 
this context, several studies have been performed to figure 
it out.

Liver cell alterations

In humans, electron microscopy revealed augmented 
smooth endoplasmic reticulum, reduced rough endoplas-
mic reticulum, enhanced lysosomes, and short breaks in 
the outer membranes of liver from patients with persistent 
hypermethioninemia (MAT activity ranged from 7.8 to 
17.5 %) and with no abnormalities in other sulfur amino 
acid concentrations (Gaull et al. 1981b). In rats, excess die-
tary Met (10–12.4 % dl-Met) caused atrophy of liver cells 
and changes in the distribution of the chromatin, which was 
condensed and deposited at the periphery of the nucleus 
(Earle et al. 1942).

Hepatic lipid accumulation

Whereas the liver is the organ directly related to lipid 
metabolism, fatty accumulation (steatosis) may be 
observed during some pathological conditions. Steatosis is 
associated with hepatocyte damage and consequently can 
cause cirrhosis, inflammation, and liver failure leading to 
end-stage disease (Angulo 2010). In this context, histologi-
cal examinations of liver tissues from patients with persis-
tent and transient hypermethioninemia showed moderate 
fatty degeneration, wherein the condition improved after 
low Met diet (Tsuchiyama et al. 1982).

Furthermore, Lu et al. (2001) evaluated the effect of 
MAT1A knockout in mice and observed, at 3 months, an 
increase of 776 % in plasma Met levels and reduction of 
liver AdoMet content. At 8 months, development of spon-
taneous macrovesicular steatosis and predominantly 
periportal mononuclear cell infiltration occurred. These 
changes were accompanied by augmented expression of 
acute phase-response/inflammatory markers (orosomucoid, 
amyloid, metallothionein, Fas antigen) and growth-related 
genes (early growth response 1 and proliferating cell 
nuclear antigen), as well as increased liver weights. Posteri-
orly, Martínez-Chantar et al. (2002) also demonstrated that 
knockout in MAT1A gene leads to abnormal expression of 
genes involved in the metabolism of lipids and carbohy-
drates associated with hyperglycemia and increased hepatic 
triglyceride levels in mice.

Met diet supplementation was also able to induce 
hepatic damage by stimulating cholesterol synthesis in 
liver cells (probably through increased hepatic expres-
sion of 3-hydroxy-3-methylglutaryl coenzyme A reduc-
tase) (Hirche et al. 2006), augmenting accumulation of 
hepatic total lipids and phospholipids (Yang and Kadowaki 
2011), and inducing microvesicular steatosis, hepatocyte 

degeneration, and inflammatory reactions in liver of rats 
(Yalçinkaya et al. 2009). Met diet restriction, on the other 
hand, seems to be advantageous as described in a previous 
study, which demonstrated that rats submitted to restrictive 
Met intake presented reduced visceral fat associated to a 
decrease in basal insulin, glucose, and leptin, and increased 
adiponectin and triiodothyronine. Besides, Met restriction 
prevented age-associated increase in serum lipids (Malloy 
et al. 2006). In 2013, Malloy et al. also demonstrated that 
Met restriction was able to reverse the severity of steato-
sis in obese mice accompanied by reduced hepatic triglyc-
erides levels, increased VLDL secretion, and increased 
mRNA levels of apolipoprotein B and microsomal tri-
glyceride transfer protein. The expression of inflamma-
tory markers (Tnf-α and Ccr2) was also attenuated by Met 
restriction in this study.

It is important to note that excessive lipids in liver may 
cause lipid peroxidation, which can increase the produc-
tion of pro-inflammatory cytokines (Bradbury 2006). 
Besides, the increase in lipids can exceed mitochondrial 
beta-oxidation further enhancing oxidative stress and 
inflammation (Schreuder et al. 2008). On this basis, Met-
induced lipid accumulation in liver could lead to oxidative 
stress, which may have a role in hepatic damage during 
hypermethioninemia.

Oxidative stress

The role of oxidative stress on the hepatic toxicity caused 
by Met has been shown in different animal studies: 
enriched Met diet increased lipid peroxidation in liver of 
rats and rabbits, as well as, altered antioxidant enzyme 
activities and induced inflammatory infiltration of portal 
triads in liver of rabbits (Lynch and Strain 1989; Mori and 
Hirayama 2000; Toborek et al. 1996); high Met diet also 
increased hepatotoxicity and oxidative stress in the liver of 
chronically ethanol-treated rats (Yalçinkaya et al. 2007); 
MAT1A knockout increased susceptibility to oxidative 
stress and reduced glutathione content in mice liver (Lu 
et al. 2001; Martínez-Chantar et al. 2002).

To further the knowledge about these mechanisms, Ste-
fanello et al. (2009) evaluated the toxic effects of chronic 
Met injections in rats. The treatment decreased non-enzy-
matic antioxidant defenses, increased protein carbonyla-
tion, and altered the activities of the antioxidant enzymes 
glutathione peroxidase and CAT in the liver, indicating oxi-
dative stress. These alterations were accompanied by mor-
phological alterations in liver.

In addition, rats fed with a high Met diet (2 %, w/w) 
during 6 months presented hepatic oxidative and nitrosative 
stress characterized by increased lipid peroxide and nitro-
tyrosine levels, as well as decreased non-enzymatic and 
enzymatic antioxidant defenses in liver. Increased levels of 
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alanine transaminase and aspartate transaminase in blood 
and altered apoptotic parameters in liver indicated that the 
hepatic tissue was disrupted. These alterations were accom-
panied by enhanced Hcy levels in blood (Yalçinkaya et al. 
2009).

Gomez et al. (2009) also demonstrated that Wistar rats 
fed a Met supplemented diet (2.5 g/100 g) for 7 weeks 
had increased mitochondrial ROS generation and oxida-
tive damage to mitochondrial DNA in liver. In agreement, 
Caro et al. (2008) showed that lowered Met ingestion has 
the exactly opposite effects, decreasing mitochondrial ROS 
production and DNA oxidative damage in liver of rats. 
More recently, a swine model was used to determine if a 
methionine-restricted diet for 2 weeks could reduce oxi-
dative stress in hepatic mitochondria. The results showed 
that methionine restriction decreased markers of oxidative 
damage to DNA and proteins in liver mitochondria of pigs, 
being that effects probably were consequence of attenuated 
ROS production since a reduction in H2O2 generation and 
in free radical leak was also observed. The authors suggest 
that the decrease in ROS generation possibly occurred due 
to reduced complex I activity, which was associated with 
decreased levels of the apoptosis inducing factor, a protein 
related to complex I function (Ying et al. 2015).

Besides, excessive Met intake by γ-cystathionase-
deficient mice led to the development of acute hepatitis 
attended by serum and hepatic lipoperoxidation (Yamada 
et al. 2012). It has been previously described that peroxi-
dized fatty acids (arachidonic and linolenic) stimulate inter-
leukin-8 production by peripheral blood monocytes in liver 
(Jayatilleke and Shaw 1998). Interleukin-8, in turn, has 
been associated with hepatic neutrophil infiltration and to 
activation of hepatic profibrogenic cells (Bird 1994; Zim-
mermann et al. 2011; Taïeb et al. 2000; Dong and Zheng 
2015; Tachibana et al. 2007).

More recently, Costa et al. (2013) performed in vitro 
and in vivo studies about the toxic effects of Met in liver. 
For in vitro studies, liver homogenates were incubated 
with Met and results showed changes in CAT and SOD 
activities, as well as in ROS production. For in vivo stud-
ies, the animals received injections of Met (0.4 g/kg) and 
were euthanized after 1 and 3 h. Results showed that Met 
enhanced carbonyl content at 1 h, as well as decreased CAT 
activity 1 and 3 h after administration. Data indicated that 
Met modifies liver homeostasis by altering the redox cel-
lular state both in vivo and in vitro.

Cholestasis

Cholestasis is a pathological condition defined as an 
impairment of bile flow that causes the accumulation of 
toxic compounds, which induce liver damage, biliary 
fibrosis, cirrhosis, and finally end-stage liver disease. 

Studies performed in rabbits by Moss et al. (1999) showed 
that intravenous administration of Met (121 mg kg−1 d−1) 
leads to decreased bile flow. The excretion of a bilirubin 
analog (bromosulfophthalein) tended to be delayed by 
Met treatment. It was also verified histological liver injury, 
balloon degeneration, and inflammation characterized 
by infiltration of the portal triads with eosinophils. There-
fore, these results suggest that excessive Met may lead to 
cholestasis.

 In addition, four cases of human neonates positive for 
hypermethioninemia and two for both hypermethionine-
mia and hypergalactosemia have been described, which 
presented severe intrahepatic cholestasis of unknown ori-
gin (Ohura et al. 2003). Cholestasis induced by hyperme-
thioninemia may be a consequence of the inflammatory 
process induced by Met since the cytokines produced under 
this condition may impair the hepatocellular transport sys-
tems that mediate biliary excretion of bile salts and non-
bile salt organic anions (Trauner et al. 1999).

ATP depletion

Since Met transmethylation initiates through the ATP-
dependent conversion of Met to AdoMet (Finkelstein 
1990), ATP depletion from excessive AdoMet formation 
may induce or augment hepatotoxicity during hyperme-
thioninemia (Hardwick et al. 1970). In accordance with this 
hypothesis, injections of Met in guinea pigs led to accu-
mulation of AdoMet with concomitant ATP deficiency and 
nucleolar disaggregation in liver (Shinozuka et al. 1971). 
Besides, Regina et al. (1993) performed an experiment 
in which the feeding of toxic levels of Met led to a pro-
nounced accumulation of AdoMet in liver of rats.

Met transamination

Met transamination consists of an alternative pathway for 
Met metabolism and results in the formation of 2-keto-
4-methylthiobutyric acid, which is oxidatively decarboxy-
lated to form 3-methylthiopropionic acid (3-MTP) (Cooper 
1989; Scislowski and Pickard 1993; Steele and Benevenga 
1978). 3-MTP is then metabolized to highly toxic mol-
ecules, including methanethiol, a compound that inhibits 
enzymes involved in protection against peroxidative dam-
age (Finkelstein and Benevenga 1986).

In this context, Dever and Elfarra (2008) demonstrated 
that Met is hepatotoxic through an experiment in which 
freshly isolated male mouse hepatocytes were incubated 
with different doses of this amino acid, leading to cell 
disruption and glutathione depletion. The exposure of 
hepatocytes to 3-MTP resulted in similar effects. Besides, 
the addition of aminooxyacetic acid, an inhibitor of Met 
transamination, partially blocked Met-induced cytotoxicity, 
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indicating that the toxicity was at least partially mediated 
by Met transamination.

Final considerations

Based on the information presented above, it is possible 
to infer that oxidative damage is one of the main mecha-
nisms responsible for toxicity caused by Met, since oxida-
tive stress was induced in brain and liver tissues in different 
studies that includes in vitro experiments or in vivo ani-
mal models by injecting Met, enriching Met in diet and/or 
knocking MAT1A gene. Besides, oxidative stress seems to 
mediate, at least partially, other alterations induced by Met, 
such as the reduction of brain Na+,K+-ATPase activity and 
liver inflammation.

Some Met metabolites, such as Hcy, may induce oxida-
tive stress and alter AChE and Na+,K+-ATPase activities in 
brain and liver, contributing to the toxic effects of Met in 
some cases (Streck et al. 2002b; Scherer et al. 2011, 2013, 
2014; Machado et al. 2011; Matté et al. 2004; 2009a, b). 
However, this review described different in vitro studies 
and animal models that induced isolated hypermethionine-
mia, which caused pathological effects, suggesting that Met 

per se is able to elicit important hepatic and neurological 
toxicity.

In conclusion, Met may be extremely toxic to brain by 
inducing oxidative stress, decreasing Na+,K+-ATPase 
activity and dendritic spine density, as well as increas-
ing AChE activity. In liver, hypermethioninemia seems to 
induce histological changes, liver lipid accumulation, oxi-
dative stress, inflammation, and ATP depletion. Schematic 
representations of Met effects in brain and liver are shown 
in Fig. 2.

Dedication

This review is dedicated to the memory of Dr. S. Harvey 
Mudd, who developed a superb work on diseases involving 
disturbances of sulfur amino acid metabolism The studies 
performed by Dr. Mudd motivated us to develop experi-
mental models of hypermethioninemia and hyperhomo-
cysteinemia in the attempt to better understand the underly-
ing mechanisms involved in the pathophysiology of these 
conditions We express our gratitude to this eminent scien-
tist for his scientific contribution and for the opportunity to 
have exchanged ideas about our research.

Fig. 2  Schematic representation of Met effects reported in the lit-
erature up to now. In brain, hypermethioninemia increases ROS 
production and decreases antioxidant defenses, leading to oxidative 
stress, which in turn may reduce Na+,K+-ATPase activity. Na+,K+-
ATPase inhibition is related to cerebral edema and memory deficit. 
Increased AChE activity and dendritic spine downregulation (induced 
by decreased Reelin levels) may also impair memory during hyper-

methioninemia. In liver, hypermethioninemia induces steatosis that 
increases mitochondrial beta-oxidation, leading to increased ROS 
production. Hypermethioninemia also induces 3-MTP formation 
which reduces antioxidant defenses. This imbalance between ROS 
and antioxidants induces oxidative stress. Inflammation is both conse-
quence and cause of oxidative stress and is able to lead to cholestasis. 
Inflammation and Met-induced ATP depletion causes cell death
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