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IL  Interleukin
iNOS  Inducible nitric oxide synthase
MMP  Matrix metalloproteinase
NF-κB  Nuclear factor-κB
NO  Nitric oxide
OA  Osteoarthritis
PPAR γ  Peroxisome proliferator-activated receptor-γ
SAM  S-Adenosylmethionine
TNF-α  Tumor necrosis factor-α

Introduction

Osteoarthritis (OA) is a common form of arthritis charac-
terized by articular cartilage destruction and osteophyte 
formation (Berenbaum 2013). It is a painful and disabling 
disease and reduces life quality of patients. The exact etiol-
ogy of OA is still unknown, but various risk factors have 
been reported, including age (Blagojevic et al. 2010), obe-
sity (Koonce and Bravman 2013), metabolic syndrome 
(Karlson et al. 2003), genetic predisposition (Spector 
et al. 1996), malalignment (Felson et al. 2013), acute joint 
injury (Gelber et al. 2000), and reduced sex hormone lev-
els (Arden and Nevitt 2006). At present, there is no drug 
approved for structural protection of the joint or prolon-
gation of joint life. With the growing understanding about 
OA, it can be divided into at least four subpopulations: (a) 
synovium-driven, (b) cartilage-driven, (c) bone-driven, and 
(d) other idiopathic conditions that remain to be understood 
(Siebuhr et al. 2015). OA has long been regarded as a non-
inflammatory disease, but a degree of inflammation is now 
recognized as being a vital part of OA pathology (Siebuhr 
et al. 2015; Goldring and Otero 2011). Elevated levels of 
inflammatory mediators, such as interleukin (IL)-1β, IL-6, 
and IL-8, have been detected in both the synovial fluid and 
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the serum from people with OA (Attur et al. 2013; Siebuhr 
et al. 2015). The inflammation and inflammation-related 
molecules from other underlying pathologies, such as 
trauma, metabolic syndrome and age, contribute to the ini-
tiation and persistence of OA, and synergize with other risk 
factors in the pathogenesis of OA (Sellam and Berenbaum 
2010; Berenbaum 2013). For example, nuclear factor-κB 
(NF-κB) pathway is activated in OA disease by proinflam-
matory cytokines (i.e., tumor necrosis factor-α and IL-1β; 
Marcu et al. 2010). Once activated, the NF-κB signaling 
induces expression of various catabolic genes in articular 
chondrocytes (Marcu et al. 2010), including a disintegrin 
and matrix metalloproteinase (MMP) with thrombospon-
din motifs (ADAMTS)-5, inducible nitric oxide (NO) syn-
thase (iNOS) and matrix metalloproteinase-13, which are 
highly involved in the pathogenesis of OA (Gao et al. 2015; 
Yang et al. 2014; Xu et al. 2013). Subsequently, inflamma-
tion has been regarded as a driver of joint destruction, OA 
symptoms, and progression of OA in a subpopulation of 
OA patients (Siebuhr et al. 2015).

Alterations of amino acid profiles in OA

Amino acids (AA) are not only building blocks of pep-
tides and proteins, but are also precursors of low molecular 
weight substances (e.g., NO, dopamine, serotonin, poly-
amines, glucosamine, creatine, glutathione, homoarginine, 
and agmatine) with enormous physiological functions (Hou 
et al. 2015a; Yang et al. 2015a; Tsikas and Wu 2015; Wu 
2013a, 2013b). For example, physiological concentrations 
of arginine (Jobgen et al. 2009a, b; Wu et al. 2013), gly-
cine (Wang et al. 2013, 2014a, b), glutamine (Haynes et al. 
2009; Wang et al. 2015b; Yi et al. 2015; Zhu et al. 2015), 
glutamate (Jiao et al. 2015; Rezaei et al. 2013a, b), proline 
(Obayashi et al. 2012, 2015; Wu et al. 2011a), cysteine 
(Hou et al. 2015b; Wu et al. 2004), and tryptophan (Yao 
et al. 2011) inhibit oxidative injury in cells. Furthermore, as 
an inhibitor of iNOS expression, glucosamine (a metabolite 
of glutamine) has been proposed to alleviate inflammation 
in OA patients (Meininger et al. 2000). This is analogous to 
the use of anti-inflammatory proteins (e.g., interferon-tau) 
to inhibit inflammation-induced cell injury under physi-
ological (e.g., pregnancy) and pathological (e.g., autoim-
mune disease) conditions (Bazer et al. 2015).

Besides inflammation, alterations in AA metabolism 
and profiles are also involved in the pathogenesis of OA 
(Dimitroulas et al. 2015; Mayboroda et al. 2007; Mickie-
wicz et al. 2015; Wen et al. 2015). In a recent study, Zig-
nego et al. (2015) employed liquid chromatography-mass 
spectrometry-based metabolomics to understand short-
term metabolic responses of human chondrocytes to sub-
injurious physiological compression. Based on changes 

in the concentrations of threonine, homoserine, and allo-
threonine, these authors suggested that rates of glycine, 
serine, and threonine metabolism were increased after 
mechanical loading (Zignego et al. 2015). Results of the 
analysis of metabolites in synovial fluid by magnetic reso-
nance spectroscopy-based metabolomics indicated that an 
anterior cruciate ligament reconstruction injury resulted 
in perturbed pathways for the metabolism of: (a) glycine, 
serine and threonine; (b) arginine and proline; and (c) ala-
nine, aspartate, and glutamate in patients (Mickiewicz et al. 
2015). As such, the profiles of glycine, serine, creatine, 
choline, hydroxyproline, proline, asparagine, succinate, 
alanine, and histidine were altered in subjects with injured 
joints (Mickiewicz et al. 2015). In rabbits with an anterior 
cruciate ligament reconstruction injury, there are marked 
changes in plasma levels of AA, particularly alanine, threo-
nine and methionine (Ohnishi et al. 2013). Likewise, there 
are negative correlations between histological assessments 
and changes in plasma concentrations of many AA (includ-
ing arginine, glutamate, citrulline, ornithine and hydroxy-
proline; Ohnishi et al. 2013). Furthermore, sheep with 
anterior cruciate ligament transaction exhibited decreases 
in serum concentrations of tyrosine, valine, isoleucine, and 
leucine, but increases in serum concentrations of glycine 
and 3-methylhistidine at week 4 after surgery, compared 
with the sham control (Maher et al. 2012). The animals also 
had lower concentrations of serum valine, isoleucine, and 
leucine, but higher concentrations of serum glutamine, cre-
atine, creatinine and 3-methylhistidine at week 12 after sur-
gery, than those from the sham surgery (Maher et al. 2012). 
Indeed, the ratio of branched-chain AA to histidine, includ-
ing the ratios of valine to histidine and leucine or isoleucine 
to histidine, is potentially a useful biomarker for osteoar-
thritis (Zhai et al. 2010). With the use of ultra-performance 
liquid chromatography coupled to mass spectrometry, 
fourteen significantly altered metabolites were eventually 
identified in the serum of OA, compared to healthy controls 
(Zhang et al. 2015). Among them, serum levels of 4-oxo-
proline, glycine and histidine were decreased, while serum 
levels of tryptophan were increased in OA, compared to 
healthy controls (Zhang et al. 2015). The amount of plasma 
iNOS in the OA group was higher than that in healthy con-
trols (Suantawee et al. 2015). This result indicates changes 
in arginine metabolism in OA patients, as arginine is the 
physiological nitrogenous substrate for iNOS (Wu et al. 
2009). In support of this view, OA patients have a lower 
concentration of arginine, a lower ratio of arginine/asym-
metric dimethylarginine, and a higher concentration of 
symmetric dimethylarginine in the plasma, compared to 
healthy controls (Pascale et al. 2013). Also, concentra-
tions of arginine and asymmetric dimethylarginine in syno-
vial fluid are higher than that in the plasma of OA patients 
(Pascale et al. 2013). Similarly, altered concentrations 
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of arginine, homoarginine and dimethylarginines in the 
plasma of OA patients have recently been reported by other 
researchers (Kayacelebi et al. 2015).

Anti‑inflammatory treatments in OA

Anti-inflammatory treatments by targeting inflamma-
tory cytokines, such as IL-1β, IL-23 and TNF-α, are used 
in inflammation-related diseases such as rheumatoid 
arthritis, gout, juvenile idiopathic arthritis, and ankylos-
ing spondylitis (Tyring et al. 2006; Whibley and Gaffen 
2015; Ren et al. 2013f, 2015; Wang et al. 2015a). The 
benefits of anti-inflammatory treatment are also observed 
in OA. Oral administration of naringin attenuates TNF-α-
mediated inflammation and catabolism in chondrocytes, 
alleviates degradation of cartilage matrix, and protects 
against OA development in surgically induced mouse OA 
models through inhibition of NF-κB pathways (Zhao et al. 
2015). Berberine reduces the induction of IL-1β expres-
sion in response to connective tissue growth factor and 
reverses cartilage damage in an experimental rat model 
of collagenase-induced OA (Liu et al. 2015). Through its 
anti-inflammatory property, diosgenin inhibits production 
of NO and prostaglandin E2, and expression of MMP-
3, MMP-13, iNOS, and cyclooxygenase-2 in human OA 
chondrocytes (Wang et al. 2015a, b). Interestingly, one 
study has explored an anti-TNF-α therapy in OA by con-
ducting an open-label evaluation of adalimumab over 
12 weeks in 20 patients with OA of the knee (Maksymow-
ych et al. 2012). After anti-TNF-α therapy, the authors 
observed a significant improvement in mean WOMAC 
pain, stiffness, function, physician and patient global, as 
well as target joint swelling at 12 weeks (Maksymowych 
et al. 2012). This result indicates that targeting TNF-α may 
be of therapeutic benefit in OA. However, anti-inflamma-
tory treatments in OA by other investigations have shown 
limited effects (Siebuhr et al. 2015; Chevalier et al. 2009; 
Cohen et al. 2011), possibly due to the lack of preselection 
of patients with inflammation, ineffective drugs, and subop-
timal treatment procedures. Nonetheless, these interesting 
studies show that anti-inflammatory treatments may be a 
potentially effective therapy for OA, especially for patients 
with inflammation-induced OA. Thus, the development of 
drugs with active anti-inflammatory properties is promising 
in treating this inflammatory disease.

AA interventions in OA

Nutritional interventions and nutraceutical applications for 
medical conditions are currently riding the crest of public 
enthusiasm. Based on the alterations in AA metabolism 

and AA profile in the pathogenesis of OA, it is poten-
tially attractive to use nutritional interventions with AA 
to manipulate the pathogenesis of OA. Indeed, nutritional 
interventions with functional AA are beneficial in various 
models, such as mice with virus or bacteria infection (Ren 
et al. 2012b, 2013d), mice with vaccine immunization (Ren 
et al. 2013g), and mice with inflammatory disease (Ren 
et al. 2014b). The following sections highlight glutamine, 
arginine, glutamate, aspartate, and S-adenosylmethionine.

Glutamine

Glutamine is the most prevalent AA in both body flu-
ids and skeletal muscle and is considered as a nutrition-
ally essential AA under specific physiological conditions, 
such as malnutrition, infection and inflammation (Ren 
et al. 2012a, 2013c, 2013d, 2013e; Wu et al. 2011b). Glu-
tamine has an anti-inflammatory role in various intestinal 
inflammatory models through its regulatory function in 
signaling pathways, including NF-κB, signal transducer 
and activator of transcription (STAT), mitogen-activated 
protein kinases, phosphoinositide 3-kinase-protein kinase 
B, activating protein-1, NOS-NO, peroxisome proliferator-
activated receptor-γ (PPAR γ), heat shock factor-1-heat 
shock proteins (HSP), and glutathione-reactive oxygen 
species (Ren et al. 2013f). For example, glutamine inhib-
its NF-κB signaling through three levels. At the NF-κB 
level, glutamine inhibits NF-κB protein expression and the 
dimer (p50 and p65) translocation from the cytoplasm to 
the nucleus and promotes p65 protein degradation through 
the phosphorylation at serine-536. At the inhibitor of κBs 
(IκB) level, glutamine reduces its ubiquitination and deg-
radation through the decrease of IκB phosphorylation. At 
the IκB kinase level, glutamine decreases IκB kinase-α 
and IκB kinase-β abundance (Ren et al. 2013f). Thus, glu-
tamine has anti-oxidative functions not only in inflamma-
tory diseases of the intestine, but also in other inflamma-
tion-associated diseases, such as arthritis and asthma (Ren 
et al. 2013f). Indeed, in the dextran sulfate sodium-induced 
colitis model, which is similar to human ulcerative colitis, 
dietary glutamine supplementation has beneficial effects on 
clinical and biochemical parameters (i.e., total superoxide 
dismutase, IL-17 and TNF-α) in colitis model, and these 
results are associated with colonic NF-κB and phosphoi-
nositide 3-kinase-protein kinase B signaling pathways, sug-
gesting glutamine could be a potential therapy for intestinal 
inflammatory diseases (Ren et al. 2014b). Glutamine could 
be also as an adjuvant therapy for OA with its anti-inflam-
matory function. Notably, glutamine treatment affects 
expression of HSP70 in articular chondrocytes, abrogates 
the cytotoxic outcome of sodium nitroprusside dehydrate 
in chondrocytes, and renders chondrocytes unsusceptible 
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to NO-induced apoptosis (Tonomura et al. 2006). Further-
more, glutamine treatment affects expression of aggrecan 
and HSP70, and the severity of OA in rat models (Fujita 
et al. 2012). However, these observed benefits of glu-
tamine in chondrocytes and in animal OA models depend 
on HSP70 (Fujita et al. 2012; Tonomura et al. 2006). Thus, 
whether glutamine exerts beneficial roles on OA patients 
through anti-inflammation merits further investigations.

Arginine

Arginine had long been considered as a nutritionally 
non-essential AA for adult animals and humans, but has 
recently been classified as a nutritionally semi-essential AA 
for young mammals (such as rats, swine, and infants), as 
well as males and females in certain situations (Wu 2014; 
Wu et al. 2014a). This is because the rate of arginine utili-
zation in the whole body is greater than the rate of arginine 
synthesis under certain conditions (e.g., early weaning, lac-
tation, pregnancy, inflammation, burns, injury, infection, 
heat stress, and cold stress) (Wu et al. 2014a; Wu 2009; 
Ren et al. 2012b). In humans, pigs, and rats, most of dietary 
arginine is metabolized via arginase and arginine–glycine 
amidinotransferase pathways, but the production of NO 
from arginine by NO synthase plays an important role in 
immune responses (Wu et al. 2009). It is now known that 
three isoforms of NOS generate NO from arginine in a cell-
specific manner (Wu et al. 2009). The nutritional signifi-
cance of this metabolic pathway is supported by the obser-
vations that dietary supplementation with arginine improves 
immunity, leading to the killing of pathogens (e.g., bacte-
ria and virus) (Ren et al. 2012b, 2013g, 2014a, 2014b; Li 
et al. 2007). At molecular and cellular levels, arginine acti-
vates both cell- and antibody-mediated immune responses 
in mice (Ren et al. 2013g, 2014a; Shang et al. 2003), 
humans (Moriguti et al. 2005), chickens (Munir et al. 2009; 
Perez-Carbajal et al. 2010), pigs (Chen et al. 2012), and 
fish (Pohlenz et al. 2012). Interestingly, arginine has vari-
ous benefits in mice with dextran sulfate sodium-induced 
colitis, including improvements in clinical parameters of 
survival, body weight loss, colon weight, and reduction of 
colonic permeability, number of myeloperoxidase-positive 
neutrophils, and expression of proinflammatory cytokines 
and chemokines (Coburn et al. 2012). Indeed, in our pre-
vious study, we also found arginine supplementation 
increased colon length, superoxide dismutase activity, and 
claudin-1 expression, while alleviating infiltration of neu-
trophils, expression of IL-17 and TNF-α, and activation of 
colonic phosphoinositide 3-kinase-protein kinase B and 
myosin light-chain kinase-myosin light chain-20 pathways 
(Ren et al. 2014b). These findings suggest that it is fruit-
ful to suppress the pathogenesis of OA by manipulating 

arginine metabolism. S-Methylisothiourea, an iNOS inhibi-
tor, reduces the release of MMP-13, TNF-α, prostaglan-
din E2, and nitrite in stimulated rabbit cartilage media, 
while attenuating the production of nitrite, prostaglandin 
E2, IL-1β and TNF-α from synovial explants. (Balaganur 
et al. 2014). These results indicate chondroprotective and 
anti-inflammatory effects of S-methylisothiourea in OA. 
N-iminoethyl-l-lysine, an iNOS inhibitor, has a beneficial 
effect in OA through: (a) preventing lipid peroxidation and 
reactive oxygen species production via NO-dependent and/
or independent mechanisms; (b) attenuating 4-hydroxynon-
enal (a product of LPO)-induced cell death; and (c) differ-
ent mediators of cartilage damage (Bentz et al. 2012).

Glutamate and aspartate

Glutamate and aspartate are excitatory AA neurotransmit-
ters in the mammalian central nervous system. Glutamate 
and aspartate are associated with the production of ATP 
and other biological active molecules, including glutamine, 
glutathione, proline, ornithine, and arginine, thereby affect-
ing cell metabolism and signaling, host anti-oxidative 
ability, immunity under physiological and pathological 
conditions, and animal growth performance (Rezaei et al. 
2013a, 2013b; Wu 2009, 2010). Dietary supplementation 
with glutamate or aspartate protects hosts from damage 
caused by stimulators exposure, such as decrease in oxi-
dative stress, alteration of serum AA concentrations, and 
changes in expression of intestinal AA transporters (Duan 
et al. 2014, 2015; Wu et al. 2014b, 2014c). Glutamate or 
aspartate may have vital role in the acute and ongoing pro-
gressive processes of soft tissue injuries that impact early 
OA development because there is a significant increase in 
levels of glutamate and aspartate in the microdialysates of 
anterior cruciate ligament transected knee joints in rats, 
compared to those in the contralateral sham-operated knee 
(Jean et al. 2005). Additionally, glutamate and aspartate in 
synovial fluid from patients with synovitis are 54 and 28 
times higher, respectively, than those from healthy controls, 
suggesting that glutamate and aspartate may contribute to 
the pathogenesis of human arthritic conditions (McNear-
ney et al. 2000). Additionally, γ-aminobutyrate (a product 
of glutamate decarboxylation) may affect OA progress 
possibly by blocking the activation-induced calcium sig-
nal and inhibiting NF-κB activation (Huang et al. 2015). 
Further studies have demonstrated the significant asso-
ciations between glutamate or aspartate and inflammatory 
mediators, such as TNF-α, regulated on activation normal 
T cell expressed and secreted (RANTES) protein, and IL-8, 
in the synovial fluid of patients with active inflammatory 
arthropathies, such as rheumatoid arthritis, acute gout, and 
symptomatic OA (McNearney et al. 2004; 2010). Indeed, 
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bone and joints have the components of glutamate signal-
ing, including glutamate receptors, glutamate transporters, 
and vesicular glutamate transporters (Wen et al. 2015). 
Thus, glutamate or aspartate can be used as therapeutic 
targets for OA. Intrathecal administration of ketamine, 
an uncompetitive N-methyl-d-aspartate receptor channel 
blocker, reduces the pain and severity of arthritis in anti-
gen-induced arthritis in rats, including reductions in joint 
swelling and infiltration of inflammatory cells into the joint 
cavity (Boettger et al. 2010). A Phase II trial of LY545694, 
an antagonist of ionotropic glutamate receptor 5, in the 
treatment of knee OA pain has been completed (Martel-
Pelletier et al. 2012; Wen et al. 2015), and some benefits 
have been observed.

Other functional amino acids and metabolites

S-adenosylmethionine (SAM) is the activated form of 
methionine and is a methyl group donor in protein and 
DNA methylation reactions (Wu 2013a, b). SAM has been 
reported to protect synovial cells through promoting glu-
tathione peroxidase production, and blocking the activity 
and synthesis of enzymes that degrade cartilage (Lieber and 
Packer 2002; Lopez 2012). SAM may also protect cartilage 
proteins and proteoglycans in the joint lining. These results 
suggest an interesting therapeutic potency of SAM in the 
pathogenesis of OA. Indeed, SAM is effective to treat OA, 
and the efficacy is equal to, even more effective, and better 
tolerated than administration of indomethacin or ibuprofen 
(Glorioso et al. 1985; Vetter 1987). Moreover, the clini-
cal improvements achieved by the 12-week treatment with 
SAM on 45 patients with knee OA can sustain for a longer 
period of time than with piroxicam treatment (Maccagno 
et al. 1987).

In a study to investigate the efficacy of creatine (a prod-
uct of arginine, glycine and methionine metabolism) sup-
plementation combined with strengthening exercises in 
OA, the authors found that creatine supplementation can 
improve physical function, stiffness subscales, lower limb 
lean mass, and quality of life, while reducing the pain for 
OA patients (Neves et al. 2011). Thus, creatine administra-
tion has potential to be used as adjuvant therapy for OA.

Conclusion and perspectives

The establishment and development of OA are associated 
with inflammation and alterations in AA metabolism and 
profiles. Emerging evidence shows that OA patients have 
lower concentrations of plasma l-valine, l-isoleucine, and 
l-leucine (Maher et al. 2012; Zhai et al. 2010), but higher 

concentrations of plasma l-glutamate and l-aspartate 
(McNearney et al. 2000; Jean et al. 2005), compared to 
healthy controls. As most AA have numerous biological 
functions in vivo (Wu 2009, 2010; Chen et al. 2014), they 
may be considered in nutritional therapy of OA through 
dietary supplementation. Additionally, results of recent 
research indicate that some functional AA can have ben-
efits on inhibiting the pathogenesis of OA and alleviating 
its complications. It is interesting to uncover the regulatory 
functions of other AA in the initiation, establishment, devel-
opment and progression of OA, such as proline, threonine, 
glycine, tryptophan, and methionine. For example, proline 
has been demonstrated to regulate immune responses in 
virus or bacteria infected models (Ren et al. 2013a, 2013b). 
Threonine and methionine are reported to regulate epithelial 
cell migration and proliferation, cell differentiation, restora-
tion of epithelial barrier functions, and modulation of cell 
apoptosis, thereby enhancing mucosal healing after intesti-
nal mucosal inflammation (Lan et al. 2015) and modulating 
autophagic responses of porcine intestinal epithelial cells 
to enterotoxigenic Escherichia coli infection (Tang et al. 
2015). Furthermore, leucine, which can inhibit NO synthe-
sis (Yang et al. 2015b), may also be effective to attenuate 
the progression of OA. Further research is necessary to pro-
vide much-needed data on roles of functional AA in the pre-
vention and treatment of OA.
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