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Abstract A total of 96 barrows (48 pure-bred Bama mini-
pigs representing fatty genotype, and 48 Landrace pigs rep-
resenting lean genotype) were randomly assigned to either
a low- or adequate-protein treatment diet. The experimen-
tal period commenced at 5 weeks of age and extended to
the finishing period. After euthanasia, blood and skeletal
muscle samples were collected from pigs at the nursery,
growing, and finishing phases. Our results indicate that
the concentrations of free AAs in the plasma and muscle
decreased as the age of the pigs increased. In addition, a
strain x growth phase interaction (P < 0.05) was observed
for the free AA pool in the plasma and muscle. The low-
protein diet upregulated (P < 0.05) the mRNA levels for
TIR1/T1R3 involved in glutamate binding, but downreg-
ulated (P < 0.05) the mRNA levels for PAT1, PAT2, and
ASCT?2, which transport neutral AAs into muscles. Bama
mini-pigs had higher (P < 0.05) mRNA levels for LATI,
SNAT?2, and EAACI, but a lower (P < 0.05) mRNA level
for PepT1, compared with Landrace pigs. Collectively, our
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findings indicate that adequate provision of dietary protein
plays an important role in regulating profiles of free AA
pools and expression of key AA/peptide transporters/tran-
sceptors in a genotype- and tissue-specific manner.
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Introduction

A balanced supply of dietary proteins and amino acids
(AAs) is necessary for the optimal growth, development,
and reproduction of animals (Deng et al. 2007a, b, 2009;
Wuet al. 2010, 2011; Wu 2010, 2014), as well as enhancing
feed efficiencies in livestock production and minimizing its
impact on environmental health (Yin and Tan 2010; Wu
et al. 2014a, b; Chen et al. 2014). Recent studies have dem-
onstrated that AAs are not only building blocks for protein
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synthesis in cells and signaling molecules (Wu et al. 2010,
2012, 2013a, b, 2015; Li et al. 2011; Wang et al. 2014a, b,
2015a, b) but also regulators of gene expression (He et al.
2013; Chen et al. 2014; Zhang et al. 2013; Ren et al. 2013a,
b, c, 2014a, b; Tan et al. 2011; Yang et al. 2013; Feng et al.
2014; Tang et al. 2014, Yin et al. 2014; Kong et al. 2014)
and protein posttranslational regulation (Kong et al. 2012).
Additionally, AAs are key precursors for the biosynthe-
sis of hormones and low-molecular-weight nitrogenous
substances (Wu 2013a, b). These physiological functions
depend on the optimal concentrations of AAs and their
metabolites, including peptides, polyamines, glutathione,
taurine, thyroid hormones, and serotonin in the blood, cells,
and tissues (Ren et al. 2013a, b; Wu et al. 2014c¢).

Through changes in intracellular concentrations, AAs
act as signaling molecules that regulate metabolic path-
ways involved in muscle growth (Sancak et al. 2008) and
other tissues (Brosnan and Brosnan 2013; Fernstrom 2013;
San Gabriel and Uneyama 2013). This signaling function
plays an important role in the regulation of skeletal muscle
hypertrophy in monogastric animals through the activation
of specific cell-signaling pathways (Tan et al. 2009; Yao
et al. 2008). For example, the mammalian target of rapa-
mycin (mTOR) represents a crucial kinase for protein syn-
thesis and cell growth (Wang and Proud 2011; Zoncu et al.
2011). AA uptake requires numerous transport systems
that vary in their substrate specificity, affinity, and veloc-
ity (Wu 2013a). Dietary proteins are digested in the small
intestine, which releases free AAs and oligo-peptides that
are absorbed by enterocytes and subsequently utilized by
the liver and other organs (Davila et al. 2013; Jobgen et al.
2006). Thus, after a meal, marked changes are noted in the
concentrations of free AAs in the intestinal lumen, blood
plasma, and intracellular and extracellular spaces (Blachier
et al. 2009).

As pig strains may vary in their capacity to recognize
changes in AA concentration in body fluids, the utiliza-
tion of free AAs may also differ among pig strains. The
Bama mini-pig (Sus scrofa domestica) is an indigenous
Chinese “fatty” strain, mainly found in Bama County of
the Guangxi Province of China. Because their anatomical,
physiological, and metabolic characteristics are similar to
those of humans, Bama mini-pigs have been widely used
in experiments for extrapolation to human metabolism
and physiology (Kawaguchi et al. 2011; Liu et al. 2008).
In contrast, the leaner Landrace pig has rapid growth rate
and yields leaner meat, which are nutritional and commer-
cial advantages. We hypothesized that differences between
these two strains of pigs in their muscle growth, meat qual-
ity, and intermuscular adipose deposition (Liu et al. 2015)
may lead to dietary protein-dependent differences in AA
metabolism. The major objectives of this study were to
measure free AA pools in the plasma and muscle tissues, as
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well as mRNA levels for AA and peptide transporters and
receptors in the skeletal muscles of Bama mini-pigs and
Landrace pigs fed low- or adequate-protein diets.

Materials and methods
Animals, diets, and treatments

All experiments were carried out in accordance with Chi-
nese guidelines for animal welfare, and experimental proto-
cols were approved by the Animal Care and Use Commit-
tee of the Institute of Subtropical Agriculture, the Chinese
Academy of Sciences (Yin et al. 2009). A total of 96 bar-
rows [48 purebred Bama mini-pigs with an average initial
body weight (BW) of 3.38 £ 0.96 kg, and 48 Landrace pigs
with an average initial BW of 7.68 % 0.89 kg] were fed the
test diets from 5 weeks of age until they attained their fin-
ishing BW. The experiment was a 2 x 2 factorial arrange-
ment, with two pig strains (Bama mini-pigs and Landrace
pigs) and two diets [the National Research Council (NRC)
diet and the Chinese conventional diet (GB)], resulting four
dietary treatments (Table 1). Forty-eight piglets from each
strain were randomly assigned to one of the two dietary
treatments. The NRC diet, which had a higher protein level,
was formulated to meet the nutrient requirements outlined
by the NRC (2012), whereas the GB diet was formulated to
conform to the recommendations of the Chinese National
Feeding Standard for Swine (Ministry of Agriculture of the
People’s Republic of China, 2004), and had a lower protein
content (Table 2). The dietary AA composition, which was
determined as described by Dai et al. (2014), is shown in
Table 3. All pigs had free access to drinking water and their
experimental diets (Yin et al. 2015). The room temperature
was maintained at 25-27 °C. All pigs were fed three times
a day (0800, 1300, and 1800) (Li et al. 2015).

Sample collection

Body weights for nursery, growing, and finishing phases
in Landrace pigs were in the ranges of 7-20, 20-50, and
50-90 kg, respectively, whereas for Bama mini-pigs, they
were in the ranges of 3-15, 15-35, and 35-55 kg, respec-
tively (Table 1). At the end of each phase, eight pigs from
each treatment group were randomly sampled. Briefly,
after recording pre-slaughter BW and fasting the animals
for 12 h, blood samples were obtained from the jugu-
lar vein and placed in 10 mL centrifuge tubes containing
sodium heparin (14.3 USP units/mL) (Xiao 2015). The
samples were then centrifuged at 900xg for 10 min at
4 °C to recover plasma, which was stored at —20 °C until
analysis of free AAs was performed. The pigs were then
placed under general anesthesia and killed by jugular vein
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Table 1 Dietary treatments for Landrace pigs and Bama mini-pigs

Items Landrace pig Bama mini-pig

BW (kg) GB diet group NRC diet group BW (kg) GB diet group NRC diet group
Nursery phase 7-20 GB diet 1 NRC diet 1 3-15 GB diet 1 NRC diet 1
Growing phase 20-50 GB diet 2 NRC diet 2 15-35 GB diet 2 NRC diet 2
Finishing phase 50-90 GB diet 3 NRC diet 3 35-55 GB diet 3 NRC diet 3

GB diet, the Chinese conventional diet; NRC diet, recommended by National Research Council (2012); BW, body weight

Table 2 Ingredients and

. . . Items NRCdiet1 NRCdiet2 NRCdiet3 GBdietl GBdiet2 GB diet3

nutrient levels in experimental

diets Ingredients (%)
Corn 62.80 66.00 69.50 63.00 60.00 66.00
Soybean meal, 42 % CP  26.00 28.00 23.00 25.00 26.50 21.00
Fish meal, 62 % CP 7.00 2.00 - 3.00 - -
Wheat bran - - 3.00 6.34 10.75 10.50
Soybean oil 1.95 1.50 2.10 - - -
CaHPO, 0.45 0.70 0.65 0.80 0.80 0.50
CaCO;, 0.50 0.50 0.45 0.56 0.65 0.70
Salt 0.30 0.30 0.30 0.30 0.30 0.30
Premix* 1.00 1.00 1.00 1.00 1.00 1.00

Nutrient levels

Digestible energy (MJ/kg) 14.22 14.21 14.22 13.46 13.40 13.40
Crude proteinb (%) 20.06 18.01 15.11 18.03 16.05 13.46
Total calcium (%) 0.75 0.62 0.50 0.69 0.62 0.56
Auvailable phosphorus (%) 0.39 0.28 0.21 0.21 0.13 0.12

# Premix provided for 1 kg of the complete diet: Cu (as copper sulfate), 10 mg; Fe (as ferrous sulfate),
100 mg; Se (as sodium selenite), 0.30 mg; Zn (as zinc oxide), 100 mg; Mn (as manganese sulfate), 10 mg;
vitamin Dj, 9.65 pg; vitamin A, 925.8 pg; vitamin E, 15.4 mg; vitamin K;, 2.3 mg; vitamin B,, 3.9 mg;
D-calcium pantothenate, 15.4 mg; nicotinic acid, 23 mg; choline, 80 mg; vitamin B ,, 0.016 mg

b Analyzed values for crude protein, and calculated values for other nutrients

injection of 4 % sodium pentobarbital solution (40 mg/kg
BW). After the head, legs, tail, and viscera were removed,
the carcass was split longitudinally. Samples of the longis-
simus dorsi (LDM) and biceps femoris (BFM) muscles on
the right side of the carcass were collected immediately and
visible intermuscular adipose tissue was carefully removed
(Li et al. 2007; Yang et al. 2005). The samples were snap-
frozen in liquid nitrogen, and stored at —80 °C for subse-
quent analysis (Chen et al. 2011).

Determination of free amino acids in plasma

Plasma free AA concentrations were determined as pre-
viously described (Kong et al. 2009). Briefly, 1 mL of the
plasma sample and 2.5 mL of 7.5 % trichloroacetic acid solu-
tion were mixed thoroughly and centrifuged at 12,000xg
and 4 °C for 15 min (Ren et al. 2014c). The supernatant fluid
was collected for analysis of free AAs by an ion-exchange
AA analyzer (L8800, Hitachi, Tokyo, Japan).

Determination of free amino acids in muscle

To measure the concentrations of free AAs in muscle tis-
sue, approximately 1 g of freeze-dried muscle was homog-
enized in 10 mL of 10 mmol/L hydrochloric acid. The
solution was adjusted to a final volume of 25 mL by add-
ing 10 mmol/L hydrochloric acid. After centrifuging at
12,000x g for 10 min, 2 mL of the supernatant liquid was
mixed with 2 mL of 8 % 5-sulfosalicylic acid. After centri-
fuging at 12,000xg for 10 min, the supernatant fluid was
filtered through a 0.45-pm membrane before analysis of
AAs using an ion-exchange AA analyzer (L8800, Hitachi,
Tokyo, Japan).

RNA extraction and cDNA synthesis
Total RNA was isolated from the LDM and BFM tissues

frozen in liquid N using the TRIzol reagent (Invitrogen-Life
Technologies, Carlsbad, CA, USA) and treated with DNase
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Table 3 Amino acid Ttems NRCdiet1  NRCdiet2 NRCdiet3 GBdietl  GBdiet2  GB diet3

composition in experimental

diets for pigs (mg/g, as fed- Essential AA

basis) Arg 9.65 9.25 7.53 8.66 8.79 6.86
His 497 4.83 3.94 4.66 445 3.66
Ile 5.68 5.47 448 5.17 5.19 3.97
Leu 14.95 15.07 12.78 14.57 13.67 12.11
Lys 8.56 8.03 6.12 7.61 7.94 5.50
Met 2.49 1.77 2.13 232 1.74 1.34
Phe 6.90 747 578 6.88 6.96 5.50
Thr 6.06 5.58 4.39 5.44 528 4.06
Val 8.20 7.20 6.51 7.66 6.77 5.66
Total EAA 67.46 64.68 53.66 62.98 60.78 48.63

Non-essential AA
Ala 11.26 9.19 8.80 10.59 8.74 7.84
Asp® 16.43 16.16 12.96 15.40 15.39 12.06
Cys 3.42 2.54 321 3.41 2.42 2.66
Glu® 37.06 38.02 31.06 37.06 35.94 29.94
Gly 7.66 6.77 5.30 6.89 6.36 491
Pro 18.76 18.18 14.94 17.91 16.99 14.00
Ser 5.90 6.43 4.62 572 5.86 4.57
Tyr 5.29 5.19 4.49 4.67 4.77 4.06
Total NEAA  105.78 102.50 85.38 101.66 96.48 80.03
Total AA 173.23 167.18 139.05 164.63 157.26 128.66

 Including aspartate and asparagine

® Including glutamate and glutamine

I (Invitrogen) according to the manufacturer’s instructions.
The RNA quality was confirmed with 1 % agarose gel elec-
trophoresis and stained with 10 pg/mL ethidium bromide.
The RNA had an OD260:0D280 ratio between 1.8 and 2.0
(Feng et al. 2015). The first-strand cDNA was synthesized
with Oligo (dT) 20 and Superscript II reverse-transcriptase
(Invitrogen), according to the manufacturer’s instructions.

Determination of mRNA levels in muscle

Primers for the selected genes were designed using the
Primer 5.0 software (Table 4). Real-time reverse tran-
scriptase polymerase chain reaction (RT-PCR) was per-
formed using the SYBR Green detection kit (TaKaRa,
Japan), which contained MgCl,, dNTP, and HotStar Taq
Polymerase as in our previous study (Liu et al. 2015).
Briefly, an aliquot (2 wL) of a cDNA template (correspond-
ing to 25 ng of total RNA) solution was added to a total vol-
ume of 10 pL containing 5 pL SYBR Green mix, 0.2 pL
ROX Reference Dye (50 X), and 0.2 pL of either forward
or reverse primers. After a pre-denaturation program (10 s
at 95 °C), 40 cycles of amplification were performed
(95 °C for 10 s followed by 60 °C for 20 s), followed by
a melting curve program (60-99 °C with a heating rate of
0.1 °C/s and fluorescence measurement). The fluorescence
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signal was detected by the ABI Prism 7900 HT (Applied
Biosystems, Marsiling Industrial Estate Road 3, Singa-
pore). A melting curve was generated for each sample at
the end of each run to ensure the purity of the amplified
products. The amplification of glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) in each sample was used to nor-
malize the mRNA levels of the selected genes. The relative
expression ratio (R) of mRNA was calculated using the fol-
lowing formula:

R= 2—AACt (sample—control)

where AAC, (sample — control) = (C, target gene — C,
GAPDH) for the sample — (C, target gene — C, GAPDH)
for the control.

RT-PCR efficiencies were determined by the ampli-
fication of a series of dilutions of cDNA according to the
equation 10 151pe) - ag described by Bustin et al. (2009),
and were found to be consistent between target mRNA and
GAPDH. For the negative controls, cDNA was replaced
with water (Wang et al. 2009).

Statistical analysis

Data were analyzed by multifactor ANOVA using the GLM
procedure of SAS 9.1 for Windows (SAS Institute Inc.,
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Table 4 Primers used for real-

X K Gene Accession no. Primers Size (bp)
time PCR in the study

TIR1 XM_005656004 S: 5"TCACTGGGCTTAAGGCTGG-3’ 92
A: 5-TTCTCTGGCAGGTCCTTACCC-3’

TIR3 NM_001113288 S: 5-GTGGAGGAAATCAACAACGGAT-3’ 156
A: 5-GTAGTCGCAGTAGGTGGCAATG-3’

Calpain-3 NM_214171 S: 5'-ATGCCGACTGTCATTAGCG -3’ 393
A: 5'-CAGAAACCAGCAGTCCCCT-3’

mTOR XM_003127584 S: 5'-CGCGCCATCGCCACTGAGGAC-3’ 90
A: 5’-CAGCTGCCACTCTCCAAGTTTCA-3’

PAT1 XM_003134140 S: 5’-TGTGGACTTCTTCCTAATTGTC-3’ 125
A: 5-CGTTGTTGTGGCAGTTGTTGGT-3/

PAT2 XM_005672617 S: 5-GGGCTACTTGCGGTTCGG-3’ 181
A: 5-GCGCTTTGACACCTGGGAG-3’

LAT1 NM_001110421 S: 5'-TTTGTTATGCGGAACTGG-3’ 155
A: 5"-AAAGGTGATGGCAATGAC-3'

ASCT2 XM_003127238 S: 5'-GATTGTGGAGATGGAGGATGTGG-3’ 128
A: 5-TGCGAGTGAAGAGGAAGTAGATGA-3’

SNAT2 XM_005664159 S: 5’-TACTTGGTTCTGCTGGTGTCC-3’ 212
A: 5-GTTGTGGGCTGTGTAAAGGTG-3'

bo+ EU390780 S: 5-GAACCCAAGACCACAAATC-3’ 180
A: 5-ACCCAGTGTCGCAAGAAT-3’

EAACI NM_001164649 S: 5'-GGCACCGCACTCTACGAAGCA-3’ 177
A: 5'-GCCCACGGCACTTAGCACGA-3/

PepTl1 NM_214347 S: 5'-CATCGCCATACCCTTCTG-3’ 143
A: 5-TTCCCATCCATCGTGACATT-3'

GAPDH NM_001206359 S: 5'-AAGGAGTAAGAGCCCCTGGA-3’ 140
A: 5'-TCTGGGATGGAAACTGGAA-3’

T1R1/T1R3, taste receptor type 1 member 1/member 3; mTOR, mammalian target of rapamycin; PAT1 and
PAT?2, proton-assisted AA transporters; LAT1, L-type AA transporter 1; ASCT2, ASC-like Na*-depend-
ent neutral AA transporter 2; SNAT2, sodium-coupled neutral AA transporter 2; b+, bOt AA transporter;
EAACI, excitatory AA carrier 1; PepT1, H/peptide co-transporter; GAPDH, glyceraldehyde-3-phosphate

dehydrogenase

Cary, NC, USA), and by comparing means with Tukey’s
method. The effects of pig strain, dietary protein level,
physiological stage, and their interactions were all taken
into account. Log transformation of variables was per-
formed when variance of data was not homogenous among
treatment groups, as assessed using the Levene’s test (Wei
et al. 2012). Results are presented with means plus pooled
SEM. Effects were considered statistically significant at
P < 0.05. Probability values between 0.05 and 0.10 were
considered to be trends.

Results
Plasma concentrations of free amino acids

As shown in Table 5, the concentrations of most AAs in
the plasma were affected by the developmental stages of

the pigs. As the age increased, the concentrations of Ala,
Arg, Asn, Asp, Glu, Gly, Ile, Orn, Pro, Ser, Tau, and Tyr
gradually decreased (P < 0.05). Plasma concentrations of
3-methylhistidine (3 M His), Cys, Gln, His, Phe, and Thr
were much higher in the nursery phase (P < 0.05) than in
the growing and finishing phases, but the concentration of
1 M His was lower (P < 0.05) in the nursery stage as com-
pared to the growing and finishing phases. In contrast, the
plasma concentration of a-aminobutyric acid was greater
(P < 0.05) in the finishing phase than in the other two
phases.

When compared to Landrace pigs, Bama mini-pigs
had higher (P < 0.05) plasma concentrations of 3 M His,
a-aminoadipic acid, Ile, and Val, and lower (P < 0.05) con-
centrations of Asp throughout the trial. In addition, Bama
mini-pigs had higher (P < 0.05) plasma concentrations of
Leu and Trp and a lower (P < 0.05) concentration of Cys in
the nursery phase. They also had lower (P < 0.05) plasma
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concentrations of Ala, Cys, Gly, Met, Orn, and Ser in the
growing phase, and lower (P < 0.05) concentrations of Ala,
Gly, Met, and Ser but a higher (P < 0.05) concentration of
Trp in the finishing phase, as compared to Landrace pigs.

Overall, the NRC diet increased (P < 0.05) plasma
concentrations of 1 M His, 3 M His (except for Landrace
pigs in the finishing phase), a-aminoadipic acid, and
a-aminobutyric acid, as compared with the GB diet. When
pigs were fed the GB diet, plasma concentrations of Gly
increased (P < 0.05), especially in the finishing phase.
Phase x strain interactions were observed for most AAs,
notably 1 M His, Ala, Asn, Cys, Gly, His, Ile, Leu, Lys,
Met, Orn, Pro, Ser, Tau, Trp, Tyr, and Val. Diet type inter-
acted with the developmental phase for the plasma con-
centrations of a-aminobutyric acid, Cys, Orn, and Trp, and
with the pig strain for the concentrations of Asn, Lys, Orn,
Ser, Trp, and Tyr. No interactions among phase, strain, and
diet were observed for any AA.

Free amino acid pools in longissimus dorsi muscle

The concentrations of free AAs in LDM are shown in
Table 6. The concentrations of Ala, Asp, Glu, Gly, Orn,
Pro, and Tyr in both strains of pigs decreased (P < 0.05)
over time, while those of carnosine and anserine increased
(P <0.05). Most AAs decreased (P < 0.05) during the grow-
ing phase (as compared to the nursery phase), but increased
(P < 0.05) at the finishing phase, including a-aminoadipic
acid, Arg, GABA, GlIn, Ile, Lys, Met, Phe, Ser, Thr, and
Val. In contrast, as compared to the nursery phase, the con-
centrations of 3 M His and Asn increased (P < 0.05) during
the growing phase and decreased (P < 0.05) in the finishing
phase.

We found that pig strain affected (P < 0.05) the concen-
trations of free AAs in LDM. More specifically, Landrace
pigs had a higher (P < 0.05) intramuscular Ala concentra-
tion but lower (P < 0.05) intramuscular 3 M His concen-
tration than Bama mini-pigs throughout the trial. Landrace
pigs also had higher (P < 0.05) intramuscular concentra-
tions of Arg, Asp, Glu, Leu, Lys, Met, Phe, Ser, Thr, and
Tyr in the nursery phase, of Leu and Phe in the growing
phase, and of Arg in the finishing phase. Furthermore, the
responses of intramuscular AA profiles to the different die-
tary levels of protein were dependent on pig strain.

Pigs eating the GB diet had increased (P < 0.05)
a-aminoadipic acid concentration in their LDM, as com-
pared to those eating the NRC food. The Bama mini-pigs
eating the GB diet also had a greater (P < 0.05) carnosine
concentration in their LDM during the growing and finish-
ing phases. In contrast, the Gln concentrations in the LDM
of Landrace pigs consuming the GB diet during the grow-
ing and finishing phases were lower (P < 0.05) than those
of pigs eating the NRC diet.
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Free amino acid pools in biceps femoris muscle

In BFM, the concentrations of 3 M His, anserine, and car-
nosine increased (P < 0.05) gradually, while those of Ala,
Arg, Asn, Glu, Gly, Orn, and Pro decreased (P < 0.05) with
increasing age (Table 7). The intramuscular concentrations
of Asp, His, Ile, Leu, Lys, Met, Phe, Ser, Thr, Tyr, and Val
in the nursery phase were higher (P < 0.05) than those in
the growing and finishing phases.

Landrace pigs had higher (P < 0.05) concentrations of
p-Ala, GABA, and Phe, and lower concentrations of anser-
ine and 3 M His in BFM (P < 0.05) than Bama mini-pigs
throughout the trial. In addition, as compared to Bama
mini-pigs, Landrace pigs had higher (P < 0.05) intramus-
cular concentrations of Ala, Arg, Leu, Asn, Gly, Lys, Met,
Pro, Ser, Thr, and Tyr in the nursery phase, of Asn, Gly,
Met, and Pro in the growing phase, and of Tyr in the finish-
ing phase.

Overall, the contrasting protein contents of the NRC
and GB diets affected intramuscular AA pools in the two
strains of pigs differently. However, the NRC diet increased
(P < 0.05) intramuscular His concentration regardless of
pig strain, as well as the intramuscular concentrations of
Ala and Gly in both strains of pigs (except for Bama mini-
pigs in the finishing phase).

mRNA levels for AA-sensing genes in muscle

As shown in Table 8, the mRNA levels for Calpain-3 in the
LDM decreased (P < 0.05) as age increased. The mRNA
level for mTOR increased (P < 0.05) in the growing phase,
but decreased (P < 0.05) in the finishing phase, as com-
pared to the nursery phase. In the LDM of Bama mini-pigs,
the mRNA level for mTOR was higher (P < 0.05), while
that for calpain-3 (especially in the growing and finish-
ing phases) was lower (P < 0.05) than in Landrace pigs. A
strain x phase interaction was observed (P < 0.05) for the
mRNA level of Calpain-3.

The mRNA level for mTOR in BFM increased
(P < 0.05) over time. Landrace pigs had higher (P < 0.05)
mRNA levels in BFM associated with calpain-3 and TIR3
(especially in the nursery and finishing phases) than Bama
mini-pigs. Furthermore, the NRC diet enhanced (P < 0.05)
the mRNA level for calpain-3 but reduced (P < 0.05)
that for TIR3 in BFM, when compared to the GB diet.
Strain x phase interactions were observed (P < 0.05) for
mRNA levels for TIR1 and T1R3 in BFM.

mRNA levels for AA and peptide transporters in muscle
Table 9 shows that, with advancing age, SNAT2 mRNA lev-

els in skeletal muscle increased (P < 0.05), while bt trans-
porter mRNA levels decreased (P < 0.05). Compared to the
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nursery phase, the PAT1 mRNA level increased (P < 0.05)
during the growing phase and decreased (P < 0.05) in the
finishing phase. In contrast, the mRNA levels for PAT2
and transporter EAAC1 decreased (P < 0.05) during the
growing phase and increased (P < 0.05) in the finishing
phase, when compared to the nursery phase. When strain
differences were compared, the mRNA levels for SNAT2,
EAACI, and PAT1 in LDM were higher (P < 0.05), while
those for the oligopeptide transporter PepT1 and AA trans-
porter b%* were lower (P < 0.05) in Bama mini-pigs than
in Landrace pigs. All pigs fed the NRC diet had higher
(P < 0.05) mRNA levels for PAT1, LATI, and PepTl
than those fed the GB diet. A strain x diet interaction
(P < 0.05) was observed for the mRNA level of PAT2, and
strain x phase interactions (P < 0.05) were observed for
SNAT2, b**, and EAAC1 mRNA levels in LDM.

As shown in Table 10, the mRNA levels for b®t and
PepT1 transporters in BFM increased (P < 0.05) with
age. The mRNA levels for PAT1 and SNAT2 increased
(P < 0.05) during the growing phase and decreased
(P < 0.05) in the finishing phase, when compared to the
nursery phase. The mRNA levels for LAT1 and ASCT2
decreased (P < 0.05) in the growing phase and increased
(P < 0.05) in the finishing phase, when compared to the
nursery phase. In contrast to Landrace pigs, Bama mini-
pigs had higher (P < 0.05) mRNA levels for LAT1 and
ASCT2 in the nursery and finishing phases, as well as
mRNA levels for PepTl in nursery and growing phases,
and lower (P < 0.05) mRNA levels for PepT1 in the finish-
ing phase. The NRC diet enhanced (P < 0.05) the mRNA
levels for LAT1 and ASCT?2 to a greater extent than the GB
diet. Strain x diet interactions (P < 0.05) were observed
for mRNA levels corresponding to LAT1 and b%*, and
strain x phase interactions (P < 0.05) were observed for
mRNA levels corresponding to ASCT2, SNAT?2, and PepT1
in BEM.

Discussion

The small intestine is a major site of AA catabolism in
humans and animals (Swaid et al. 2013; Wang et al. 2008).
In this organ, enterocytes utilize AAs for ATP production,
protein synthesis, and generation of various metabolites
that exert physiological effects locally and in peripheral tis-
sues (Blachier et al. 2013). Intestinal metabolism plays an
important role in the entry of dietary AAs into the portal
circulation as well as the plasma pattern of AAs (Riedijk
et al. 2007; Wu 1998). In pigs, the capacity of the intestines
to catabolize AAs can vary with age and the time post feed-
ing, which results in fluctuating AA concentrations in the
portal blood over time (Blachier et al. 2013). In the present
study, the concentrations of plasma AAs were the highest

@ Springer

during the nursery phase for both pig strains, regardless of
diet, and then declined markedly as age increased.

Plasma AA concentrations are affected by a variety of
factors, including intracellular protein synthesis and degra-
dation in tissues, AA transport and metabolism, and intes-
tinal microbiota activity (Blachier et al. 2007; Dai et al.
2011, 2012, 2013). There is evidence that the pig small
intestine extensively catabolizes AA in a segment-depend-
ent manner (Dai et al. 2015; Yang et al. 2014) such that
nearly 50 % of total dietary AA (the sum of all AA) do not
enter the portal circulation. Based on results of the present
study, we suggest that an overall increase in AA catabolism
in the pig small intestine of occurs with age. Substantial
differences in several plasma AAs were observed between
Bama mini-pigs and Landrace pigs. The plasma concentra-
tions of the branched-chain amino acids (BCAAs), namely
Ile, Leu, and Val, in Landrace pigs were much lower than
those in Bama mini-pigs, especially during the nursery
and finishing phases. The decrease in the circulating con-
centrations of AAs in Landrace pigs may be secondary to
increased catabolism in the small intestine, skeletal muscle,
and other tissues, since BCAAs provide a-amino groups
for the endogenous synthesis of glutamine, especially in
skeletal muscle (Wu 2009; Yoneda et al. 2009). In addition,
Leu activates the Ser/Thr protein kinase mTOR signaling
pathway that upregulates protein synthesis and cell growth
(Duan et al. 2015). We also found that Bama mini-pigs
had higher concentrations of 3 M His than Landrace pigs
throughout the trial. In some species such as cattle (Hou-
weling et al. 2012), an increase in the circulating concen-
tration of 3 M His is a useful indicator of muscle protein
degradation. If this is also true for growing swine, our find-
ings suggest that Bama mini-pigs may have a greater rate
of muscle proteolysis and a lower rate of AA deposition
in muscule protein. Further studies are needed to test this
hypothesis.

Concentrations of free AA in tissues reflect the nutri-
tional status of an animal (He et al. 2012; Sales et al. 2013),
as protein synthesis is regulated by intracellular AA con-
centration (Miyazaki and Esser 2009). In addition, free
AAs are essential for tissue growth because they regulate
protein synthesis and catabolism to favor net protein dep-
osition in tissues, especially skeletal muscle (Burrin et al.
1995). In the present study, concentrations of most free AA
in the muscles of Landrace pigs were higher than those in
Bama mini-pigs, which may contribute to dynamic protein
turnover and muscle growth in this lean pig strain.

Biological sensing of AA in vivo plays a key role in cou-
pling changes in whole-body protein and AA metabolism,
which allows appropriate physiological responses. Recep-
tors for umami taste and sweet taste are closely related to
each other (San Gabriel and Uneyama 2013). The umami
taste receptor TIR1/T1R3 mediates the response to umami
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Table 8 mRNA levels for AA-sensing genes in skeletal muscles of growing-finishing pigs

SEM P values

Finishing phase

Growing phase

Nursery phase

Ttems

Pgp  Ppesen

Ppup

Pp

PS PP*S

Bama mini-pig Landrace-pig Bama mini-pig Landrace-pig Bama mini-pig Py

Landrace-pig

NRC diet

GB diet

NRC diet

GB diet

NRC diet

GB diet

NRC diet

GB diet

NRC diet

GB diet

NRC diet

GB diet

Longissimus dorsi muscle

0.70
0.91
0.19

<0.01

11
83
15

0.

0.66 0.24 0.36

0.92
0.61
0.01
<0.01

0.05
0.05

<0.01

0.40
0.29
0.36
0.22

1.41
1.33
0.41
1.57

2.12
1.41
0.63
1.50

2.11
1.21
1.35
1.20

1.34
1.34
2.05
1.18

1.70
1.27
0.92

1.08
2.02
1.07
2.13

1.70
1.35
2.75
1.95

0.66
1.78
2.69
0.55

1.74
1.14
3.38
1.04

2.00
1.10
2.30
0.77

2.37
1.01
2.46
0.58

2.02

TIR1
TIR3

024 035 0.

00

1.

<0.01

1.00

0.

0.66 0.53

Calpain-3 3.15
mTOR

0.16 0.24

0.17

0.21

<0.01

1.87

0.91

Biceps femoris muscle

<0.01

0.21
0.30
0.92
0.14

0.12
0.32
0.34

0.11

0.22
<0.01

0.03
0.03
0.35
0.21

0.71
0.02

<0.01

0.12
0.06
0.39
<0.01

0.27
0.27
0.26
0.33

1.66
1.08
0.69
1.59

1.05
1.64
0.04
2.49

0.59
1.74
2.83
1.33

1.22
2.24
1.94
1.44

1.13

2.28
2.46
0.17
1.33

2.04
1.04
3.07
2.04

0.74
2.63
2.56
1.04

0.84
0.76
0.77
1.00

1.59
1.38
0.25
1.35

1.47
1.42

2.12
2.75

TIR1
TIR3

0.56
0.36
0.68

1.71

0.21

2.31

0.01

Calpain-3  2.84
mTOR

0.67

0.10

1.39

0.50

0.73

Values are means plus pooled SEM, n = 8 per treatment group

The mRNA levels for TIR1 (taste receptor type 1 member 1), TIR3 (taste receptor type 1 member 3), calpain-3 and mTOR (mammalian target of rapamycin) were normalized using GAPDH

(glyceraldehyde-3-phosphate dehydrogenase) as an internal control

P phase, S strain, P x S phase x strain interaction, D diet, P x D phase x diet interaction, S x D strain x diet interaction, P x S x D phase x strain x diet interaction

ligands, such as monosodium glutamate. In the present
study, TIR1/T1R3 expression was higher in the BFM
muscle of pigs fed the GB diet than in those fed the NRC
diet, indicating that a low-protein diet upregulates the gene
expression of the umami taste receptor. In addition, pig
genotype interacted with the developmental stage regarding
the mRNA levels corresponding to TIR1/T1R3 receptors.
It remains to be determined whether changes in mRNA
levels for these receptors can be translated into changes in
their protein abundances.

Previous studies have indicated that AA-induced activa-
tion of mTORCI1 is developmentally regulated in skeletal
muscle (Suryawan and Davis 2010; Suryawan et al. 2013),
and indeed the present study shows that as age increased,
the expression of mTOR in BFM also increased. Addi-
tionally, expression of mTOR in LDM was higher in the
growing phase but lower in the finishing phase. The cal-
pain system plays an important role in myofibrillar protein
degradation. Muscle growth and postmortem tenderization
of meat are highly related to the degree of proteolysis, and
therefore, the calpain system activity affects muscle growth
and meat tenderness (Tait et al. 2014). The decreased
expression of calpain-3 with increasing age might indicate
a lower level of tenderness as the animals growing. Results
of this investigation showed that the calpain-3 mRNA level
in Landrace pigs was higher than that in Bama mini-pigs,
suggesting improved meat tenderness in the Landrace
strain.

Recent studies have indicated that AA transporters not
only act as nutrient transporters, but also as nutrient signal-
ing components responsible for the activation of mTORCI,
which activates protein translation (Heublein et al. 2010;
Nicklin et al. 2009; Pinilla et al. 2011). Our results showed
that the strain of pig affected the mRNA levels for AA
transporters. In particular, the mRNA levels for SNAT?2,
EAACI, and PAT1 in LDM, and LAT1 and ASCT2 in BFM
were higher, while the mRNA levels for PepT1 (especially
in the finishing phase) were lower in Bama mini-pigs, com-
pared with Landrace pigs. In addition, an increasing num-
ber of studies have demonstrated that large neutral AAs
(BCAAs and aromatic AAs) in the plasma are taken up
by muscle cells via the large neutral AA transporter LAT1
(Suryawan et al. 2013), which is crucial for platelet-derived
growth factor-induced vascular smooth muscle growth (Liu
et al. 2004). SNAT?2 transports glutamine into the cell for
the LAT1-CD98 bi-transport system to export Gln and
increase the influx of large neutral AA such as Leu (Baird
et al. 2009). Both LAT1 and SNAT?2 are related to the acti-
vation of the mTOR signaling pathway (Nicklin et al. 2009;
Pinilla et al. 2011). EAACI is also a key transporter for
glutamate (Fu et al. 2013). Upregulation of muscular AA
transporters allows for greater uptake and accumulation of
AAs in muscle tissue and, therefore, enhances lean protein
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deposition (Nishimura and Naito 2008). Accordingly, Bama
mini-pigs may have the potential to transport more neutral
AA and glutamate, but fewer oligopeptides than Landrace
pigs, because PepT1 is a proton-dependent transporter for
di- and tri-peptides (Daniel 2004). Further investigation is
required to test this hypothesis.

The growth and development of pigs involves not only
changes in weight and shape, but also alterations in chem-
ical composition and physiological functions (Blachier
et al. 2013; Wu et al. 2004; Hu et al. 2015). In the present
study, the mRNA levels of most AA transporters increased
with age, such as SNAT2 in LDM, and b®* AT and PepT1
transporters in BFM. Similarly, Feng et al. (2008) showed
that mRNA levels for b%* AT and y* LAT1 transporters
in crossbred growing pigs increased with age. In con-
trast, the mRNA levels for PAT1 in both LDM and BFM
increased during the growing phase and decreased during
the finishing phase, while the mRNA levels for PAT2 and
EAACI in LDM and LAT1 and ASCT?2 in BFM decreased
during the growing phase but increased during the finish-
ing phase. These differences may be due to changes in AA
requirements in response to physiological alterations in
animals (Hou et al. 2015; Wu et al. 2013). We also found
that the mRNA level for the b®* AT transporter decreased
in LDM but increased in BFM with advancing age. The
system b”* is an antiporter that takes up cationic AAs and
Cys in exchange for neutral AAs (Chen et al. 2009; Wang
et al. 2013). Differences in muscle-subtype may explain
the variation in expression of this AA transporter.

Food intake stimulates muscle protein synthesis, which
is triggered by the postprandial rise in AAs (Suryawan
and Davis 2011). Diets with high levels of AAs may fur-
ther stimulate protein synthesis, as found in our study in
which the NRC diet increased mRNA levels for AA trans-
porters, including PAT1, LAT1, and PepT1 in LDM and of
LAT1 and ASCT2 in BFM. Thus, dietary protein affects
the growth performance and excretion of dietary nitrogen
in pigs (He et al. 2015). According to previous studies (Wu
1998, 2011; Kong et al. 2009), higher levels of nutrients,
especially AAs, that enter the portal vein from the small
intestine can promote tissue protein synthesis in animals.
Therefore, the NRC diet that had a higher level of protein
may improve the absorption of dietary AAs and may also
directly regulate the metabolism of absorbed nutrients
through a signal transduction mechanism. In this regard,
it is noteworthy that expression of the proton-assisted AA
transporters PAT1 and PAT2 are affected by dietary pro-
tein intake. PAT1 and PAT2 are not only responsible for
the transport of a variety of small neutral AAs (Goberd-
han et al. 2005), but they also have the capability to act
as transceptors (Goberdhan 2010) to affect muscle protein
metabolism.

In summary, the genetic background and dietary level of
protein intake markedly affected free AA concentrations in
pig plasma and skeletal muscle, as well as mRNA levels
for key AA receptors and transporters in skeletal muscle.
These effects of genotype and diet varied with the develop-
mental stage of the animals. Collectively, our findings pro-
vide a molecular basis for future development of effective
nutritional strategies to increase nutrient utilization in pig
production.
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