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Introduction

The large amount of available protein sequences requires 
usage of in silico methods for automatic large-scale func-
tion prediction. The annotation process, assigning func-
tions to target proteins, is generally based on the transfer 
by homology principle (Pellegrini et  al. 1999). Protein 
space can be partitioned in subsets (families) that groups 
proteins with a common ancestor and, possibly, the same 
function. Whenever evolutionary relationships between 
two different proteins are available, all features from one 
protein are transferred to the other. Sequence comparison 
is used to infer homology and collect evidence about mem-
bership in a given family. However, it requires to properly 
choose similarity measures and related cutoff values in 
order to avoid false positives (and, conversely, false nega-
tives). As each family has its own story and is the result 
of different and complex evolutionary phenomena, avail-
able data are usually not sufficient to trace an unambiguous 
phylogenetic tree (Engelhardt et  al. 2011). Any time two 
sequences appear to greatly diverge, it becomes impossible 
to find annotated homologs. On the other hand, the same 
protein can perform different functions when placed in a 
different organism, and sequence information alone can-
not distinguish such situations. Within the Critical Assess-
ment of protein Function Annotation (CAFA) experiment 
(Radivojac et al. 2013), it has been stated that the currently 
best methods to predict protein function rely on sequence 
similarity searches for conserved regions or homologous 
proteins (Piovesan et al. 2011; Cozzetto et al. 2013). More-
over, it has been recommended to extend standard homol-
ogy search with new methods that use different sources 
of information on protein function (Clark and Radivo-
jac 2011; Minneci et  al. 2013; Piovesan et  al. 2015). The 
CAFA experiment also provided standard criteria for the 
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evaluation of the predictions, e.g., the dataset used for the 
blind test and the definition of function space through Gene 
Ontology (GO) terms (Ashburner et al. 2000). The scoring 
metrics for comparing function predictions in CAFA are 
mainly based on precision-recall curves.

New effective experimental techniques to find genome-
wide interactions make protein–protein interaction data 
widely available and ready to be used for functional anno-
tation (Ho et  al. 2002; Zhu and Snyder 2003; Johnson 
et  al. 2007). Approaches exploiting interaction networks 
have been widely used for annotation of the Yeast genome 
(Hishigaki et al. 2001; Brun et al. 2003; Deng et al. 2003; 
Nabieva et  al. 2005; Chua et  al. 2006). At the same time, 
many tools which analyze biological network properties are 
already available. Some of them use interaction networks 
to prioritize genes that are part of disease pathways. These 
applications use enriched functional terms to describe clus-
ters of interacting proteins or genes. The STRING interac-
tion database (Franceschini et al. 2013) itself provides tools 
to compute GO term enrichment in selected sub-networks. 
To the best of our knowledge, functional enrichment in pro-
tein–protein interaction networks has never been used effec-
tively as a tool for predicting function of unknown proteins.

For example, the χ2 test has been used to rank the func-
tional terms associated to a group of interacting partners 
by comparing the frequency of the terms within the group 
and with the expected distribution in the whole network 
(Hishigaki et al. 2001). Another work, PRODISTIN (Brun 
et  al. 2003), focuses on the clusterization of the entire 
Yeast interaction graph by means of a distance measure to 
define groups associated with the same functional class. A 
Bayesian approach (Deng et al. 2003) has been applied to 
calculate the posterior probability that a given protein has 
the function of interest. This method takes into account 
the prior probability of the entire network but it does not 
consider the dependencies among terms. Another method, 
FunctionalFlow (Nabieva et  al. 2005), treats annotated 
nodes as “sources” and propagates the associated annota-
tion through the connecting edges following some simple 
rules. These rules take into account the distance between 
two nodes and the number of alternative paths connecting 
them to produce a score.

All of these methods are based on a single model organ-
ism and cannot easily be compared with other state-of-the-
art methods like those participating in CAFA. Moreover, 
they used a very small ad hoc ontology for Yeast which is 
two orders of magnitude smaller than the full GO. It is also 
difficult to evaluate their impact on the coverage of genome 
annotation, as the number of interactions available today is 
not comparable with networks available a few years ago.

In this paper, we introduce GAS (Guilty by Association 
on STRING) to predict protein function exploiting protein–
protein interaction networks without sequence similarity 

measures. GAS is part of the algorithmic core of the INGA 
server (Piovesan et al. 2015), which performed well as group 
“Tosatto-UniPD” at the most recent CAFA experiment 
(2014; URL: http://biofunctionprediction.org/). Here, we 
provide a hitherto unpublished analysis on the GAS imple-
mentation details and parameters necessary to maximize 
accuracy as well as important considerations about best prac-
tices to exploit protein–protein interaction networks.

Methods

GAS

Protein–protein interaction (PPI) networks provide rel-
evant information about protein function. The aim of GAS 
is to exploit the annotation of the neighborhood of a pro-
tein to transfer the function. The choice of the network, the 
definition of the set of interacting partners, the strategy to 
transfer annotation, and the method to build the consensus 
represent key factors to improve accuracy and implement 
an effective prediction tool. The idea at the basis of GAS 
arises from the analogy with the “Guilty-by-association” 
principle. This concept asserts that qualities of one object 
are inherently qualities of another, merely by an independ-
ent association. In our case it means that if a protein physi-
cally interacts (association) with other proteins it should 
share a similar function (quality). Proteins in a living cell 
have many physical interactors, each group of interacting 
proteins is expected to participate in the same biological 
process and to operate in the same sub-cellular compart-
ment. This hypothesis is supported by the evidence that 
proteins in the same pathway are more interconnected 
(Barabási et al. 2011). Given a protein with unknown func-
tion, GAS uses the STRING (Franceschini et al. 2013) net-
work to collect the set N of directly interacting nodes. All 
experimental GO terms are then associated to the annotated 
proteins retrieved from SwissProt (Dimmer et al. 2011) and 
ranked by a measure representing their specificity in the 
collected set. We estimated this specificity, by measuring 
enrichment with respect to the entire training set (i.e., the 
remaining STRING nodes). The P-value associated to the 
enrichment is computed according to Fisher’s exact test, 
which represents the probability that a specific term, GOi, 
is associated to a given set by chance (null hypothesis). For 
each collected term GOi, the contingency table is shown in 
Table 1. The P-value is generated with the following stand-
ard formula:

(1)
P-value (GOi) =
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a

)(
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c
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GAS was evaluated on two different protein interaction 
networks. In the first case, we focused on highly confi-
dent STRING interactions (edge score ≥900). In the sec-
ond one, we selected all STRING interactions with edge 
score  ≥500. All nodes in the STRING network were 
mapped to the UniRef90 database to extend the number 
of interacting nodes and increase the chance of collecting 
experimental GO terms as well as to make GAS compara-
ble with our version of BLAST (see “GAS-C”).

GAS considers only direct interactors even in the case 
of poorly connected proteins. This is a sensible choice as 
we found that performance decreases when including sec-
ond level interactors (data not shown). The main reason 
is that if a hub of the network is present among the direct 
interactors, it is expanded including lot of unrelated pro-
teins. Most dangerous cases are protein hubs interacting 
widely with many other proteins without functional speci-
ficity, like chaperones and ubiquitin. A solution could be to 
exclude hub proteins, however it is very difficult to define a 
cutoff based on the number of interactors. The degree dis-
tribution of experimentally annotated proteins in STRING 
does not follow a power law decay as for scale-free net-
works, instead resulting in a broader bell shaped function 
with many proteins having up to 500 interactions (data not 
shown).

GAS‑C

GAS-C, where “C” indicates Consensus, is an extended 
version of the algorithm that merges GAS with BLAST 
predictions. For each input protein, GAS-C first computes 
GAS and BLAST predictions independently and then com-
bines them. BLAST hits are retrieved running the program 
with default parameters discarding hits with e-value higher 
than 1 ×  10−3 sorted by Bit-score (default output), since 
it maximizes performances (Radivojac et  al. 2013). The 
presence of large groups of homologous proteins with high 
sequence similarity in the sequence database may affect a 
BLAST prediction. The UniRef90 (Suzek et al. 2007) data-
base was used to address the redundancy issue. For each hit 
corresponding to the representative sequence of a UniRef90 
cluster, all experimental GO terms associated to all cluster 

members are transferred. This strategy increases sensitivity, 
allowing to retrieve hits with lower sequence identity but 
possibly richer annotations. To make GAS comparable with 
BLAST, we mapped UniRef90 clusters to the interacting 
nodes and transferred functional annotation from all mem-
bers belonging to these clusters.

Since the F-score was found to be poorly correlated with 
the native output score (Bit-score and P-value), the F-score 
computed on the rank position was considered instead. For 
BLAST, the rank corresponds to the hit position in the out-
put list, e.g., at rank 1 we find GO terms (plus ancestors) 
transferred from the first hit, the one with best Bit-score. 
For GAS, the rank is given by the P-value, e.g., at rank 1, 
we find terms (plus ancestors) with the lowest P-value. The 
values ftr, converted to the F-measure of the rth (or higher) 
ranked terms for target t. From these data, the expected 
rank-dependent performance was evaluated through an 
exponential curve emphasizing the correlation between the 
ranking r of the predicted term and the F-measure:

where a, b, and c were estimated through a nonlinear least 
square on the predictions and corresponding F-meas-
ures. Next, the corresponding rank-dependent score SI 
and SB were assigned to each GO term predicted by GAS 
and BLAST, respectively. Whenever the same GOi was 
predicted by both approaches, its score was updated as 
follows:

Finally, all scores are propagated to the root of the ontol-
ogy guaranteeing that each ancestor node always inherits 
the maximum probability from its children.

Training and test sets

The evaluation set for the prediction models is made of 
protein sequences with experimental annotation from Swis-
sProt. It includes previously unannotated proteins that 
accumulated GO terms annotation in 1  year, accounting 
for 8976 proteins from 283 organisms. 4432, 3931, and 
3194 sequences were counted for the MF, BP, and CC sub-
ontologies, respectively. It was obtained as the difference 
between the SwissProt releases v2012_07 and v2013_07, 
applying a filtering criterion for automatically predicted 
terms. Experimental (“trusted”) annotation was consid-
ered as those terms which are associated to the evidence 
codes EXP, IDA, IMP, IGI, IEP, TAS, and IC. Figure  1 
shows that the organism distribution of new annotated 
sequences differs strongly. 1940 new sequences (22  % of 
the entire test set) come from “other” organisms. The train-
ing set was obtained by randomly sampling 10,000 targets 
from the experimentally annotated sequences in SwissProt 

(2)E[F(r)] = e
a+b×r + C

(3)Scombined(GOi) = 1− (1− SB(GOi)× (1− SI(GOi)

Table 1   Contingency table

Cluster the set N of directly interacting nodes, DB the rest of nodes in 
STRING associated to experimental GO terms

Node Set

Cluster DB

Categories

 GOi a b

 Not GOi c d
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v2012_07. The datasets, all predictions and GAS annota-
tions for the Yeast genome are available from URL: http://
protein.bio.unipd.it/inga/gas_dataset.tar.gz.

Performance evaluation

Two different strategies to evaluate GAS and GAS-C mod-
els, one based on a target-by-target comparison and the 
other based on the whole dataset were adopted. In the for-
mer approach, for each target protein, predicted GO terms 
by their ranking position were evaluated (as described in 
the GAS-C paragraph) and then the mean on the entire test 
set for all possible ranking r computed. In the whole data-
set strategy, all targets were considered together and per-
formance was calculated for all possible score thresholds t. 
The scores in this case correspond to the P-value, Bit-score, 
and Scombined, respectively, for GAS, BLAST, and GAS-C 
predictors. For FANN-GO (Clark and Radivojac 2011), 
we used the score as it is provided by the tool and for the 
Naïve method the frequency in the SwissProt database. We 
used the following well-established measures adopted in 
CAFA to evaluate performance:

where GOt represents the set of true terms associated to 
a protein in the test set, while GOp is the set of predicted 

(4)Precision (r) =

∣

∣GOt ∩ GOp(r)
∣

∣

∣

∣GOp(r)
∣

∣

(5)Recall (r) =

∣

∣GOt ∩ GOp(r)
∣

∣

|GOt|

terms. Precision and recall are measures of correctness and 
completeness for a method, respectively. They both depend 
on r, which corresponds to the ranking in the target-by-tar-
get approach and to the score threshold in the whole data-
set strategy. A third useful metric is the F-measure, which 
is obtained by calculating the harmonic mean of precision 
and recall:

Results

We introduce Guilty by Association on STRING (GAS), a 
tool to predict protein function exploiting protein–protein 
interaction networks without sequence similarity meas-
ures. The assumption is that whenever a protein interacts 
with other proteins, it is part of the same biological pro-
cess and located in the same cellular compartment. Two 
proteins exhibiting the same interaction partners can rea-
sonably be inferred to have the same function. Given the 
sequence of an unknown target protein, GAS is able to 
retrieve its interacting partners from the STRING network 
and measures the enrichment of the associated functional 
annotations to generate a sorted list of putative functions. 
In the following, we will present some experiments that 
explain how protein interaction networks can contribute to 
solve the problem of protein function prediction. We will 
start with an analysis of the STRING network and then we 
will provide a comparison with some methods. The list of 
evaluated tools includes BLAST (Altschul 1990), which is 
known as the standard baseline tool for function prediction 

(6)F(r) = 2×
Precision (r)× Recall (r)

Precision (r)+ Recall (r)

Fig. 1   Distribution of 
SwissProt entries annotated 
experimental GO terms and 
categorized by organism. Dark 
bars (“new annotation”) repre-
sent the number of sequences 
that accumulated experimental 
annotation in 1 year and that 
were used as test set

http://protein.bio.unipd.it/inga/gas_dataset.tar.gz
http://protein.bio.unipd.it/inga/gas_dataset.tar.gz
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based on homology inference, the Naïve method imple-
mented as described in CAFA and FANN-GO that was the 
only one available as stand-alone software, and trained on 
an old dataset. Finally, we show that the GAS-C consensus 
model can increase performance accuracy using both GAS 
and BLAST predictions.

Experimental annotation in STRING

We implemented GAS using STRING as the reference inter-
action network. STRING is the largest database of protein–
protein interactions including experimental derived data, third 
party information coming from other databases, and predicted 
interactions (Franceschini et  al. 2013). However, GAS does 
not use the entire network but only a portion composed by 
only those nodes that can be mapped to SwissProt entries 
and annotated with experimental terms. Exploitation of func-
tional information coming from protein–protein interaction 
networks requires minimization of false-positive interactions. 
STRING provides a score representing an edge quality esti-
mate that also tracks the information source. Figure 2 shows 
the distribution of STRING edge scores for different interac-
tion types coming from different sources.

Most of the STRING edges connecting SwissProt entries 
have low quality values and come from text mining and 
co-expression data, 53 and 40 % of the total interactions, 
respectively, while only 5.7  % are confirmed experimen-
tally (Table 2). When multiple sources of information sup-
port the existence of an interaction, they result in a higher 
global score. We evaluated GAS performances by filtering 
the STRING network for different edge confidence values. 

An edge cutoff of 900 on one hand not only guarantees the 
selection of reliable protein interactions, often confirmed in 
third party databases, but also reduces the amount of avail-
able interacting partners and therefore the annotation that 
can be transferred. On the contrary, a relaxed threshold 
yields a higher chance of collecting experimental GO terms 
useful for the prediction.

One of the major limitations of function prediction from 
interactome data is coverage (see Fig. 3). In fact, when no 
restriction in terms of alignment coverage and identity is 
applied, BLAST is capable of generating new GO terms in 
almost the totality of targets. For GAS, we are able to find 
experimentally annotated interacting nodes for our target 
protein in 29–47 % of the cases, depending on the ontol-
ogy. We tested GAS performance by filtering edges for dif-
ferent cutoff values. All tables and figures in the paper refer 
to the GAS predictions coming from a high confidence 
STRING sub-network with a cutoff of 900. In Fig.  3, we 
reported the same comparison relaxing the edge filtering at 

Fig. 2   Distribution of STRING edge types by edge quality. Frequen-
cies are calculated using entries with experimental GO terms in Swis-
sProt. Text mining and co-expression edges are the most common 
among the low qualities, while interactions from database are the 
most reliable

Table 2   Edge types distribution of experimentally annotated proteins 
in STRING

The percentage refers to the total number of edges. Note that one 
interaction between two proteins may be confirmed by multiple 
source of information increasing the overall confidence for that edge

Edge type Edges (%)

Text mining 53.3

Co-expression 40.1

Neighborhood 14.3

Co-occurrence 7.4

Experimental 5.7

Database 4.3

Fusion 0.3

Fig. 3   Prediction coverage on the dataset for GAS at STRING edge 
weight cutoffs 900 and 500, as well as GAS-C
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a cutoff of 500. The ability to predict new potential func-
tions increases greatly, ranging between 57 and 68 % cov-
erage. Moreover, filtering out low confidence edges sig-
nificantly decreases false-positive interactions resulting in a 
slightly greater accuracy (data not shown).

GAS prediction

To clarify the GAS the prediction procedure we provide an 
example. Figure  4 shows the GAS prediction for a Yeast 

“Probable gluconokinase” (UniProt: Q03786, gene name: 
YDR248C) missing experimental annotation. According 
to STRING, it interacts with 6 experimentally annotated 
proteins involved in the glucose metabolism. Four of them 
(marked as “A” in Fig.  4) are annotated with “pentose-
phosphate shunt, oxidative branch” (GO:0009051), two 
(“B”) with “tRNA export from nucleus” (GO:0006409), and 
only one (“C”) with “cellular response to oxidative stress” 
(GO:0034599). GO terms in the figure are represented by 
circles. Their size is inversely proportional to the P-value 
(8.3 × 10−13, 4.2 × 10−6 and 6.5 × 10−2, respectively) and 
reflects the ranking in the output. GAS-C prioritizes differ-
ent terms by combining the prediction of GAS and BLAST. 
In this case, our optimized BLAST predicts the “d-gluconate 
metabolic process” (GO:0019521) term, transferred from 
a “probable gluconokinase” (UniProt accession Q10242, 
sequence identity 43.2 %, Bit-score 122). BLAST and GAS 
predict different terms belonging to the same ontology 
branch. GAS-C prioritizes the common ancestors “single-
organism carbohydrate metabolic process” (GO:0044723), 
“monocarboxylic acid metabolic process” (GO:0032787), 
and “carbohydrate catabolic process” (GO:0016052). The 
original leaf terms are placed in lower positions since they 
are not supported by both methods and less reliable.

In Table 3, we provide an overview of the GAS predic-
tions for Yeast (NCBI tax. id. 559292) proteins missing 
experimental annotation in SwissProt (1748 sequences, 
26 % of the entire genome). GAS-C for all the three ontolo-
gies provides always more specific terms (average depth), 
i.e., more distant from the ontology root. Moreover, it 
always provides better coverage (number of predicted 
sequences).

Target‑by‑target performance

We compared GAS, GAS-C, and the other tools by eval-
uating their performance on the test set using the same 
approach adopted by the CAFA assessors. Table 4 reports 
the target-by-target maximum F-score (see “Performance 
evaluation”), computed on the test set targets, where all 
listed methods are able to make a prediction. The first con-
sideration is that different methods behave differently for 
the three ontologies. Protein–protein interaction networks 
contain useful information about the biological process 
(BP) and the cellular compartment (CC) of a target. GAS 
does not produce good results for molecular function (MF). 
This is not surprising, since interacting proteins, even if 
they participate in the same biological process, usually 
carry out different biochemical reactions. For example, 
two proteins may be involved in the regulation of the cell 
cycle, but the first can be a regulatory protein performing 
phosphorylation and the second a transcription factor with 
a completely different biochemical attitude.

Fig. 4   The STRING sub-network for YDR248C (edge cutoff 900). 
Circles next to nodes represent experimental GO terms. Their size is 
proportional to the enrichment measure (P-value) provided by GAS. 
See main text for details

Table 3   Yeast genome annotation

Values computed for Yeast proteins of unknown function, i.e., miss-
ing experimental SwissProt annotation. The maximum F-score is 
used to measure average term depth, standard deviation and dataset 
coverage. The best performance for each ontology is highlighted in 
bold

Ontology Method Depth Coverage (%)

Average SD

MF GAS 2.95 2.17 13.8

GAS-C 3.15 1.83 37.6

BLAST 3.11 1.80 32.1

BP GAS 3.48 1.74 15.4

GAS-C 3.53 1.67 40.0

BLAST 3.37 1.69 34.4

CC GAS 2.09 1.24 15.1

GAS-C 2.10 1.21 42.2

BLAST 2.03 1.21 37.5
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The second observation is about the difference in terms 
of performance observed for the three ontologies in gen-
eral. The BP terms are definitely the hardest to predict due 
to the more complex structure of the sub-ontology. Focus-
ing the attention to the BP ontology is possible to observe 
the effectiveness of combining GAS and BLAST in the 
GAS-C consensus that rewards those terms predicted by 
both methods (see “GAS-C”). GAS-C obtains the maxi-
mum F-score over all methods even if the recall is penal-
ized compared to GAS itself. To better appreciate the pre-
dictor performance, we plotted the precision-recall curves 
for all methods (Fig.  5). Both GAS and GAS-C are also 
good at predicting membrane proteins, ca. 1/3 of the entire 
validation set corresponding to 2870 proteins (highlighted 
in the provided prediction files).

Another important observation is the good performance 
obtained by the Naïve method for the MF terms in Table 4. 
This behavior was already observed during the CAFA 
experiment and is due to the very high frequency of pro-
teins annotated with some shallow leaf terms very close to 
the root of the ontology. Naïve reaches a very high accu-
racy since it always predicts two ancestors of these leaf 
terms in the first positions (“protein binding” and “catalytic 
activity”). FANN-GO is subjected to the same phenom-
enon but achieves better results since the machine learning 
approach overcomes Naïve limitations.

In order to characterize different cases of predicted pro-
teins, we measured the correlation between GAS F-score 

and the number of interactions available for a given tar-
get. We found that the Pearson correlation coefficient is 
very close to zero for all the three sub-ontologies (0.010 
MF, −0.051 BP, −0.021 CC). When plotting the data (not 
shown), a slight decrease is observable when the number of 
interaction becomes larger than 10. This is a natural conse-
quence of the enrichment procedure that fails to prioritize 
specific terms when the functional diversity of interacting 
partners is relevant and not specific, e.g., ubiquitin and 
chaperones.

Table 4   Target-by-target performance

Performances are computed for entries where methods can make a 
prediction. The maximum F-score is used to select the correspond-
ing precision and recall. The cutoff explains the number of top rank 
scores that should be considered to achieve the best F-score. The best 
performance for each ontology is highlighted in bold. * FANN-GO 
does not predict cellular component

Ontology Method Precision Recall F-score Rank cutoff

MF GAS 0.342 0.261 0.296 1

GAS-C 0.544 0.336 0.416 2

BLAST 0.378 0.395 0.387 1

NAÏVE 0.646 0.330 0.437 3

FANN-GO 0.901 0.342 0.496 1

BP GAS 0.314 0.345 0.329 3

GAS-C 0.405 0.315 0.355 4

BLAST 0.302 0.288 0.295 1

NAÏVE 0.375 0.214 0.273 11

FANN-GO 0.334 0.274 0.301 13

CC GAS 0.487 0.598 0.537 2

GAS-C 0.663 0.539 0.595 2

BLAST 0.484 0.573 0.525 1

NAÏVE 0.776 0.421 0.545 4

FANN-GO * * * *

Fig. 5   Precision-recall curves. FANN-GO is missing in the cellular 
component chart because the tool does not provide prediction for that 
ontology
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Whole dataset performance

One important aspect about the different predictors can 
be highlighted by a correlation analysis. For BLAST, we 
observed a limited relationship between the Bit-score and 
the F-measure for each target, with values below 0.290 for 
the three ontologies. Surprisingly, the same low correlation 
is also observed when considering sequence identity (not 
shown), suggesting that is very difficult to find a specific 
identity threshold useful for discriminating a good source 
of annotation.

For GAS, the same result holds for the enrichment 
P-value (correlation below 0.225). Such a limited correla-
tion between F-score and the predictor confidence score 
suggested the use of ranks to improve results. We observed 
that BLAST generally achieved best results by just picking 
the GO terms associated to the first hit, i.e., sequence with 
the highest Bit-score. GAS ranks GO terms rather than 
sequences and has to consider up to the first three predicted 
terms, depending on the sub-ontology, to achieve optimal 
performance (see Table  4, column rank cutoff). This is 
likely to be the reason why GAS shows a higher maximum 
precision in general, while BLAST has a higher maximum 
recall (Table 4). Interestingly, the GAS-C score is strongly 
correlated with the expected F-score (correlation higher 
than 0.406), and outperforms the rank-based strategy as 
shown in Table 5. This is likely to be a consequence of a 

good fitting procedure. The increased predictive power 
shows that GAS and BLAST generate different knowl-
edge. The consensus enables a better prioritization of pre-
dicted terms by using two orthogonal sources of informa-
tion jointly and can truly guide a user to select GO terms 
depending on the expected annotation quality.

Discussion

In this paper, we presented a novel strategy to predict pro-
tein function exploiting protein–protein interaction (PPI) 
networks, developing a statistical significance estimation to 
rank GO terms. To the best of our knowledge, this is the 
first attempt to fairly evaluate the contribution of network 
interaction data to predict protein function.

GAS is based on the “Guilty-by-association” principle 
applied in the context of PPI networks. If a protein physi-
cally interacts with other proteins, it should share a simi-
lar function. For example, when all interacting partners 
operate inside the nucleus, it is reasonable to believe that 
the sub-cellular localization of a given target will be the 
nucleus itself.

However, even if the principle is very simple, some 
details need to be considered to implement an effective 
tool. Some aspects are related to the PPI network and oth-
ers to the scoring function applied for ranking the predicted 
terms. The size of the PPI network and the reliability of the 
interactions affect the prediction in two different ways. A 
big network increases the probability of finding interact-
ing partners endowed with GO annotation, while filtering 
low quality interactions correspond to a gain in the preci-
sion of the prediction. The number of interactors appears 
not relevant for performance, even if a slight precision 
loss is observable when the number of interaction partners 
becomes too large. The other key factor is the method used 
to sort and prioritize the transferred GO terms. We found 
that the P-value generated by measuring the enrichment 
of each collected annotation can be conveniently used to 
sort terms, but there is not a linear relationship between the 
P-value and the F-score that measures the quality of a pre-
diction. In other words, it means that is not possible to say 
which could be an optimal P-value threshold that guaran-
tees a good annotation. This is also true for BLAST where 
the Bit-score provided by the tool correlates very poorly 
with the F-score (Table 5). Conversely, both the Bit-score 
and the P-value provide a good sorting of GO terms and we 
found a good correlation between the F-score and the posi-
tion (ranking) in the output list (compare GAS and BLAST 
F-score in Tables 4, 5). The comparison between GAS and 
BLAST highlighted important differences among the three 
GO sub-ontologies. As expected, PPI data are very effective 
for the CC and BP cases. On the other hand, evolutionary 

Table 5   Whole dataset performance

The performance is calculated over the same target set of Table 4 but 
for all possible thresholds for the score provided by the tools them-
selves. Score cutoff indicates the score threshold where the tool gets 
the best F-score. For every tool, the scores are GAS P-value, GAS-
C Tool score, BLAST Bit-score, NAÏVE frequency, FANN-GO Tool 
score. The best performance for each ontology is highlighted in bold. 
* FANN-GO does not predict cellular component

Ontology Method Precision Recall F-score Score cutoff

MF GAS 0.228 0.269 0.247 0.002

GAS-C 0.637 0.320 0.426 0.455

BLAST 0.300 0.327 0.313 85.1

NAÏVE 0.646 0.330 0.437 0.362

FANN-GO 0.801 0.427 0.557 0.214

BP GAS 0.291 0.317 0.303 0.0006

GAS-C 0.450 0.319 0.373 0.419

BLAST 0.195 0.368 0.254 125.0

NAÏVE 0.375 0.214 0.273 0.217

FANN-GO 0.372 0.282 0.321 0.270

CC GAS 0.339 0.785 0.474 0.998

GAS-C 0.689 0.538 0.604 0.706

BLAST 0.318 0.612 0.418 140

NAÏVE 0.776 0.421 0.545 0.495

FANN-GO * * * *
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inference from sequence similarity represents a better dis-
criminative approach for MF. This fact is consistent with 
the idea that network prediction can infer knowledge from 
the local neighborhood. Conversely, the molecular function 
cannot be directly inferred from the interactome, since the 
interacting proteins participating in a given biological pro-
cess contribute themselves with different specific activities 
and biochemical reactions.

As shown in the first CAFA experiment, the performance 
of consensus methods is generally higher than standard tools. 
We implemented GAS-C that is able to generate a consensus 
prediction by combining both BLAST and GAS results. The 
implemented consensus strategy is extremely fast and simple, 
consisting in a score transformation, which can be gener-
ated in linear time with respect to the number of predictions. 
GAS-C achieves better results for all the three ontologies 
compared to BLAST and GAS themselves (Tables 4, 5) also 
for difficult cases like membrane proteins. It also outperforms 
FANN-GO for the BP ontology. A particular discussion has to 
be done for the Naïve performance in the MF ontology. The 
good F-score was already observed during the CAFA experi-
ment and is due to a bias in SwissProt of some shallow leaf 
terms very close to the root of the ontology (see “Results”).

In general, all presented results in terms of F-score, 
precision and recall are slightly underestimated compared 
to the numbers provided by the first CAFA experiment. 
This happened because we evaluated all the predictions 
without filtering those terms in the test set not yet avail-
able 1 year before in 2012. However, this does not change 
the validity of this work, since all methods were affected 
equally by this problem. At the moment, sequence similar-
ity approaches outperform GAS in terms of target cover-
age, but we believe that good quality interaction data are 
going to increase consistently, resulting in a better capac-
ity to generate new hypotheses. Moreover, PPI networks 
represent a complementary source of knowledge compared 
to evolutionary information, and will be even more effec-
tive in the future, when entire organism interactomes will 
become available. Future GAS extensions may leverage 
the presence of disordered regions (Potenza et al. 2015) or 
repetitive units (Di Domenico et  al. 2014) to improve the 
background distribution for enrichment calculation, thereby 
increasing term specificity.
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