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available literature regarding the role of ADMA and hArg 
in endothelial dysfunction and in cardiovascular disease 
as well as the possible associations between these endog-
enous Arg derivatives.
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Abbreviations
ADMA	� Asymmetric dimethylarginine
AGAT	� Arginineglycine amidinotransferase
CAD	� Coronary artery disease
CVD	� Cardiovascular disease
DDAH	� Dimethylarginine dimethylaminohydrolase
FMD	� Flow-mediated dilatation
GAMT	� Guanidinoacetate methyltransferase
hArg	� Homoarginine
IMT	� Intima-media thickness
MMA	� Monomethylarginine
NO	� Nitric oxide
NOS	� NO synthase
eNOS	� Endothelial nitric oxide synthase
nNOS	� Neuronal nitric oxide synthase
PCI	� Percutaneous coronary intervention
PRMTs	� Protein arginine N-methyltransferases
ROS	� Reactive oxygen species
SDMA	� Symmetric dimethylarginine

Introduction

Worldwide, the number of deaths from cardiovascular dis-
ease (CVD) has been increasing alarmingly, mainly due 
to atherosclerosis, which is a chronic disease affecting the 

Abstract  It is well known that the endothelium main-
tains the vascular homeostasis. Importantly, endothelial 
dysfunction is regarded as a key early step in the develop-
ment of atherosclerosis. Back in the early 1990s, it was 
found that asymmetric dimethylarginine (ADMA), an 
arginine metabolite derived from l-arginine (Arg) resi-
dues in proteins by asymmetric dimethylation on its guan-
idine group, is an endogenous inhibitor of nitric oxide 
(NO) synthase (NOS) isoforms. Inhibition of NO syn-
thesis from Arg by the endothelial NOS isoform (eNOS) 
leads to endothelial dysfunction. Due to this action, 
ADMA participates in the pathophysiology of atheroscle-
rosis and potentially contributes to cardiovascular events. 
Nowadays, homoarginine (hArg) is considered as a new 
key player in atherogenesis. hArg is a non-essential, non-
proteinogenic amino acid which is synthesized from Arg 
by arginine:glycine amidinotransferase (AGAT). hArg is 
structurally related to Arg; formally, hArg is by one meth-
ylene (CH2) group longer than Arg, and may serve as a 
substrate for NOS, thus contributing to NO synthesis. For 
several decades, the pathophysiological role of hArg has 
been entirely unknown. hArg has been in the shadow of 
ADMA. Clinical studies have sought to investigate the 
relationship between circulating hArg levels and human 
disease states as well as cardiovascular prognosis. Recent 
studies indicate that hArg is actively involved in the vas-
cular homeostasis, yet the underlying mechanisms are 
incompletely understood. In this article, we review the 
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entire arterial tree, representing an inflammatory response 
in the vessels (Ross et al. 1999; Tousoulis et al. 2011b).

Endothelium is of major importance in the vasculature, 
as it is involved in promoting and maintaining a protective 
environment via endothelial cell-derived vasoactive factors. 
Nitric oxide (NO) and reactive oxygen species (ROS) such 
as superoxide represent key factors of vascular homeosta-
sis (Guzik et  al. 2004). Endothelial dysfunction, widely 
accepted as the imbalance between NO and ROS produc-
tion, is currently regarded as an important early event in the 
development of atherosclerosis (Tousoulis et al. 2010).

In 1992, it was reported that asymmetric dimethylargi-
nine (ADMA) is a naturally occurring endogenous inhibi-
tor of NO synthase (NOS) (Vallance et  al. 1992). ADMA 
inhibits vascular NO production at concentrations found 
in pathophysiological conditions, and also causes local 
vasoconstriction when infused intra-arterially (Böger et al. 
2003, 2005; Lenzen et  al. 2006). Consequently, ADMA 
reduces NO production and consequently can thus lead 
to endothelial dysfunction and participate in the patho-
physiology of atherosclerosis and cardiovascular events. 
Therefore, circulating ADMA has emerged as a possible 
cardiovascular risk marker (Miyazaki et al. 1999; Lu et al. 
2003a).

Homoarginine (hArg), on the other hand, is endoge-
nously produced from l-arginine (Arg) and is structurally 
closely related to its precursor Arg. Formally, hArg has an 
additional methylene group (CH2) in its molecule. Because 
of the involvement of other arginine metabolites in vascular 
homeostasis, the structural similarity has recently stimu-
lated experimental and clinical studies aimed to explore the 
relationship between plasma hArg levels and human dis-
ease states as well as cardiovascular prognosis (Huynh and 
Chin-Dusting 2006; Atzler et al. 2013). In the present arti-
cle we review the existing literature on the role of ADMA 
and hArg and their possible interrelationship in endothelial 
dysfunction and cardiovascular disease.

Homoarginine–biosynthesis and metabolism

hArg (l-homoarginine) is a non-proteinogenic amino acid. 
It is formed from lysine during reactions similar to those of 
the urea cycle. Similar to urea cycle, ornithine is replaced 
by lysine and ornithine-transcarbamoylase, which is 
regarded as the main enzyme responsible for hArg synthe-
sis. Even though ornithine-transcarbamoylase has a higher 
affinity to ornithine, it also catalyzes the transaminidation 
reaction of lysine, a key step to hArg’s production (Davids 
et  al. 2012). Another pathway for its production includes 
arginine:glycine amidinotransferase (AGAT), an enzyme 
which catalyzes the transfer of an amidino group from 
Arg to glycine, resulting in formation of guanidinoacetate, 

which is methylated by guanidinoacetate methyltransferase 
(GAMT) to form creatine (Davids et al. 2012). AGAT may 
use lysine instead of glycine, thus resulting in the produc-
tion of hArg. Evidence for in vivo synthesis of hArg from 
lysine had been previously first reported in experimental 
models. In humans, an increase in urinary hArg after oral 
lysine administration had been demonstrated in adults 
(Davids et  al. 2012). The metabolic routes responsible 
for hArg synthesis from lysine in  vivo have not yet been 
unraveled completely.

Production of NO by the vascular endothelium is of 
crucial importance in the maintenance of vascular tone, an 
important determinant of blood pressure. Unlike the meth-
ylated arginine metabolites including ADMA, which are 
inhibitors of NOS (Tsikas et al. 2000a; Tsikas and Kayacel-
ebi 2014;  Kielstein et al. 2007), hArg can serve as an NOS 
substrate. hArg can also serve as substrate for arginase. 
hArg could thus lead to an increased availability of Arg for 
NOS to produce NO (Michel 2013). The ability of hArg to 
modulate NO bioavailability in the presence of about 20- to 
40-fold higher Arg concentrations appears to be intriguing.

Homoarginine, nitric oxide and endothelial 
dysfunction

As endothelium-derived NO is generally considered as 
a biologically beneficial molecule, it seems a plausible 
hypothesis that hArg may affect the cardiovascular system 
by either enhancing or limiting NO production. Moreover, 
vascular endothelium is a major regulator of vascular tone 
via manufacturing and balancing vasodilators and vaso-
constrictors, including NO and prostacyclin, which have 
contributed to the understanding of the pathogenesis of 
atherosclerosis (Bonetti et  al. 2003). Under basal condi-
tions, and in response to mechanical and humoral stimuli, 
the endothelium manufactures a large variety of vasoac-
tive molecules in order to maintain normal vascular tone 
and blood fluidity. Endothelial dysfunction emerges as a 
result of an imbalance among those factors (Tousoulis et al. 
2015).

Assuming an effect of hArg on NO bioavailability 
and, consequently, early atherogenesis, an association 
of hArg with endothelial function and vascular disease 
may be hypothesized. Specifically, transient elevations 
of hArg were correlated with brachial artery diameter 
and flow-mediated dilatation (FMD) during the second 
and third trimesters of pregnancy (Valtonen et  al. 2008; 
Saarelainen et  al. 2008). Moreover, according to a recent 
population-based cohort study of 746 elderly participants, 
plasma levels of hArg and Arg are independently associ-
ated with clinically relevant differences in blood pressure 
in an antagonistic fashion (van der Zwan et  al. 2013). 
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Accordingly, in a large study of patients with preserved 
left ventricular ejection fraction, higher levels of ADMA, 
symmetric dimethylarginine (SDMA) and lower levels of 
hArg were associated with diastolic dysfunction and nega-
tively associated with N-terminal pro-B-type natriuretic 
peptide and mid-regional pro-adrenomedullin (Pilz et  al. 
2014). Of note, evidence suggests that long-term Arg sup-
plementation may have harmful effects, raising concerns 
about long-term consequences of hArg supplementation, 
even though beneficial effects of short-term hArg sup-
plementation in mouse stroke models have been reported 
recently (Choe et al. 2013). Significant decreases in hArg 
were recognized in plasma from AGATnull mice, associ-
ated with significant increases in the size of stroke (Choe 
et al. 2013).

It is also worth mentioning that in 3041 patients of the 
Ludwigshafen Risk and Cardiovascular Health (LURIC) 
Study referred for coronary angiography and 2102 par-
ticipants of the Young Finns Study (YFS), a genome-wide 
association study was performed to identify genomic loci 
associated with hArg serum levels and tested for associa-
tions of identified single nucleotide polymorphisms with 
mortality in LURIC. Notably, 3 chromosomal regions were 
identified which were significantly associated with serum 
hArg, providing novel insights into the biological back-
ground of hArg (Kleber et al. 2013).

Homoarginine and cardiovascular disease

Further to this evidence, significant studies have recently 
investigated a possible role of hArg as a risk factor for vas-
cular disease. A recent prospective study of male patients 
with intermittent claudication and age- and diabetes-
matched controls showed an association of hArg and Arg 
with peripheral arterial disease (Vogl et al. 2015). In 3514 
participants of the Dallas Heart Study, hArg was also 
inversely and independently associated with aortic wall 
thickness but not with aortic plaque burden and coronary 
artery calcium (Atzler et  al. 2014). Furthermore, serum 
hArg was measured in 3305 participants of the LURIC 
Study, who were referred to coronary angiography at base-
line and were followed-up for 9.9 years (Pilz et al. 2011b). 
It was shown in this study that hArg levels are a novel risk 
factor for fatal strokes. Interestingly, however, in healthy 
children and adolescents aged 3–18  years without coex-
istent diseases, hArg appears to be unrelated with intima-
media thickness (IMT) and extra-medial thickness (EMT) 
of common carotid arteries estimated by B-mode ultra-
sound (Jazwinska-Kozuba et al. 2013). Regarding vascular 
disease, underlying mechanisms remain still not fully elu-
cidated but there is accumulating evidence that hArg, apart 

from its role in NO metabolism, may affect other risk fac-
tors such as diabetes mellitus, arterial hypertension, or pro-
thrombotic states (Radomski et al. 1990; Chen and Sanders 
1993; März et al. 2010).

Low serum hArg has recently emerged as a poten-
tial new risk marker for cardiovascular mortality in sev-
eral populations (Table  1). More specifically, in a large 
cohort, hemodialysed patients had lower mean hArg lev-
els and experienced a fivefold increased mortality rate 
compared with LURIC patients (608 deaths during a 
median follow-up of 4 years) (Pilz et al. 2011b). It con-
sistently affected mortality, in a second high-risk cohort 
of 1244 patients with type 2 diabetes mellitus receiving 
maintenance hemodialysis (4D study). Patients in the 
lowest quartile (<0.87 µM) had a twofold higher than in 
patients in the highest quartile (März et  al. 2010). Fur-
thermore, in the CAVASIC Study (Vogl et al. 2015) hArg 
was related to all-cause mortality implying a broader 
role in metabolic processes besides endothelial func-
tion. Accordingly, in 3514 participants of the Dallas 
Heart Study followed-up for 9.4 years, higher hArg was 
associated with lower rate of major adverse cardiovascu-
lar events (hazard ratio, 0.86; 95 % confidence interval, 
0.75–0.98) and lower all-cause mortality (hazard ratio, 
0.82; 0.73–0.92; per 1 log SD increase in hArg) (Atzler 
et  al. 2014). In addition, in a prospective study of 3305 
Caucasian patients who were referred for coronary angi-
ography, multivariable adjusted hazard ratios (with 95 % 
CI) for the first versus the fourth hArg quartile were 2.44 
(1.60–3.73) for sudden cardiac deaths, 3.44 (1.89–6.24) 
for heart failure deaths, and 3.78 (1.77–8.06) for fatal 
myocardial infarctions (Pilz et  al. 2011a). Interestingly, 
increasing hArg levels were independently associated 
with a reduction in all-cause mortality in patients with 
ischemic stroke followed-up for 7.4  years; hazard ratio 
for 1-SD hArg, 0.79 P = 0.019). hArg was also indepen-
dently associated with the National Institutes of Health 
Stroke Scale score and 30-day mortality after ischemic 
stroke (P < 0.05) (Choe et al. 2013). Also, according to 
the Mild to Moderate Kidney Disease (MMKD) Study, 
a prospective cohort study of 227 patients with chronic 
kidney disease in Europe. It was found that hArg con-
centrations were directly correlated with kidney function 
and were significantly associated with the progression 
of chronic kidney disease. This study provided evidence 
that low hArg concentrations might be an early indicator 
of kidney failure and a potential target for the prevention 
of disease progression (Drechsler et  al. 2013). Further-
more, recent data have also indicate that plasma hArg 
concentrations are reduced in Takotsubo cardiomyopathy 
patients compared to healthy subjects, while 3-nitroty-
rosine plasma concentrations, a biomarker of NO-related 
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oxidative stress, were similar in Takotsubo cardiomyo-
pathy patients and in healthy controls (Kayacelebi et al. 
2014a).

Asymmetric dimethylarginine: biosynthesis 
and metabolism

ADMA biosynthesis has its basis on a post-translational 
modification of arginine remnants. A group of enzymes 
called protein arginine N-methyl transferases (PRMTs) 
are responsible for the catalysis of arginine remnants 
methylation (Tran et al. 2003). Both subtypes of PRMT, 
PRMT1 and PRMT2, are capable of promoting mono-
methylation of the guanidine group of arginine to form 
monomethyl arginine (MMA). More specifically, PRMT1 
is involved in the generation of ADMA, while PRMT2 
contributes to the formation of SDMA (Tran et al. 2003). 
In contrast to ADMA and MMA, SDMA is generally 
assumed not to inhibit NOS. However, at least for recom-
binant neuronal NOS (nNOS), SDMA was demonstrated 
to inhibit nNOS-catalyzed formation of NO from Arg 
(Tsikas et  al. 2000b). Enhanced levels of ADMA result 
from increased arginine remnants methylation.

The major part of ADMA (up to 90  %) is mainly 
degraded via its hydrolysis to l-citrulline and dimethyl-
amine by the enzyme dimethylarginine dimethylaminohy-
drolase (DDAH); the remaining fraction (up to 20  %) is 
excreted by urine (Achan et  al. 2003; Kaito et  al. 2005). 
There are two isoforms of DDAH: DDAH 1 which 
expresses neuronal (nNOS), and DDAH 2 expresses eNOS 
(Leiper et al. 1999). It has been proposed that the elevation 
in plasma ADMA that occurs with vascular disease and 
risk factors is largely due to impaired activity of DDAH 
(Ito et  al. 1999). Of note, it has been suggested that the 
release of ADMA from endothelial cells is increased in 
the presence of native or oxidized low-density lipoprotein 
(LDL), possibly mediated by up-regulation of S-adeno-
sylmethionine dependent methyl transferases. These find-
ings suggest a novel mechanism by which ADMA con-
centration is elevated in hypercholesterolemia, leading to 
endothelial dysfunction and atherosclerosis (Böger et  al. 
2000). Moreover, significant evidence has indicated that 
the lung appears to be responsible for large amounts of 
protein bound ADMA, due to the high expression levels of 
various PRMTs in lung tissue (Bulau et al. 2007).

DDAH overexpression reduces ADMA levels and 
increases NO synthesis. Furthermore, it has been shown 
more ADMA is cleared by the liver due to the higher blood 
flow through the liver compared to the kidneys. There-
fore, decline of organ function, by diminished clearance, 
may result in raised ADMA levels. In addition, increased 
ADMA levels may promote organ dysfunction.

Asymmetric dimethylarginine, nitric oxide 
and endothelial dysfunction

It is well established that NO is the main key player facilitat-
ing vascular homeostasis with established anti-atherogenic 
effects. It has been also shown that ADMA can reduce NO 
production/bioavailability by inhibiting eNOS activity. In 
end-stage renal failure patients, ADMA accumulates in the 
blood, however dialysis improves endothelial function by 
diminishing ADMA levels (Vallance et  al. 1992). In addi-
tion, other studies have shown strong associations between 
risk factors for atherosclerosis and ADMA (Fig.  1). Thus, 
in patients with diabetes mellitus it has been found that 
ADMA can increase rapidly after acute administration of 
high-fat meal resulting to significantly impaired flow-medi-
ated dilatation (FMD) (Fard et al. 2000). In hypertensives, 
plasma ADMA levels were increased after salt loading and 
decreased after salt restriction, while the change in plasma 
NO level was correlated inversely with those in blood pres-
sure and plasma ADMA level after salt loading and restric-
tion. Therefore, it can be speculated that salt intake may 
play a role in modulation of NO synthesis. This may sug-
gest a mechanism for salt sensitivity in human hypertension, 
presumably via the change in ADMA (Fujiwara et al. 2000). 
Also in hypertensives, circulating ADMA concentration is 
elevated, but remains unchanged after methionine loading, 
suggesting that ADMA plays an important role in endothe-
lial dysfunction in hypertensives, but it is not responsible 
for homocysteine-induced endothelial dysfunction in these 
patients (Tousoulis et al. 2011a). According to a case–con-
trol study of essential hypertensive patients, only ADMA 
and l-arginine were independent correlates, accounting for 
33.9  % and 8.9  % of the variability in the peak forearm 
blood flow response to acetylcholine. Therefore, l-arginine 
and endogenous inhibitor of nitric oxide synthase, ADMA, 
was suggested to be inversely related to endothelial func-
tion in this population (Perticone et al. 2005). Furthermore, 
ADMA synthesis is activated in acute hyper-homocysteine-
mia by mechanisms independent of inflammation and oxi-
dative stress (Antoniades et al. 2006).

In larger cohorts it was found an inverse association 
between ADMA and FMD, which remained even after 
adjustment for risk factors of atherosclerosis (Juonala et al. 
2007). Further studies have demonstrated that ADMA can 
promote spasm of the coronary arteries (Hori et al. 2003), 
while it is raised in subjects with slow coronary flow 
(Selcuk et al. 2007). However, in a study of coronary artery 
disease (CAD) patients, there was no association between 
ADMA and endothelial function which is in disagree-
ment to the previous findings (Maas et al. 2007). Notably, 
a recent cross-sectional study of 231 healthy male volun-
teers evaluated the effects of cigarette smoking on hArg 
and other biomarkers. In smokers, it was found that plasma 
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hArg levels were 17 % lower compared with non-smokers 
after adjusting for age, body mass index, plasma creatinine, 
and metal blood levels while plasma ADMA levels were 
only 6 % higher in smokers when compared with the lev-
els found in non-smokers. Therefore, in contrast to ADMA, 
there is a strong association between exposure to tobacco 
smoke and plasma hArg levels (Sobczak et al. 2014).

Asymmetric dimethylarginine and cardiovascular 
disease

Several studies have investigated the prognostic role of 
ADMA for cardiovascular disease (Table 2).

More specifically, in a large number of subjects with-
out overt cerebro-cardiovascular diseases plasma level of 
ADMA was shown to be a strong and independent deter-
minant of intima-media thickness (IMT) of the carotid 
artery (Furuki et al. 2007). ADMA is not only associated 
strongly with endothelial dysfunction, but also with the 
risk for CVD. Thus, circulating ADMA levels predicted 
cardiovascular events in patients undergoing haemodi-
alysis (Zoccali et  al. 2001). In a larger cohort including 
patients with and without CAD, subjects in the higher 
quartiles of ADMA had increased risk of death and all-
cause mortality due to cardiovascular disorders. However, 
the predictive value of ADMA was not significant in the 
non-CAD subgroup (Valkonen et al. 2001). In a prospec-
tive cohort, baseline serum concentration of ADMA was 
assessed in 1874 consecutive patients with CAD. ADMA 

levels in patients who subsequently experienced the pri-
mary endpoint (death/fatal MI) were significantly higher 
than in patients who did not reach the primary end-point 
during a mean follow-up of 2.6  ±  1.2  years (Schnabel 
et al. 2005). In addition, it has been shown (Leong et al. 
2008) that increased ADMA levels in healthy women 
is associated with 30  % increase risk for CVD. In this 
study, ADMA levels increased the risk for CVD beyond 
the known Framingham risk score. Moreover, in patients 
with acute coronary syndrome, increased levels of ADMA 
represent a strong and independent predictor of myocar-
dial infarction and all-cause mortality (Cavusoglu et  al. 
2009). Further to that patients with unstable angina and 
decreased ADMA levels 6 weeks post percutaneous coro-
nary intervention (PCI) had less recurrent cardiovascular 
events compared to subjects with raised ADMA levels 
(Krempl et  al. 2005). In the context of PCI, in another 
study it was found that although ADMA levels did not 
correlate with negative coronary remodeling, treatment 
with sirolimus was associated with lower ADMA levels 
and less intima hyperplasia compared to mycophenolate 
mofetil (Potena et  al. 2008). Furthermore, in patients 
with peripheral arterial disease (PAD), ADMA predicted 
major adverse cardiovascular events (MACE) occurrence 
(Mittermayer et  al. 2006). More specifically patients in 
the highest quartile exhibited 39  % MACE occurrence. 
Finally, in a prospective study of type 2 diabetes mellitus 
patients, the highest quartiles of ADMA were associated 
with increased hazard ratios for cardiovascular events 
incidence (Krzyzanowska et al. 2007).

Fig. 1   Asymmetric dimethyl-
arginine: synthesis, risk factors 
and detrimental effects. NO 
nitric oxide, ADMA asymmetric 
dimethylarginine, SDMA sym-
metric dimethylarginine, MMA 
monomethyl arginine, PRMT 
protein arginine N-methyl 
transferase
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Conclusions

It has become evident that ADMA and hArg play a sig-
nificant role in endothelial dysfunction, which is likely 
mediated by their effects on NO synthesis/bioavailabil-
ity. ADMA is an endogenous inhibitor of eNOS activity. 
By this action, ADMA inhibits vascular NO production, 
thus leading to endothelial dysfunction and contributing 
to atherogenesis. hArg has been in the shadow of ADMA 
until recently, but it is now emerging as a new key player 
in the cardiovascular field. Yet, the underlying mechanisms 
remain still unrevealed. NO-related actions of hArg are 
possible as hArg may serve as substrate both for eNOS and 
arginase that may control the concentration of Arg, the sub-
strate of eNOS. Both ADMA and hArg participate in and 
contribute actively not only to atherogenesis, but also to 
cardiovascular disease with a possible predictive role. More 
specifically, circulating hArg and ADMA levels seem to be 
independently associated with cardiovascular risk, death 
and major adverse cardiovascular events. Although they 
are promising molecules, there are not enough data to sup-
port their predictive role and use in clinical practice. There-
fore, more studies are needed to elucidate the underlying 
pathophysiological mechanisms and pathways involved in 
synthesis and metabolism of these molecules. In addition, 
large-scale studies are required to evaluate the predictive 
role of ADMA and hArg in cardiovascular disease.
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