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dimethylaminohydrolase-1 (DDAH1), a key protein 
responsible for ADMA metabolism, was measured 6  h 
after the methionine loading or the vehicle. Expectedly, 
methionine load induced a sustained increase in tHcy (up 
to 54.9 ± 1.9 µM) and a 30 % decrease in vascular reac-
tivity compared to the baseline values. Plasma ADMA and 
SDMA decreased transiently after the methionine load. 
Hepatic mRNA expression of DDAH1, cathepsin D, and 
ubiquitin were significantly lower 6 h after the methionine 
load than after the vehicle. The absence of an elevation of 
circulating ADMA and SDMA in this model suggests that 
endothelial dysfunction induced by acute hyperhomocyst-
einemia cannot be explained by an up-regulation of pro-
tein arginine methyltransferases or a down-regulation of 
DDAH1. In experimental endothelial dysfunction induced 
by acute hyperhomocysteinemia, down-regulation of the 
proteasome is likely to dampen the release of ADMA and 
SDMA in the circulation.

Keywords  ADMA · Endothelial dysfunction · 
Hyperhomocysteinemia · Methionine load · Proteolytic 
degradation · SDMA

Abbreviations
Ach	� Acetylcholine
ADMA	� Asymmetric dimethylarginine
DDAH	� Dimethylarginine dimethylaminohydrolase
DMA	� Dimethylarginine
MAP	� Mean arterial pressure
NO	� Nitric oxide
PRMT	� Protein arginine methyltransferase
ROS	� Reactive oxygen species
SAM	� S-adenosylmethionine
SDMA	� Symmetric dimethylarginine
tHCy	� Total plasma homocysteine

Abstract  Hyperhomocysteinemia induces vascular 
endothelial dysfunction, an early hallmark of atherogenesis. 
While higher levels of circulating asymmetric dimethylargi-
nine (ADMA) and symmetric dimethyl arginine (SDMA), 
endogenous inhibitors of nitric oxide synthesis, have been 
associated with increased cardiovascular risk, the role that 
ADMA and SDMA play in the initiation of hyperhomo-
cysteinemia-induced endothelial dysfunction remains still 
controversial. In the present study, we studied the changes 
of circulating ADMA and SDMA in a rat model of acutely 
hyperhomocysteinemia-induced endothelial dysfunction. In 
healthy rats, endothelium-related vascular reactivity (meas-
ured as acetylcholine-induced transient decrease in mean 
arterial blood pressure), plasma ADMA and SDMA, total 
plasma homocysteine (tHcy), cysteine and glutathione were 
measured before and 2, 4 and 6 h after methionine loading 
or vehicle. mRNA expression of hepatic dimethylarginine 
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Introduction

Elevated total plasma homocysteine (tHcy) is associ-
ated with a risk for cardiovascular diseases and diabetes 
mellitus in the general population (Andreotti et  al. 2000; 
Zylberstein et  al. 2004; Lentz and Haynes 2004). Moder-
ate hyperhomocysteinemia (tHcy range 10–30  µM) is an 
independent predictor of atherothrombotic events (Casas 
et  al. 2005; De Bree et  al. 2002). It has been repeatedly 
demonstrated in murine models and in humans that acute or 
chronic increase in tHcy, induced by methionine load and/
or by folate deficiency, promotes low-grade inflammation 
and endothelial dysfunction, hallmarks of atherogenesis 
(Bellamy et al. 1998; Chambers et al. 1999). Thus, several 
large prospective studies have evaluated the consequences 
of lowering tHcy in patients with established cardiovascu-
lar diseases (Loscalzo 2006). Unexpectedly, all the clini-
cal trials using dietary folate supplementation to efficiently 
lower elevated tHcy in patients did not show any protective 
effects on secondary adverse vascular events, suggesting 
that hyperhomocysteinemia could be an early biomarker 
of cardiovascular risk rather than an independent risk fac-
tor, as first postulated (den Heijer et al. 2007; Jamison et al. 
2007). Besides the implication of reactive oxygen species 
(ROS) production, the mechanisms underlying vascular 
dysfunction induced by hyperhomocysteinemia are largely 
debated (Tousoulis et  al. 2011; Dayal and Lentz 2008; 
Jakubowski 2006).

Acute experimental hyperhomocysteinemia induced 
by the administration of methionine, the precursor of 
homocysteine (Hcy), has been used as a uniquely avail-
able approach to identify the specific effects of Hcy and 
methionine on vascular functions, independently of other 
factors associated with chronic hyperhomocysteinemia 
and/or its modulation by the B vitamins status (Dayal and 
Lentz 2008; Hanratty et  al. 2001). Using this approach, 
some studies reported a strong correlation between impair-
ment in vascular reactivity and increases in plasma levels 
of asymmetric dimethylarginine (ADMA), an endogenous 
inhibitor of NO synthesis (Böger et  al. 2000, 2001; Fu 
et al. 2005; Stuhlinger et al. 2003; Tsikas et al. 2000a). In 
vitro studies on endothelial cells have further demonstrated 
that increased levels in Hcy in the culture medium inhibit 
expression of endothelial dimethylarginine dimethylamino-
hydrolase (DDAH), the main catabolic enzyme of ADMA. 
This could explain the increase in plasma ADMA observed 
in experimental hyperhomocysteinemia (Dayal et al. 2008; 
Stuhlinger et al. 2001). Interestingly, in humans, an increase 
in plasma ADMA has been reported in acute hyperhomo-
cysteinemia, but healthy subjects with isolated hyperho-
mocysteinemia have similar levels of plasma ADMA com-
pared to matched controls (Antoniades et al. 2006). Since 
methionine in the form of S-adenosylmethionine (SAM) 

provides methyl groups in transmethylation processes, 
including those concerning protein amino acids residues, 
it has been hypothesized that only acute hyperhomocyst-
einemia induced by methionine loading could increase cir-
culating ADMA concentrations (Antoniades et  al. 2006). 
In contrast, a study in healthy mice showed that hyperho-
mocysteinemia induced by chronic methionine intake for 
10  weeks was associated with an impairment of vascular 
function and a decrease in hepatic DDAH expression, yet 
with no changes in plasma levels of ADMA (Dayal et  al. 
2008). Similarly, several studies in humans and animals 
models did not observe any change in plasma ADMA 
concentration, even in endothelial dysfunction induced by 
acute hyperhomocysteinemia (Doshi et  al. 2005; Mariotti 
et al. 2006; Wanby et al. 2003; Tousoulis et al. 2011).

Despite the increasing interest in the DDAH/ADMA 
pathway as a therapeutic target in cardiovascular disease, 
the role that ADMA could play in the initiation of endothe-
lial dysfunction induced by hyperhomocysteinemia is not 
completely understood. Therefore, we sought to study 
ADMA metabolism in a rat model of endothelial dysfunc-
tion induced by acute hyperhomocysteinemia by means 
of a methionine load. Our main focus was on the DDAH 
enzyme that hydrolyses ADMA to dimethylamine (DMA) 
and l-citrulline, on ADMA synthesis in proteins and their 
proteolysis to release free ADMA.

Materials and methods

Animals

Male Wistar-Kyoto rats (9 weeks old; Harlan, France) were 
housed (four per cage) in a temperature-controlled room 
(22 ± 2 °C) on a 12:12-h light/dark cycle, with free access 
to tap water and standard rat chow. A total of 30 rats were 
used in a series of studies as described below. The study 
protocol was approved by the Regional (Ile de France Sud) 
Animal Care and Ethics Committee. All procedures were 
performed in accordance with the guidelines issued by the 
French National Animal Care Committee.

Study design

During 3 weeks before the methionine load studies, 16 rats 
were accustomed to the experimental conditions including 
handling, gastric gavage, restraining and vascular reactivity 
testing as described below. The methionine loading was 3 g 
methionine/kg as solution in water. A 2.5-mL methionine-
free drinking water (i.e., the vehicle) was used as a control 
to ascertain that variations in circadian rhythm and experi-
mental conditions (e.g., due to handling, gavage and blood 
sampling) do not affect post-loading measurements. All 
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tests began after a 12-h fast. An indwelling catheter, filled 
with heparinized (50 U/mL) 2 % NaCl, was inserted into a 
lateral tail vein to allow frequent blood sampling and injec-
tion with minimal discomfort for the conscious animal. 
Venous blood (500 µL) was sampled and vascular reactivity 
was tested before (0 h), and 2, 4 and 6 h after the methio-
nine load (n =  10) or the vehicle (n =  6). Fresh whole 
blood was used immediately for determination of blood 
glucose. All other blood samples were drawn into tubes 
pre-chilled with sodium EDTA or heparin and centrifuged 
immediately (5 min, 3500×g, 4 °C). Plasma samples were 
stored at −80  °C for further determinations as described 
below. At the end of the experiment (i.e., 6  h), rats were 
sacrificed, abdominal aorta and liver tissues were collected 
and immediately stored at −80 °C.

Vascular reactivity test

In a quiet and temperature-controlled room (26 ±  2  °C), 
systolic and diastolic blood pressures were measured in 16 
conscious rats (methionine load n = 10; vehicle n = 6) by 
volume–pressure recordings with a plethysmographic sen-
sor and an automated tail-cuff system (XBP1000, Kent Sci-
entific), a specific, very accurate, validated method (Feng 
et  al. 2008). After 10  min of adaptation to inflation and 
deflation of the occlusion cuff in the restrainer, mean arte-
rial pressure (MAP), calculated as one-third systolic plus 
two-third diastolic blood pressure, was derived from an 
average of 10 consecutive blood pressure recordings per rat. 
Vascular reactivity was measured as the transient decrease 
in MAP response after the i.v. administration of a 20-mg/kg 
acetylcholine (Ach) bolus, which has been shown to be pre-
dominantly NO-mediated, as previously described (Magne 
et al. 2009). For each pre- (0 h) and post-methionine load 
(2, 4, and 6 h) determination on each rat, the vascular reac-
tivity was calculated as the mean response to 3 consecu-
tive i.v. administrations of an Ach bolus, with a minimum 
of 5  min between each injection. Vascular reactivity was 
expressed as the relative decrease in blood pressure, i.e., as 
[(MAP measured immediately after Ach injection—MAP 
measured before Ach injection)/MAP measured before Ach 
injection] × 100.

Biochemical analysis

Plasma ADMA and SDMA were determined by HPLC 
after derivatization with ortho-phthaldialdehyde (OPA) 
reagent as described elsewhere (Teerlink et  al. 2002). 
For total low molecular weight thiol determination, 
plasma was first treated with triphenylphosphine, depro-
teinized with sulfosalicylic acid, and total cysteine 
(Cys), homocysteine (Hcy) and glutathione (GSH) 
were assayed by HPLC using pre-column derivatization 

with 4-aminosulfonyl-7-fluoro-2,13-benzoxadiazole as 
described elsewhere (Santa et al. 2006). The analysis was 
also conducted without prior reduction with triphenylphos-
phine for the determination of the reduced form of those 
thiols.

Quantitative RT‑PCR

Total RNA was extracted from abdominal aorta and 
liver tissues using Trizol reagent (Invitrogen). Four hun-
dred nanograms of total RNA were converted into cDNA 
using the High Capacity cDNA Reverse-Transcription Kit 
(Applied Biosystems) on a PTC-200 thermocycler (MJ 
Research). RT-PCR amplifications were performed with a 
Prism7300 sequence detection system using SYBRGreen 
MasterMix (Applied Biosystems). DDAH1, DDAH2, 
cathepsin D, cathepsin E2 and ubiquitin mRNA lev-
els were expressed as their ratio to ribosomal 18S RNA 
levels. Ubiquitin, cathepsin D and E2 are key markers 
of the ubiquitin proteasome system and the lysosomal 
proteolysis.

Statistical analysis

Data were expressed as mean  ±  standard error. For the 
post-challenge studies (with repeated measurements after 
methionine or vehicle load), data were analysed using 
mixed-model procedures for repeated measurements under 
SAS (SAS Institute), with challenge (methionine vs. vehi-
cle) and time (0, 2, 4, 6 h after the challenge) used as fixed 
effects. Interactions between challenge and time were also 
tested. When a fixed effect was significant, post hoc test-
ing was performed under the mixed-model with the Tukey–
Kramer adjustment. A P value <0.05 was considered statis-
tically significant.

Results

Vascular reactivity and total plasma homocysteine

As expected, methionine but not vehicle load markedly 
impaired vascular reactivity (time  ×  challenge effect, 
P < 0.001; Fig. 1), with a 30 % decrease at 4 and 6 h after 
the methionine load, as compared to the baseline value 
(Fig.  1). Compared to the baseline values, methionine 
administration induced a sustained increase in tHCy as of 
2 h after gastric gavage from 10.1 ±  0.5 µM at the base-
line to 54.9 ± 1.9 µM at 4 h (P < 0.0001; Fig. 2a). Plasma 
total Cys and total GSH did not significantly change with 
time, and there were no differences between methionine 
and vehicle load (Fig. 2b, c). The post-methionine changes 
in plasma concentrations of the reduced forms of Cys, Hcy 
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and GSH were similar to those of the concentrations of 
total (reduced plus oxidized) forms (data not shown).

Circulating ADMA and SDMA, and tissue DDAH

When compared to the values found at the baseline (0 h), 
plasma ADMA and SDMA transiently decreased 2 h after 
methionine but not vehicle load (time ×  challenge effect, 
P < 0.001; Fig. 3a, b). Six hours after methionine applica-
tion, hepatic DDAH1 mRNA expression levels were sig-
nificantly lower than those after the vehicle administration 
(P < 0.05; Fig. 4a). Aortic DDAH2 mRNA expression did 
not significantly differ between methionine and vehicle 
treatment (Fig. 4b).

Six hours after the methionine load, hepatic mRNA 
expression levels of cathepsin D and ubiquitin were signifi-
cantly lower compared to vehicle application (P  <  0.001; 
Fig. 5a and P < 0.05; Fig. 5b). Hepatic cathepsin E2 mRNA 
expression did not significantly differ between the two 
treatment modes (Fig. 5c).

Discussion

The most important result of the present study is that in 
healthy rats methionine loading, an experimental model 
of endothelial dysfunction induced by acute experimental 
hyperhomocysteinemia, resulted in an pronounced decrease 
in plasma ADMA and SDMA concentrations. This obser-
vation was unexpected because methionine is the precursor 
of the methyl donor SAM, which is the cofactor utilized 
in the N-guanidine dimethylation of arginine residues in 

proteins by protein arginine methyltransferase (PRMT) 
(Teerlink et al. 2009). Because ADMA and SDMA inhibit 
NO synthesis (Tsikas et  al. 2000a), the endothelial dys-
function measured as a decrease in endothelium-related 
vascular reactivity, cannot be attributed to these arginine 
derivatives in the present study. However, since there is a 
complex compartmentalisation in the vessel wall (endothe-
lial cells) of ADMA and NOS, we cannot entirely discard 
a possible role of ADMA in the initiation of endothelial 
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dysfunction (Lorin et  al. 2014). Our observation does not 
support the notion that a methionine load stimulates expres-
sion or activity of PRMT, at least not in an extent that could 
result in an increase in circulating ADMA (Antoniades 
et  al. 2006). Indeed in case of high methionine intake, it 
is considered that the activation of glycine N-methyltrans-
ferase in the liver results in driving largely the methyl of 
SAM toward the conversion of glycine to sarcosine, ena-
bling the catabolism of methionine in excess and the dis-
posal of the methyl load (Brosnan et al. 2007). Therefore, 
it remains uncertain to what extent a methionine load does 
result in a marked increase in methylation of arginine resi-
dues in proteins.

Dimethylation of arginine residues in proteins gener-
ates ADMA- and SDMA-containing proteins. It is gen-
erally assumed that proteolysis of such proteins releases 
free ADMA and SDMA which are then distributed 
throughout the organism and act in different types of cell 
including endothelial cells (Pope et al. 2009). Methionine 
administration in our study resulted in the inhibition of 
the main intracellular proteolytic system, the ubiquitin–
proteasome system, a key system involved in proteolysis. 
Hyperhomocysteinemia can also alter the ubiquitin–pro-
teasome activity in the heart where protein aggregates 
accumulate (Derouiche et al. 2014). This is also likely to 
have occurred in the present study. Furthermore, our study 
reveals a significant down-regulation of hepatic cathepsin 
D, an aspartic protease involved in lysosomal proteolysis. 
Cathepsin D is a major component of the lysosome and 
is actively involved in the maturation and the proteolytic 
process of this organelle (Zaidi et  al. 2008). The ubiq-
uitin–proteasome system and the cathepsin autophagy/
lysosomal pathway are considered two main proteolytic 
degradation systems in eukaryotic cells and were recently 
shown to contribute to the biosynthesis of free ADMA 
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and SDMA (Shirakawa et al. 2011). Therefore, the paral-
lel decrease in circulating ADMA and SDMA concentra-
tion seen in our study upon methionine administration is 
likely to have resulted from a decreased activity of pro-
teolytic systems.

SDMA is excreted almost unchanged in the urine and 
is not hydrolysed by DDAH. About 10  % of ADMA are 
excreted unchanged and the remaining fraction of about 
90 % is excreted as dimethylamine (DMA) after hydroly-
sis of ADMA by DDAH (Siroen et al. 2006). In vitro stud-
ies have shown that Hcy can inhibit the expression and the 
activity of DDAH (Dayal et al. 2008; Dayoub et al. 2003; 
Stuhlinger et  al. 2003). Hcy reacts with cysteine moie-
ties of proteins and enzymes to form mixed disulfides, 
thus altering their function and expression (Di Simplicio 
et al. 2005). The inhibitory action of Hcy towards DDAH 
is considered to be due to the reaction of the SH group of 
Hcy with the SH group of a cysteine residue in the active 
center of DDAH. Although we did measure the mRNA 
and not the protein level or activity, the significant down-
regulation of the expression of DDAH1, the predominant 
enzyme degrading ADMA to DMA and l-citrulline in the 
liver, and the parallel decrease of circulating ADMA and 
SDMA concentrations seen in our study argue against an 
inhibitory action of methionine-derived Hcy in the metabo-
lism of ADMA by DDAH in the liver and most likely in the 
kidney. Because we did not measure in our study ADMA, 
DMA and SDMA in the urine, we cannot strictly rule out 
that a decrease in circulating ADMA and SDMA concen-
trations may be ascribed in part to their enhanced excretion 
in the urine, but such a change in the clearance of methyl-
arginine is unlikely.

It should be noted that the relation between homocyst-
eine, plasma methyl-arginine, and the likely underly-
ing metabolic determinant as studied here pertain to the 

experimental model used, i.e., acute hyperhomocysteine-
mia, and could not be readily extrapolated to situations of 
chronic hyperhomocysteinemia.

Elevated plasma ADMA levels are associated with 
an increased risk of incidence for cardiovascular events 
(Böger 2006). More recently, SDMA, the structural iso-
mer of ADMA, which can also inhibit NO synthesis from 
l-arginine (Tsikas et al. 2000b), has also been shown to be 
associated with cardiovascular risk (Bode-Böger et al. 2006; 
Gore et al. 2013; Schwedhelm et al. 2014). Our study shows 
that the concentration of these two NOS inhibitors in rat 
plasma acutely decreases each by about 20 % upon methio-
nine administration. A definite explanation for this observa-
tion cannot be given by our study. Impaired proteolysis of 
ADMA- and SDMA-containing proteins paired with unaf-
fected hepatic and renal metabolism and elimination of free 
ADMA and SDMA may be the most likely explanation of 
our findings. Delineation of underlying mechanisms would 
require measurement of additional biochemical param-
eters including ADMA- and SDMA-containing proteins in 
body fluids and tissues, which have not been measured in 
the present study because of the unavailability of suitable 
analytical methods. Nevertheless, our study suggests that 
acutely homocysteine-induced endothelial dysfunction in 
rats is most likely not associated with ADMA and SDMA. 
The mechanisms underlying the association of ADMA and 
SDMA with cardiovascular risk are still unresolved.
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