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protein kinase kinase kinase kinase-3 (MAP4K3). Those 
molecular links between mTORC1 and its mediators form a 
complicate signaling network that controls cellular growth, 
proliferation, and metabolism. Moreover, it is speculated that 
amino acid signaling to mTORC1 may start from the lysoso-
mal lumen. In this review, we discussed the function of these 
mediators in mTORC1 pathway and how these mediators are 
regulated by amino acids in details.
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Abbreviations
α-KG  α-Ketoglutarate
4E-BP1  4E-binding protein 1
eIF4E  Eukaryotic initiation factor 4E
FKBP  FK506-binding protein
GAP  GTPase-activating protein
GDH  Glutamate dehydrogenase
GEF  GTPase exchange factor
hVps34  Human vacuolar sorting protein-34
IPMK  Inositol polyphosphate multikinase
LRS  Leucyl-tRNA synthetase
MAP4K3  Mitogen-activating protein kinase kinase 

kinase kinase-3
mLST8/GβL  Mammalian LST8/G-protein β-subunit–

like protein
mTORC1  Mammalian target of rapamycin complex 1
PA  Phosphatidic acid
PC  Phosphatidylcholine
PI3K  Phosphoinositide-3-OH kinase
PI(3)P  PtdIns(3)P
PLD  Phospholipase D
PRAS40  Proline-rich Akt/PKB substrate 40 kDa
Rag GTPases  Ras-related Guanosine triphosphatases

Abstract Mammalian target of rapamycin complex 1 
(mTORC1) is activated by amino acids to promote cell 
growth via protein synthesis. Specifically, Ras-related guano-
sine triphosphatases (Rag GTPases) are activated by amino 
acids, and then translocate mTORC1 to the surface of late 
endosomes and lysosomes. Ras homolog enriched in brain 
(Rheb) resides on this surface and directly activates mTORC1. 
Apart from the presence of intracellular amino acids, Rag 
GTPases and Rheb, other mediators involved in intracellular 
amino acid signaling to mTORC1 activation include human 
vacuolar sorting protein-34 (hVps34) and mitogen-activating 
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RalA  Ras-like protein A
Raptor  Regulatory-associated protein of mTOR
Rheb  Ras homolog enriched in brain
S6K1  p70 ribosomal protein S6 kinase
SLC36A1  Solute carrier 36A1
TSC  Tuberous sclerosis complex
UBR1-2  Unbranched chain amino acid receptors 1 

and 2
v-ATPase  vacuolar H+-adenosine triphosphatase 

ATPase

Introduction

Mammalian target of rapamycin complex 1 (mTORC1) pro-
motes cell growth and changes cell size by stimulating pro-
tein synthesis. Signals such as nutrients, growth factors, and 
energy levels can influence mTORC1 activity (Deng et al. 
2009, 2010; Tan et al. 2010). Once receiving and integrat-
ing these upstream signals, mTORC1, in turn, can regulate 
various growth-related cellular processes, such as transcrip-
tion, translation, and autophagy (Wullschleger et al. 2006). 
Among these signals, amino acids especially leucine are 
specific nutrients for protein synthesis and cell growth (Kim 
et al. 2007; Wu et al. 2007; Wu et al. 2009; Kim 2009; Yin 
and Tan 2010; Li et al. 2011; Yao et al. 2012). Furthermore, 
the importance of amino acids is reflected not only in its 
potently stimulatory ability but also in its indispensability to 
mTORC1 activation by other stimuli, such as growth factors 
(Kim and Guan 2011). However, it has been demonstrated 
that amino acids act independently of insulin and the tuber-
ous sclerosis complex (TSC). Thus, the insulin/phosphoi-
nositide-3-OH kinase (PI3 K) pathway may not be involved 
in amino acids signaling to mTORC1 (Efeyan and Sabatini 
2013). The molecular mechanisms of amino acids regu-
late mTORC1 signaling pathway remain largely unknown. 
However, several important advances have been found in 
the study of amino acid-induced mTORC1 activation. First, 
amino acids are sensed by amino acid sensors to modulate 
protein synthesis or degradation through mTORC1 signal-
ing. (Long et al. 2005b; Efeyan et al. 2012). Several key 
mediators have been found to play a critical role in relay-
ing amino acid signals to mTOR activation. These media-
tors include the Ras-related guanosine triphosphatases (Rag 
GTPases), Ras homolog enriched in brain (Rheb), human 
vacuolar sorting protein-34 (hVps34), and mitogen-activat-
ing protein kinase kinase kinase kinase-3 (MAP4K3). In the 
signal pathway, lysosome serves as a platform for mTORC1 
activation. In brief, activation of mTORC1 requires at least 
two regulated steps: translocation of mTORC1 to the sur-
face of lysosome where Rheb resides, and activation of 
mTORC1 by Rheb (Demetriades et al. 2014). This review 
discusses current proposed mediators of intracellular amino 

acids signaling to mTORC1 activation with special empha-
sis on biochemical mechanisms.

mTORC1 signaling in cell growth control

Cell growth determines the size of cells, organs and organisms 
(Li et al. 2004). mTOR signaling plays a key role in integrat-
ing a wide range of signals from growth factors, nutrients and 
energy status to regulate cell growth (Sarbassov et al. 2005). 
mTOR, a protein kinase, exists in two structurally and func-
tionally distinct multi-protein complexes termed mTORC1 
and mTORC2, respectively. mTORC1 positively mediates 
cell growth and is sensitive to rapamycin (Sarbassov et al. 
2005; Betz and Hall 2013; Duan et al. 2015). Therefore, this 
review will focus on mTORC1 and the use of mTOR will 
refer solely to this complex. mTORC1 is composed of mTOR, 
regulatory-associated protein of mTOR (Raptor), mamma-
lian LST8/G-protein β-subunit–like protein (mLST8/GβL), 
Deptor, proline-rich Akt/PKB substrate 40 kDa (PRAS40), 
and a member of the FK506-binding protein (FKBP) family, 
FKBP38 (Bai et al. 2007; Yang and Guan 2007; Betz and Hall 
2013). Raptor is a scaffold protein. It plays a critical role in 
recruiting mTORC1 substrates, integrating various signals for 
mTOR modulation, and in stabilizing mTOR (Bai and Jiang 
2010). Importantly, the raptor-mTOR interaction may be the 
target of upstream signals (De Virgilio and Loewith 2006). 
mLST8 may not be an indispensable component of mTORC1 
function. It binds to mTOR kinase domain and activates the 
kinase activity independent of Raptor (Kim 2009). PRAS40 
and FKBP38 act as negative regulators of mTORC1. FKBP38 
suppresses mTORC1 activity through directly associating with 
mTORC1. Overexpression of PRAS40 and FKBP38 inhibits 
downstream targets of mTORC1 (Vander Haar et al. 2007; Bai 
et al. 2007). However, some other studies disagree with the 
role of FKBP38 as a negative regulator of mTORC1 (Wang 
et al. 2008; Maehama et al. 2008; Uhlenbrock et al. 2009).

Protein synthesis is thought to be one of the most highly 
regulated processes in cell growth (Gingras et al. 2001). Over 
the past years, modulation of mTORC1 on protein synthesis 
has been well-characterized and presented in a number of 
reviews (Duan et al. 2015). In brief, mTORC1 positively regu-
lates protein synthesis and cell growth by phosphorylating the 
following two translational regulatory proteins: eukaryotic ini-
tiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) and p70 
ribosomal protein S6 kinase (S6K1) (Li et al. 2004; Inoki and 
Guan 2006; Arsham and Neufeld 2006; Yin et al. 2010).

Amino acids are required for activation of mTORC1. Other 
signals cannot activate mTORC1 in the case of lacking suffi-
cient amino acids. And amino acids starvation can completely 
hinder mTORC1 activity, which cannot be compensated by 
other stimuli such as growth factors or energy (Gingras et al. 
2001; Yang et al. 2013). The insulin/PI3 K pathway may not 
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be involved in amino acids signaling to mTORC1 (Efeyan and 
Sabatini 2013). And the mechanism through which insulin 
activates mTOR is well-elucidated and has been shown in a 
number of reviews (Columbus et al. 2014). In particular, leu-
cine, glutamine and arginine were identified as three impor-
tant upstream mediators of the mTORC1 signaling pathway 
(Wang et al. 1998; Crespo et al. 2002; Yao et al. 2008; Tan 
et al. 2012; Kong et al. 2012; Yang et al. 2013). Therefore, this 
review will focus on amino acid-induced mTORC1 activation.

How intracellular amino acids are sensed

Before elaborating the function of these mediators (Rag 
GTPases, Rheb, hVps34, and MAP4K3) in mTORC1 
activation and the regulation of these mediators by intra-
cellular amino acids, we firstly find out how intracellular 
amino acids are sensed. Previous studies have presented 
evidence that intracellular amino acids are key regulators of 
mTORC1 (Christie et al. 2002; Beugnet et al. 2003; Avruch 
et al. 2009). Although the way that some amino acid (such 
as leucine) transporters transport amino acids from the 
intercellular space into the cell has been well-elucidated, 
the identity and location of the intracellular amino acid sen-
sors implicated in the modulation of mTORC1 remains elu-
sive (Wang and Proud 2009; Taylor 2009). Therefore, we 
will discuss proteins associated with intracellular amino 
acids sensing upstream of mTORC1 in detail.

Amino acid sensors in the cytosol

Several putative cytosolic amino acid sensors linked to 
mTORC1 activation have been identified. To our knowl-
edge, they are mainly leucyl-tRNA synthetase (LRS) (Han 
et al. 2012), inositol polyphosphate multikinase (IPMK) 
(Kim et al. 2011), glutamate dehydrogenase (GDH) (Durán 

et al. 2012), Ras-like protein A (RalA) (Maehama et al. 
2008), and unbranched chain amino acid receptors 1 and 2 
(UBR1-2) (Kume et al. 2010). Some of them (such as LRS, 
GDH, and UBR1-2) are able to directly bind amino acids 
(Taylor 2014).

LRS is an intracellular amino acid sensor which is sensi-
tive to leucine concentration. LRS induces mTORC1 acti-
vation in a leucine concentration-dependent manner. (Han 
et al. 2012). In yeast, LRS positively mediates TORC1 
pathway: when leucine is available, LRS associates with 
Gtr1 (the RagA/B homolog) and activates it by an unknown 
regulator (Efeyan et al. 2012). In mammalian cells, LRS 
directly binds to GTP-bound RagD in a leucine-dependent 
manner and acts as a GTPase-activating protein (GAP) 
for Rag GTPase to activate mTORC1 (Fig. 1) (Han et al. 
2012). Interaction of LRS with RagD relys on the nucleo-
tide-binding state of RagD. As GTP-bound RagD inhibits 
mTORC1 activation, LRS appears to interact with the inac-
tive Rag heterodimer, thereby facilitating LRS conversion 
to the GDP-bound form, and then dissociate from the active 
Rag heterodimer to activate mTORC1. Of note, it is not the 
tRNA charging activity of LRS but the leucine recognition 
function that is implicated in mTORC1 activation (Efeyan 
et al. 2012; Han et al. 2012).

IPMK was originally identified in yeast as an essential 
gene affecting responses to arginine and therefore was 
labeled Arg82, and is also known as yeast IPMK (Bechet 
et al. 1970; Saiardi et al. 1999; Odom et al. 2000). In mam-
malian cells, IPMK, possessing both inositol phosphate 
kinase and lipid kinase activities, regulates the effects of 
amino acids stimulation on mTOR pathway. IPMK deple-
tion inhibits amino acid-stimulated mTOR signaling and 
markedly diminishes mTOR–raptor interaction (Fig. 2) 
(Guertin et al. 2006). Of note, IPMK modulation of mTOR 
is not via catalytic activity but by the unique amino termi-
nus of IPMK. IPMK serves as an mTOR cofactor. IPMK is 

Fig. 1  The role of leucyl-tRNA synthetase (LRS), an amino acid 
sensor in the cytosol, in amino acid-induced Mammalian target of 
rapamycin complex 1 (mTORC1) activation. When leucine is pre-
sent, LRS senses its concentration and binds to it. Then, LRS directly 

interacts with GTP-bound RagD, facilitating its conversion to the 
GDP-bound form, and then dissociates from the active Rag heterodi-
mer to activate mTORC1
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proposed to act noncatalytically to selectively stabilize the 
interaction between mTOR and raptor. Leucine depletion 
enhancing interaction between IPMK, mTOR, and raptor, 
which is reversed by leucine stimulation. The observations 
indicate that leucine mediates the affinity rather than the 
stoichiometry of the interaction complex (Kim et al. 2011). 
Collectively, IPMK functions as a physiologic cofactor 
between mTOR and Raptor in the presence of sufficient 
amino acid. It stabilizes mTOR–Raptor association in the 
mTORC1 complex through its amino-terminal sequence.

Glutamine is converted to α-ketoglutarate (α-KG) 
through a process termed glutaminolysis. In this process, 
the enzymes glutaminase (GLS) and GDH are the key 
regulators (Durán et al. 2012). GDH is allosterically medi-
ated by several factors, including leucine as an activator 
and GTP as a negative mediator (Frigerio et al. 2008; Li 
et al. 2012). Leucine directly associates with GDH and 
activates it, leading to glutamate deamination and hence 
α-KG production (Fig. 3) (Durán et al. 2012). Moreover, 
glutamine flux facilitates leucine uptake, which in turn 
modulates mTORC1 (Nicklin et al. 2009). Thus, leucine 
and glutamine cooperate in activating glutaminolysis and 
mTORC1. In other words, glutaminolysis is responsible for 
an actual sensing mechanism, for at least leucine and glu-
tamine. RagB in the GTP-bound form promotes lysosomal 
recruitment of mTORC1 (discussed in detail below), and 
α-KG enhances GTP loading of RagB to activate mTORC1 
(Fig. 3). Therefore, suppression of glutaminolysis (such as 
GDH activity) hinders the translocation of mTOR to the 
lysosome, preventing the activation of mTORC1 by leucine 
and glutamine. On the contrary, up-regulation of glutami-
nolysis enhances the response of mTORC1 to amino acids 
(Durán et al. 2012). Thus, glutaminolysis, in particular the 
transition of glutamate to α-KG catalyzed by GDH, acti-
vates mTORC1 by enhancing its sensitivity to amino acids 
and its recruitment to the lysosome by stimulating GTP 
loading of RagB. Collectively, Rag, and thus mTORC1 
senses glutamine and leucine through GDH stimulating 
glutaminolysis and production of α-KG (Taylor 2014).

RalA, a member of the Ras small G-protein superfamily, 
is proposed to be involved in amino acid-induced mTORC1 
activation (Maehama et al. 2008). Of note, RalA may also 

localize to lysosome. Amino acids can regulate RalA by 
increasing the levels of GTP-bound RalA, and hence acti-
vate mTORC1. Moreover, RalA knockdown suppresses 
mTORC1 pathway in cells overexpressing a hyperactive 
mutant of Rheb without influencing its nucleotide-bound 
status, placing RalA downstream of Rheb. However, it is 
unclear whether RalA directly interacts with mTORC1 or 
with FKBP38 (Maehama et al. 2008; Dodd and Tee 2012). 
Therefore, it raises the possibility that amino acids may 
activate mTORC1 downstream from Rheb through RalA.

UBR1 and UBR2, E3 ubiquitin ligases, might be cellular 
targets of leucine. They specifically recognize the identity 
of N-terminal residues, contributing to selective destabili-
zation of target proteins according to the N-end rule (Kume 
et al. 2010). Leucine directly associates with the substrate-
recognition domain of UBR2 and prevents degradation of 
N-end rule substrates in vitro, which promotes signaling via 
mTORC1. Moreover, overexpression of UBR1 and UBR2 
leads to a reduction of S6K1 phosphorylation and hence 
inhibits mTOR signaling, which could be rescued with high 
concentrations of leucine. However, knockdown of UBR1 
and UBR2 enhances S6K1 phosphorylation. Thus, UBR1 

Fig. 2  The role of inositol polyphosphate multikinase (IPMK), an amino acid sensor in the cytosol, in amino acid-induced mTORC1 activation. 
Lack of IPMK may prevent the interaction between mTOR and raptor, and therefore inhibit amino acid-induced mTORC1 activation

Fig. 3  The role of glutamate dehydrogenase (GDH), an amino acid 
sensor in the cytosol, in amino acid-induced mTORC1 activation. 
Leucine directly associates with GDH and activates it, leading to glu-
tamate deamination and hence α-ketoglutarate (α-KG) production. 
α-KG enhances GTP loading of RagB to activate mTORC1
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and UBR2 function as leucine binding proteins and nega-
tive mediators of mTORC1, and leucine activates mTOR 
signaling at least in part through inhibiting ubiquitin ligase 
activity of UBR1 and UBR2 (Kume et al. 2010; Dodd and 
Tee 2012).

Amino acid sensors on endosomal membranes

Once amino acid stimulation, mTORC1 is shuttled to the 
late endosomal and lysosomal compartments, where it asso-
ciates with the Ragulator-Rag complex and is assembled 
into active mTORC1 (discussed below) (Goberdhan 2010). 
Therefore, amino acid transporters on endosomal such as 
lysosomal membranes may themselves function as intra-
cellular amino acid sensors (Taylor 2014). The vacuolar 
H+-adenosine triphosphatase ATPase (v-ATPase) and sol-
ute carrier 36A1 (SLC36A1) H+-coupled amino acid trans-
porter (aka PAT1) are almost exclusively anchored on lyso-
some. When sufficient amino acids are present, v-ATPase 
and PAT1 form the lysosomal-anchored “nutrisome” pro-
tein complex. They function as sensors of intralysosomal 
amino acid concentrations and physically bind to the Rag-
Ragulator complex (Goberdhan 2010; Zoncu et al. 2011; 
ögmundsdottir et al. 2012). The v-ATPase is primarily 
responsible for pumping protons into the lysosome from 
the cytosol, along with hydrolyzing ATP to ADP. There-
fore, v-ATPase helps to generate the acidic interior of the 
lysosomes compared with the slightly alkaline cytosol (pH 
5–pH 7.4) (Taylor 2014). SLC36A1 regulates H+-depend-
ent amino acid efflux from the lysosomal lumen into the 
cytosol. Also, SLC36A1 physically associates with the Rag 
GTPases and is essential to normal amino acid-dependent 

mTORC1 localization (Fig. 4) (Ögmundsdottir et al. 2012). 
When overexpressed in mammalian cell lines, SLC36A1 
has a negative effect on lysosomal mTORC1 signaling 
(Zoncu et al. 2011). Taken together, the proton gradient 
generated by the v-ATPase is essential for amino acids to 
be transported into the subcellular compartment where the 
amino acid sensor SLC36A1 resides.

Key mediators involved in activating mTORC1 
signaling by amino acids

Several mediators of amino acid signals have been iden-
tified to lie upstream of mTORC1, including the small 
GTPase Rag, Rheb, hVps34 and MAP4K3. Each protein 
activates mTORC1 through distinctive mechanisms.

Rag GTPases

Recent studies indicated that the Rag proteins, a family of 
four related small GTPases, play a crucial role in the modu-
lation of mTORC1 activation in response to amino acids, 
especially in the spatial regulation of mTORC1 localiza-
tion (Kim et al. 2008; Sancak et al. 2008; Suzuki and Inoki 
2011). mTORC1 maybe translocated to the lysosomal 
membrane (which were previously termed Rab7-positive 
vesicles) in a fashion-dependent on Rag, whose activity 
is mediated by amino acid availability (Suzuki and Inoki 
2011). Rag proteins consists of Rag A, B, C, and D. They 
function as heterodimers of Rag A/B combined with Rag 
C/D. Rag A/BGTP and Rag C/DGDP constitute the ‘active’ 
forms, which can associate with mTORC1 and potently 

Fig. 4  The molecular mechanism of the Rag guanosine triphos-
phatases (GTPases) in amino acid signaling to mTORC1 activation. 
The vacuolar H+-adenosine triphosphatase ATPase (v-ATPase) and 
solute carrier 36A1 (SLC36A1) H+-coupled amino acid transporter 
are almost exclusively anchored on lysosome. The v-ATPase is pri-
marily responsible for pumping protons into the lysosome from the 
cytosol, generating a proton gradient across the lysosomal membrane. 
SLC36A1 physically associates with the Rag GTPases and regulates 

H+-dependent amino acid efflux from the lysosomal lumen into the 
cytosol. Then, these amino acids associates with Rag A/B, promot-
ing Rag A/B GTP charging and activate it. Once Rag A/B activated, it 
is first localized to the lysosomal membranes through the v-ATPase-
Ragulator complex. And then the Ragulator-Rag complex recruits 
mTORC1 by binding Raptor to the lysosomal membranes (where Ras 
homolog enriched in brain (Rheb) is localized) for activation
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activate mTORC1 signaling. Conversely, the ‘inactive’ 
forms (Rag A/BGDP − Rag C/DGTP) are unable to bind to 
mTORC1 and potently inhibit mTORC1 activity, even 
when amino acids are available (Sancak et al. 2010). Fur-
thermore, the GTP-charged Rag B is regulated by amino 
acids. On amino acid starvation, the levels of GTP-charged 
Rag B are reduced (Kim et al. 2008; Sancak et al. 2008). 
Overall, the heterodimerization of Rag GTPases does not 
rely on amino acids, whereas the nucleotide loading status 
of them is mediated by amino acids through proteins as 
indicated (Yang et al. 2013).

How do Rag GTPases recruit mTORC1 to the lysoso-
mal membrane? This process can be divided into at least 
two steps. In the first step, a trimeric protein complex 
named ‘Ragulator’ plays a key role. The Ragulator complex 
directly interacts with the Rag GTPases heterodimer and 
tethers it to the lysosomal surface. Moreover, the interac-
tion between Rag GTPases and Ragulator, which is essen-
tial for proper intracellular localization and activation of 
mTORC1, is not influenced by amino acids (Sancak et al. 
2010). The Ragulator complex consists of p18, p14, and 
MP1 (mitogen-activated protein kinase scaffold protein 
1). p18 lies in the lysosomal membrane through N-termi-
nal palmitoylation and myristoylation sites, and serves as 
a platform for associating p14 and MP1 to the lysosome 
(Nada et al. 2009). p14 and MP1 do not directly localize 
to the lysosomal membrane, but both proteins are required 
for the recruitment and activation of mTORC1 (Sancak 
et al. 2010). Lack of functions or one of the members of 
the MP1/p14/p18 complex failing to correctly localize Rag 
GTPases at the lysosomal membrane influences mTORC1 
translocalization and its activity in response to amino acid 
stimulation (Sancak et al. 2010).

Once the Rag-Ragulator complex is assembled on the 
lysosomal membrane, a proton gradient generated by 
v-ATPase across the lysosomal membrane is required 
for activation of mTORC1 pathway (Zoncu et al. 2011; 
ögmundsdottir et al. 2012). It physically binds to Ragulator 
and indirectly links with Rag GTPases. Loss of v-ATPase 
components significantly inhibits amino acid-stimulated 
mTORC1 activation (Qi et al. 2007; Jefferies and Forgac 
2008). Apart from Ragulator and v-ATPase, LRS, Adap-
tor protein p62, and SH3BP4 also bind and regulate Rag 
GTPases in response to amino acids, readers can find the 
details in elsewhere (Bonfils et al. 2012; Han et al. 2012; 
Yang et al. 2013). Collectively, Rag GTPases heterodimers 
are anchored at lysosomal membranes via the association 
with Ragulator complex (p18/MP1/p14) and v-ATPase 
(Yang et al. 2013).

In the second step, mTORC1 is recruited by activated 
Rag GTPases to the surface of lysosome, where mTORC1 
is activated. More specifically, the active Rag heterodimers 
(Rag BGTP–Rag DGDP) associate with Raptor (an important 

component of mTORC1), and subsequently translocate 
mTORC1 to the surface of lysosome in response to amino 
acid stimulation (Sancak et al. 2008; Yang et al. 2013). The 
Rag–Raptor association is regulated by amino acids. The 
exact way of regulation is still unclear, but it is confirmed to 
exclude the modulation of Rag GTPase guanyl nucleotide 
charging (Oshiro et al. 2014). Rag heterodimers are con-
stitutively expressed at LAMP2 (a late endosome or lyso-
some marker)—positive compartments. Interestingly, the 
amino acid-stimulated mTOR or Raptor localization at the 
LAMP2-positive compartments relies on the levels of GTP-
bound form of Rag A/B (Sancak et al. 2010). Therefore, it 
raises the possibility that the interaction between the Rag 
heterodimer and Raptor relies on the levels of GTP-bound 
Rag A or Rag B in the heterodimer. Knockdown of Rag 
A/B or inhibiting Rag A/B expression markedly suppresses 
the mTORC1 signaling pathway. Furthermore, Amino acid 
stimulation induces co-localization of mTOR with LAMP2 
(Sancak et al. 2008). Taken together, mTORC1 is finally 
recruited to lysosomal membranes in response to amino 
acids through the interaction between Rag GTPases and 
Raptor.

From the above, we know that when amino acid level 
is low, the v-ATPase-Ragulator-Rag GTPases complex is 
in the inactive conformation and has no ability to associate 
with mTORC1, causing its cytoplasmic localization. When 
amino acids are sufficient, Rag GTPases are firstly local-
ized to the lysosomal membranes through the v-ATPase-
Ragulator complex. That means the Ragulator-Rag com-
plex functions as an amino acid-mediated docking site for 
mTORC1 on the surface of lysosome. Amino acids pro-
mote Rag A/B GTP charging, and then the Ragulator-Rag 
complex recruits mTORC1 by binding Raptor to the lyso-
somal membranes (where Rheb is localized) for activation 
(Fig. 4). The function of Rheb is discussed in details below.

Rheb

Previous descriptions suggest that the Rag proteins are 
mainly responsible for translocating mTORC1 to the sur-
face of lysosome without activating mTORC1 directly. The 
activator of mTORC1 was proved to be the Rheb (Inoki 
et al. 2003; Sancak et al. 2008). Knockdown of Rheb in 
mammalian cells, amino acids are ineffective in activating 
mTORC1 (Roccio et al. 2006).

Rheb is a Ras-related GTPases, which can be rapidly 
induced by synaptic activity in brain neurons (Yamagata 
et al. 1994; Aspuria and Tamanoi 2004). A body of evi-
dence suggests that Rheb is also involved in communicat-
ing amino acid sufficiency to mTORC1 (Kwiatkowski 
and Manning 2005). The Rheb small GTPase is a direct 
positive upstream mediator for mTORC1 activation (Man-
ning and Cantley 2003). It still remains elusive in regard 
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to whether endogenous active Rheb stimulates mTOR in 
vivo (Long et al. 2005a). However, purified active suffi-
cient Rheb induces mTORC1 kinase activity in vitro. These 
observations indicate that the role of Rheb in the activation 
of mTORC1 has been widely accepted (Sato et al. 2009). 
Importantly, the Rheb–mTOR interaction, which is able 
to activate mTORC1 activity in vitro, may be mediated 
by amino acids (Long et al. 2005b; Joseph Avruch 2009). 
As is the case of other small GTPases, active Rheb is the 
GTP-bound form while inactive Rheb is the GDP-bound 
form (Suzuki and Inoki 2011). mTORC1 can be directly 
activated by Rheb-GTP rather than Rheb GDP, and the 
intact mTORC1 complex is essential to in vitro activation 
of mTORC1 by Rheb (Sancak et al. 2007). GTP loading of 
Rheb can be regulated by amino acids via a distinct GAP 
or GTPase exchange factor (GEF) (Nobukuni et al. 2005). 
On amino acid deprivation, Rheb is no more GTP loaded 
even following stimulation from insulin. However, resup-
plementing amino aicds to cells that have been deprived for 
2 h significantly increases Rheb-GTP levels (Roccio et al. 
2006). Additionally, the increase of the Rheb-GTP level 
serves as a permissive signal for mTOR activation (Roccio 
et al. 2006). Rheb-GTP can also be promoted by PKB/Akt 
inhibiting TSC1/2. However, this has not been a consist-
ent finding. TSC1/2 complex (a direct upstream regulator 
of Rheb) is not implicated in the effect of amino acids on 
mTORC1 (Roccio et al. 2006). Moreover, PKB/Akt can 
directly phosphorylate PRAS40, and relieve the inhibition 
of PRAS40 (a negative regulator) to mTORC1 (Sancak 
et al. 2007; Vander Haar et al. 2007). Interestingly, there 
are some similar aspects of Rheb and Rag-dependent mod-
ulation of mTORC1. More specifically, they both localize 
to the lysosomal surface, and are both GTPases that change 
their nucleotide state upon physiological fluctuations of 
their upstream signals (Efeyan and Sabatini 2013).

On amino acid stimulation, mTOR and Rheb are pre-
sent in Rab7-positive structures. It raises the possibility 
that amino acids may mediate mTORC1 activity via the 
event of its movement to lysosomal membranes (Sancak 
et al. 2008). Rheb activates mTORC1 directly or indirectly 
through at least two mechanisms. One mechanism requires 
a direct Rheb-mTORC1 interaction. When associated with 
GTP, Rheb binds directly to the mTOR catalytic domain, 
sequesters FKBP38 which otherwise associates with and 
suppresses mTORC1, and then activates mTORC1 (Fig. 4) 
(Laplante and Sabatini 2009; Joseph Avruch 2009; Oshiro 
et al. 2014). The other mechanism occurs though pro-
duction of phosphatidic acid (PA). The PA biosynthetic 
pathway is an important downstream of Rheb to activate 
mTORC1 signaling (Fang et al. 2001, 2003; Sun et al. 
2008). PA is the product of phosphatidylcholine (PC) 
hydrolysis by phospholipase D (PLD). Down-regulation of 
PLD or suppressing PA production prevents Rheb-induced 

mTORC1 activation (Sun et al. 2008). PA associates with 
the FKBP12-rapamycin-binding domain of mTOR, com-
peting with the FKBP12-rapamycin complex for mTOR 
binding. Therefore, increased cellular PA level makes cells 
less sensitive to rapamycin (Chen et al. 2003). Rheb may 
connect PLD and activating mTORC1 in amino acid sign-
aling. However, supplementing PA is unable to directly 
activate mTORC1 in vitro (Chen et al. 2003; Bjorklund 
et al. 2006). The mechanism by which amino acids regulate 
PLD activity remains unknown, but Vps34 may be involved 
in regulating PLD function. Vps34 product, PtdIns(3)P 
(PI(3)P), accumulates on the endosomal membrane and 
binds PLD to recruit it into the signaling platform where 
Rheb resides (Kim and Guan 2011). Other groups have 
demonstrated that the class III PI 3-kinase hVps34 relays 
amino acid sufficiency to mTORC1 independently of Rheb 
(Byfield et al. 2005; Nobukuni et al. 2005). Therefore, 
PLD may communicate the signals from amino acids and 
Vps34 to mTORC1, and Rheb may mediate the signals via 
enhancing PLD activity. The role of Vps34 in amino acid 
signaling is discussed in detail below.

hVps34

hVps34, a class III phosphatidylinositol-3-kinase, has also 
been proposed as a critical factor implicated in the regu-
lation of amino acids-induced mTORC1 activation. On 
Vps34 deprivation, amino acids cannot increase S6 K phos-
phorylation in mammalian cells, while overexpression of 
Vps34 enhances S6 K phosphorylation when amino acids 
are available (Nobukuni et al. 2005; Byfield et al. 2005). 
These observations suggest that Vps34 functions upstream 
of mTORC1 in amino acid sensing.

The potential mechanism by which hVps34 regulates 
amino acid signaling in mTORC1 activation is reported 
by Gulati et al. (Gulati et al. 2008). They show that amino 
acids do not directly mediate hVps34 activity. Instead, 
amino acids enhance cellular Ca2+ levels by facilitating 
Ca2+ influx, and then activate Vps34. It is worth noting that 
lack of Ca2+ results in mTORC1 inactivation. Once amino 
acid stimulation, Vps34 elevates PI(3)P on endosomes, 
which provide a docking site for proteins containing phox 
homology (PX) or Fab1/YOTB/-2K632.12/Vac1/EEA1 
(FYVE) domains. Therefore, PI(3)P may recruit one or 
more unknown PX- or FYVE-domain containing proteins 
to the endosome to build an mTORC1 ‘signalsosome’ for 
activation (Fig. 5). Vps34 associates with the late endo-
somal GTPase Rab7 and forms a stable complex with 
mTORC1. Vps34 may indirectly regulate the kinase activ-
ity of mTORC1 by influencing intracellular vesicle traf-
ficking in response to amino acids. Previously, it has been 
indicated that amino acids change mTORC1 conformation 
to allow mTOR access and phosphorylate S6 K (activation) 
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(Kim et al. 2002). Furthermore, activation of S6 K was 
identified to be associated with a Ca2+-dependent shift 
of the kinase into a large protein complex (Hannan et al. 
2003). Ectopic expression of hVps34 enhances S6K1 phos-
phorylation only in the presence of amino acids (Nobukuni 
et al. 2005). Collectively, Vps34 is activated by cellular 
increased Ca2+ levels stimulated by amino acids and asso-
ciates with the late endosomal GTPase Rab7, forming a sta-
ble complex with mTORC1. Vps34 product, PI(3)P, accu-
mulates on endosomes and recruits PX- or FYVE-domain 
containing proteins to the endosome to build an mTORC1 
‘signalsosome’ for mTORC1 activation.

MAP4K3

MAP4K3 has been proposed as a factor involved in the 
regulation of amino acid-induced mTORC1 activation. 
First, Amino acids can regulate MAP4K3 activity. Previ-
ous studies have shown that MAP4K3 activity and its acti-
vation of mTORC1 signaling require phosphorylation of 
Ser170 in the activation segment of MAP4K3. And PR61, 
a PP2A-targeting subunit, plays a crucial role in regulat-
ing MAP4K3 phosphorylation in response to amino acids 

(Fig. 6) (Yan et al. 2010; Suzuki and Inoki 2011). On amino 
acid deprivation, PP2A/PR61 interacts with MAP4K3, 
promoting dephosphorylation of Ser170 and suppressing 
MAP4K3 activation; whereas amino acid stimulation also 
causes rapid MAP4K3 activation (Findlay et al. 2007; Yan 
et al. 2010). The MAP4K3 activation mediated by amino 
acids occurs before phosphorylation of S6 K and is not 
suppressed by rapamycin, suggesting that MAP4K3 func-
tions upstream of mTORC1 (Kim and Guan 2011). Moreo-
ver, loss of MAP4K3 functions in mammalian cells inhibits 
the stimulating effect of amino acid on mTORC1 activ-
ity, while gain of MAP4K3 functions increases mTORC1 
activity and makes the mTORC1 signaling pathway insen-
sitive to amino acids (Resnik-Docampo and de Celis 
2011). Interestingly, inhibiting Rag C and Rag D impaired 
MAP4K3 ability to activate mTORC1, indicating that Rag 
proteins are implicated in the MAP4K3-mTORC1 axis 
(Kim and Guan 2011). However, MAP4K3 may not be the 
major mediator as Rag proteins relaying the amino acid 
signaling to mTORC1.

The importance of cell organelle lysosome

Lysosome is traditionally viewed as a vesicular organelle 
rich in degradative enzymes (lipases, proteases, hydro-
lases, etc.), where macromolecules are broken down 
(Efeyan et al. 2012). In other words, the lysosome is the 
end point of autophagy, generating lots of amino acids 
during nutrient starvation through degrading proteins and 
organelles (Yu et al. 2010). Therefore, mammalian lys-
osomes may maintain a stable pool of luminal amino acids 
(Harms et al. 1981). Recently, such amino acids accumu-
lated by autophagy are found to activate mTORC1 (Yu 
et al. 2010). Therefore, the lysosome may be not only the 
end point of autophagy but also the starting point of amino 
acid signaling to mTORC1 (Efeyan et al. 2012). Notably, 
the observation that mTORC1 is active in the lysosome 
has significantly promoted our understanding of mTORC1 
modulation.

Fig. 5  The molecular mechanism of the human vacuolar sorting 
protein-34 (hVps34) in amino acid signaling to mTORC1 activa-
tion. Vps34 is activated by cellular increased Ca2+ levels stimulated 
by amino acids and associates with the late endosomal GTPase Rab7, 
forming a stable complex with mTORC1. Vps34 product, PI(3)P, 
accumulates on endosomes and recruits PX- or FYVE-domain con-
taining proteins to the endosome to build an mTORC1 ‘signalsosome’ 
for mTORC1 activation

Fig. 6  The molecular mechanism of the Mitogen-activating protein 
kinase kinase kinase kinase-3 (MAP4K3) in amino acid signaling to 
mTORC1 activation. On amino acid deprivation, PP2A/PR61 inter-
acts with MAP4K3, promoting dephosphorylation of Ser170 and sup-

pressing MAP4K3 activation; on amino acid stimulation, amino acids 
phosphorylate MAP4K3 in Ser170 and activate MAP4K3 as well as 
mTORC1
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The localization of the Rag GTPases is in lysosomes 
rather than other Rheb-containing endomembranes, sug-
gesting that this organelle plays a crucial role in amino 
acid signaling to mTORC1 (Flinn et al. 2010; Zoncu 
et al. 2011). Furthermore, preventing the formation of late 
endosomes or redirecting the Ragulator to other cellular 
compartments blocks the activation of mTORC1. The evi-
dence indicates that the specialized subcellular environment 
of late endosomes and lysosomes is required for mTORC1 
activation (Sancak et al. 2010). In particular, the lysosome 
contains all machinery that is required for sensing amino 
acids and activating the Rag GTPases (Zoncu et al. 2011). 
Accumulating evidence suggests that amino acids may be 
sensed inside the lysosomal lumen, for alcohol esters of 
amino acids freely cross membranes and then accumulate 
inside lysosomes. Moreover, amino acids inside lysosomes 
generate an ‘inside-out’ signal that causes Rag activation, 
and v-ATPase is required for regulate the inside-out signal 
(Zoncu et al. 2011; Efeyan et al. 2012).

Summary and perspectives

Our basic knowledge of amino acid signaling to mTORC1 
activation has been greatly expanded over the past years. 
Growing evidence shows that Rag GTPases, Rheb, 
hVps34, and MAP4K3 are key mediators involved in 
amino acid signaling and lysosome serves as the platform 
for mTORC1 activation. Of note, understanding the regu-
lation of mTORC1 activation may provide new strategies 
for many metabolic diseases, such as insulin resistance, 
diabetes. mTORC1 plays many significant physiologi-
cal and pathological implications in vivo. Its deregula-
tion underlies the pathogenesis of many diseases (Efeyan 
et al. 2012). On the other hand, lysosome, a key mediator 
of cellular catabolism, is at the core of mTORC1 regula-
tion by amino acids. Key questions include the following: 
First, how do amino acids subtly regulate the activity of 
Rag proteins? How do amino acids regulate the interaction 
between Rag proteins and Raptor? Second, apart from the 
lysosomes, can mTORC1 be also activated at other orga-
nelles? Last but not the least, given the fact that lysosome 
is the place autophagy occurs, then what is the physiologi-
cal meaning of mTORC1 activation on the surface of lyso-
some? Further studies are required for clearly addressing 
these questions.
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