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pathway in the anti-immobility effect of creatine in the tail 
suspension test (TST) in mice. The NOx levels and cellular 
viability in hippocampal and cerebrocortical slices of cre-
atine-treated mice were also evaluated. The anti-immobility 
effect of creatine (10 mg/kg, po) in the TST was abolished 
by NMDA (0.1 pmol/mouse, icv), d-serine (30 µg/mouse, 
icv, glycine-site NMDAR agonist), arcaine (1 mg/kg, ip, 
polyamine site NMDAR antagonist), l-arginine (750 mg/
kg, ip, NO precursor), SNAP (25 μg/mouse, icv, NO 
donor), L-NAME (175 mg/kg, ip, non-selective NOS inhib-
itor) or 7-nitroindazole (50 mg/kg, ip, neuronal NOS inhib-
itor), but not by DNQX (2.5 µg/mouse, icv, AMPA receptor 
antagonist). The combined administration of sub-effective 
doses of creatine (0.01 mg/kg, po) and NMDAR antago-
nists MK-801 (0.001 mg/kg, po) or ketamine (0.1 mg/kg, 
ip) reduced immobility time in the TST. Creatine (10 mg/
kg, po) increased cellular viability in hippocampal and 
cerebrocortical slices and enhanced hippocampal and cer-
ebrocortical NOx levels, an effect potentiated by l-arginine 
or SNAP and abolished by 7-nitroindazole or L-NAME. 
In conclusion, the anti-immobility effect of creatine in the 
TST involves NMDAR inhibition and enhancement of NO 
levels accompanied by an increase in neural viability.

Keywords Antidepressant · Cellular viability · Creatine · 
Nitric Oxide · NMDA · Tail suspension test

Abbreviations
MTT  3-(4,5-Dimethylthiazol-2-yl-diphenyltetrazo-

lium bromide
DMEM  Dulbecco’s modified Eagle’s medium
DMSO  dimethylsulfoxide
FST  Forced Swimming Test
Icv  Intracerebroventricular
Ip  Intraperitoneal

Abstract The modulation of N-methyl-D-aspartate 
receptor (NMDAR) and l-arginine/nitric oxide (NO) path-
way is a therapeutic strategy for treating depression and 
neurologic disorders that involves excitotoxicity. Literature 
data have reported that creatine exhibits antidepressant and 
neuroprotective effects, but the implication of NMDAR and 
l-arginine/nitric oxide (NO) pathway in these effects is not 
established. This study evaluated the influence of pharma-
cological agents that modulate NMDAR/l-arginine-NO 
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L-NAME  NG-nitro-l-arginine methyl ester
NO  Nitric oxide
NOS  Nitric oxide synthase
NMDA  N-Methyl-d-aspartate
NMDAR  N-Methyl-d-aspartate receptor
Po  Per os
SNAP  S-nitroso-N-acetyl-penicillamine
TST  Tail suspension test

Introduction

Glutamate has been implicated in the pathogenesis of 
depressive disorders (Sanacora et al. 2008; Skolnick 1999). 
A post-mortem study found increased levels of glutamate in 
the frontal cortex of patients with major depression (Hashi-
moto et al. 2007). Evidence indicates that the N-methyl-
D-aspartate receptor (NMDAR) complex is particularly 
involved in the pathophysiology of depression, since pre-
clinical and clinical studies have indicated that compounds 
that reduce transmission at NMDAR exhibit antidepressant 
properties (Berman et al. 2000; Cunha et al. 2008; Zom-
kowski et al. 2010, 2012). Changes in NMDAR have been 
also demonstrated in the frontal cortex of suicide victims 
(Nowak et al. 1995). Noteworthy, the NMDAR antagonist 
ketamine produces a rapid and sustained antidepressant 
effect in animal models and in patients that suffer from 
treatment-resistant major depression (Berman et al. 2000; 
Li et al. 2011), in consonance with the proposition that 
NMDAR antagonists may be novel strategies for the treat-
ment of depression (Skolnick 1999). The faster antidepres-
sant-like effect of ketamine has been attributed to NMDA 
and AMPA receptor modulation (Duman et al. 2012; Zhou 
et al. 2014).

In response to activation of glutamate receptors (NMDA, 
AMPA or Kainate) or voltage-gated Ca2+ channels, nitric 
oxide (NO) is synthesized from l-arginine by nitric oxide 
synthase (NOS) (Contestabile 2000; Esplugues 2002; 
Yamamoto et al. 2004). Several studies indicate that l-argi-
nine/NO pathway is also involved in the pathophysiology 
of depression. Plasma nitrate concentrations and expression 
of neuronal nitric oxide synthase in the hippocampus were 
reported to be significantly higher in depressed patients, 
suggesting that NO production is increased in depression 
(Oliveira et al. 2008; Suzuki et al. 2001). In line with this, 
several studies have shown that NOS inhibitors exert anti-
depressant-like effects in animal models (da Silva et al. 
2000; Harkin et al. 1999, 2003; Heiberg et al. 2002; Joca 
and Guimarães 2006; Volke et al. 2003). However, an anti-
depressant-like action was also observed with the adminis-
tration of the substrate for NOS, l-arginine (da Silva et al. 
2000; Inan et al. 2004; Spiacci et al. 2008), suggesting that 
NO may have a dual role in the modulation of depression.

A growing number of reports have provided evidence for 
the importance of the creatine kinase/phosphocreatine sys-
tem in the pathophysiology of depression: (1) brain phos-
phocreatine, detected by phosphorus-31 magnetic reso-
nance spectroscopy, was shown to be decreased in severely 
depressed patients (Kato et al. 1992); (2) an inverse corre-
lation between Hamilton Depression Rating Scale scores 
and white matter creatine levels was shown (Dager et al. 
2004); (3) single prolonged stress and forced swimming 
stress decreased creatine concentrations in the rat pre-
frontal cortex (Herring et al. 2008; Kim et al. 2010; Knox 
et al. 2010); (4) learned helplessness, a well-validated ani-
mal model of depression, decreased the expression of hip-
pocampal creatine transporter (Lugenbiel et al. 2010); (5) 
the acute administration of the fast-acting antidepressant 
ketamine increased creatine kinase activity in rats (Assis 
et al. 2009); (6) clinical trials show that creatine augmen-
tation in antidepressant treatment-resistant patients may 
be a promising therapeutic approach that exhibits more 
rapid and efficacious responses (Kondo et al. 2011; Lyoo 
et al. 2012); (7) creatine administration in mice produced 
an anti-immobility effect in the tail suspension test (TST) 
and forced swimming test (FST), two widely used tests for 
screening antidepressants (Allen et al. 2010, Cunha et al. 
2012, 2013a, b).

The mechanisms underlying the neuroprotective and 
antidepressant actions may be different, although antide-
pressant agents commonly exhibit neuroprotective proper-
ties. The link between these two effects may be the inhibi-
tion of NMDAR and the modulation of NO production.

Taking into account the involvement of NMDAR and 
l-arginine-NO pathway in the pathogenesis of depression 
and the importance of these molecular targets for the effi-
cacy of antidepressants (Dhir and Kulkarni 2007; Krass 
et al. 2011; Zomkowski et al. 2010, 2012), this study inves-
tigated whether the anti-immobility effect of creatine in 
the TST is mediated by a modulation of NMDAR and NO 
pathway and also assessed the ability of creatine to enhance 
cellular viability and to counteract glutamate excitotoxicity.

Materials and methods

Animals

Female Swiss mice (30–40 g) and female Wistar rats 
(210–230 g) were housed in groups of fourteen (mice) or 
five (rats) per plastic cage under controlled conditions of 
light (from 07:00 to 19:00 h) and temperature (21 ± 1 °C). 
Animals were allowed free access to standard laboratory 
food and tap water, and to adapt to the laboratory environ-
ment for at least 1-week before the behavioral studies. For 
behavioral analysis, each experimental group consisted of 
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8–11 animals. For the biochemical measurements, each 
experimental group consisted of 4–6 samples. Animals 
were randomly distributed into the experimental groups. 
All manipulations were carried out between 14:00 and 
17:00 h. All procedures in this study were performed in 
accordance with the National Institute of Health Guide for 
the Care and Use of Laboratory Animals and approved by 
the Ethics Committee of the Institution (CEUA/UFSC). All 
efforts were made to minimize animals suffering and to 
reduce the number of animals used in the experiments.

Drugs

The following drugs were used: 6,7-dinitroquinoxaline-
2,3-dione (DNQX, 2.5 µg/mouse, icv), 7-nitroindazole 
(50 mg/kg, ip), arcaine (1 mg/kg, ip), creatine monohy-
drate (0.01 or 10 mg/kg, po), d-serine (30 µg/mouse, icv), 
fluoxetine (10 mg/kg, po), ketamine (0.1–1 mg/kg, ip), 
l-arginine (750 mg/kg, ip), NG-nitro-l-arginine methyl 
ester (L-NAME, 175 mg/kg, ip), MK-801 (0.001 mg/kg, 
po), N-methyl-D-aspartate (NMDA, 0.1 pmol/mouse, icv), 
S-nitroso-N-acetyl-penicillamine (SNAP, 25 µg/mouse, 
icv), (Sigma Chemical Co, St Louis, MO, USA). Table 1 
summarizes the drugs used in the experimental protocols.

All drugs were dissolved in saline, except 7-nitroinda-
zole that was dissolved in saline with 1 % Tween 80. Drugs 
were administered by intraperitoneal (ip) route in a con-
stant volume of 10 ml/kg body weight, except NMDA and 
SNAP which were administered by intracerebroventricular 
(icv) route and creatine and MK-801 that was administered 
per os (po) by gavage.

Icv administration

The icv injections were performed by a ‘‘free hand’’ 
method performed and validated in our research group 

(Moretti et al. 2012; Kaster et al. 2012). Icv administra-
tion was performed using a microsyringe (25 μl, Hamil-
ton) connected to a 26-gauge stainless-steel needle that 
was inserted perpendicularly 2 mm deep through the skull 
according to the procedure described by Laursen and 
Belknap (1986). Briefly, mice were lightly anesthetized 
with ether (i.e. just that necessary for loss of the postural 
reflex) and then gently restrained by hand for icv injections. 
The sterilization of the injection site was carried out using 
gauze embedded in 70 % ethanol. The needle was inserted 
unilaterally 1 mm into the midline point equidistant from 
each eye, at an equal distance between the eyes and the ears 
and perpendicular to the plane of the skull. A volume of 
5 μl of sterile saline (vehicle) or drugs (dissolved in ster-
ile saline) was injected directly into the left lateral ventri-
cle, at the following coordinates from bregma taken from 
the atlas of Franklin and Paxinos (1997): anterioposterior 
(AP) = −0.1 mm; mediolateral (ML) = 1 mm; and dors-
oventral (DV) = −3 mm. Mice exhibited normal behavior 
within 1 min after injection. After completion of the experi-
ments, all animals were decapitated and their brains were 
examined freshly (Moretti et al. 2012). Mice presenting 
misplacement of the injection site or any sign of cerebral 
hemorrhage were excluded from the statistical analysis 
(overall less than 5 % of the total animals used).

Experimental design

Involvement of NMDA receptors in the anti‑immobility 
effect of creatine treatment in mice submitted to TST

Taking into account that the minimum effective dose of 
creatine that produced a reduction in the immobility time in 
the TST (at the significance level of p < 0.01) was 10 mg/
kg, po and the sub-effective dose was 0.01 mg/kg, po 
(Cunha et al. 2012), these doses were used in the present 

Table 1  Pharmacological agents used in the experimental protocols

Drugs Dose Route Mechanism of action

6,7-Dinitroquinoxaline-2,3-dione (DNQX) 2.5 µg/mouse icv AMPA receptor antagonist

7-Nitroindazole 50 mg/kg ip Neuronal NOS inhibitor

Arcaine 1 mg/kg Ip Polyamine site NMDAR antagonist

Creatine monohydrate 0.01 or 10 mg/kg po Neuroprotective and antidepressant compound

d-Serine 30 µg/mouse icv Glycine-site NMDAR agonist

Fluoxetine 10 mg/kg po Selective serotonin reuptake inhibitor antidepressant

Ketamine 1 mg/kg Ip NMDA receptor antagonist

l-Arginine 750 mg/kg Ip NO precursor

NG-nitro-l-arginine methyl ester (L-NAME) 175 mg/kg Ip Non-selective NOS inhibitor

MK-801 0.001 mg/kg po NMDA receptor antagonist

N-methyl-d-aspartate (NMDA) 0.1 pmol/mouse icv NMDA receptor agonist

S-nitroso-N-acetyl-penicillamine (SNAP) 25 µg/mouse icv NO donor
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study. Notably, these doses of creatine did not exert psy-
chostimulant effects in the open-field test (Cunha et al. 
2012). In the experiments designed to verify the involve-
ment of the NMDAR modulation in the mechanism under-
lying the anti-immobility effect of creatine in the TST, mice 
were treated with creatine (10 mg/kg, po) or vehicle. After 
45 min, NMDA (0.1 pmol/mouse, icv), d-serine (30 µg/
mouse, icv, agonist of the glycine site on the NMDAR) or 
vehicle was administered. Fifteen minutes later, mice were 
submitted to the TST or open-field test. The experimental 
protocols for NMDA and d-serine administrations were 
selected on the basis of previous results from our labora-
tory (Bettio et al. 2012; Ludka et al. 2013; Kaster et al. 
2012; Moretti et al. 2011; Rieger et al. 2014; Zeni et al. 
2011; Zomkowski et al. 2010, 2012) and others (Wlaz et al. 
2011).

To investigate the possible involvement of the polyamine 
site at NMDAR in the anti-immobility effect of creatine in 
the TST, mice were treated with arcaine (1 mg/kg, ip, an 
antagonist at the polyamine site of NMDAR). After 30 min, 
they received either creatine (10 mg/kg) or vehicle. Mice 
were submitted to behavioral testing 30 min later. The 
dose and protocol of administration of arcaine used were 
selected based on a study by Zomkowski et al. (2006).

To investigate the possible synergistic effect in the 
TST obtained by the combined administration of sub-
effective doses of creatine and MK-801, mice were 
treated with a sub-effective dose of MK-801 (0.001 mg/
kg, po, NMDAR antagonist) and, immediately after, a 
sub-effective dose of either creatine (0.01 mg/kg, po) 
or vehicle was administered. Mice were submitted to 
behavioral testing 60 min later. The dose of MK-801 
was chosen based on previous studies (Bettio et al. 2012; 
Kaster et al. 2012; Ludka et al. 2013; Moretti et al. 2012; 
Zeni et al. 2011; Zomkowski et al. 2012). In another 
set of experiments, mice were administered with cre-
atine (0.01 mg/kg, po) or vehicle. After 30 min, keta-
mine (0.1 mg/kg, ip, NMDAR antagonist) or vehicle was 
administered. Mice were submitted to behavioral testing 
30 min later. The dose and time point of ketamine admin-
istration were selected on the basis of previous results 
from our laboratory (Mantovani et al. 2003; Bettio et al. 
2012; Ludka et al. 2013) and others (Cruz et al. 2009; 
Iijima et al. 2012).

Involvement of AMPA receptors in the anti‑immobility 
effect of creatine administration in mouse TST

The influence of AMPA receptors in the anti-immobility 
effect of creatine in the TST was investigated. Forty five 
minutes after creatine (10 mg/kg, po), fluoxetine (10 mg/
kg, po, conventional antidepressant), or vehicle adminis-
trations, mice received DNQX (2.5 µg/mouse, icv, AMPA 

receptor antagonist). After 15 min, mice were submitted to 
behavioral testing. In another set of experiments, 15 min 
after the administration of ketamine (1 mg/kg, ip, positive 
control), mice received DNQX (2.5 µg/mouse, icv) and a 
further 15 min was elapsed to the behavioral testing. The 
doses of the fluoxetine and DNQX used were selected 
based on previous studies (Cunha et al. 2008; Sharp et al. 
1995).

Involvement of l-arginine/nitric oxide pathway 
in anti-immobility effect of creatine treatment in the TST

To measure hippocampal and cerebrocortical NOx levels, 
creatine (10 mg/kg, po, an effective dose in the TST) or 
vehicle was administered to mice 60 min before decapita-
tion. Ketamine (1 mg/kg, ip, effective dose in the TST), 
administered 30 min before decapitation, was used as a 
positive control. To investigate the possible involvement 
of the l-arginine-NO pathway in the anti-immobility effect 
of creatine in TST, 30 min after creatine administration 
(10 mg/kg, po), mice received l-arginine (750 mg/kg, ip, a 
precursor of NO), L-NAME (175 mg/kg, ip, non-selective 
NOS inhibitor), 7-nitroindazole (50 mg/kg, ip, neuronal 
NOS inhibitor), or vehicle. Mice were submitted to behav-
ioral testing 30 min later. In another set of experiments, 
45 min after the administration of creatine (10 mg/kg, po), 
mice were injected with SNAP or vehicle, and a further 
15 min elapsed before animals was submitted to behavioral 
testing. In an independent experiment, mice were adminis-
tered with the nitrergic modulators and creatine using the 
same administration protocols described above and, there-
after, the animals were decapitated for measurement of 
NOx levels. The doses and time points for l-arginine (Bet-
tio et al. 2012; Ludka et al. 2013; Zeni et al. 2011; Zom-
kowski et al. 2012), SNAP (Brocardo et al. 2008; Kaster 
et al. 2005; Zomkowski et al. 2012), 7-nitroindazole and 
L-NAME (Bettio et al. 2012; da Silva et al. 2000; Harkin 
et al. 1999) administrations were selected on the basis of 
previous studies.

Effect of creatine treatment on hippocampal 
and cerebrocortical cellular viability

To evaluate the effect of creatine on ex vivo hippocam-
pal and cerebrocortical cellular viability, creatine (10 mg/
kg, po) or vehicle was administered to mice and 60 min 
later they were killed. After that, forebrains were rapidly 
removed from the skull and placed into ice-cold Krebs 
bicarbonate buffer (KRB), containing (in mM): NaCl 122, 
KCl 3, CaCl2 1.3, NaHCO3 25, MgSO4 1.2, KH2PO4 0.4, 
d-glucose 10, pre-bubbled with 95 % O2/5 % CO2 up to pH 
7.4. The hippocampi or cerebral cortices were quickly dis-
sected and sectioned into transverse slices of 400 µm thick 
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using a tissue chopper (McIlwain Tissue Chopper, The 
Micle Laboratory Engineering Company). After the pre-
incubation time (30 min in KRB), the medium was with-
drawn and replaced by a nutritive culture medium com-
posed of 50 % KRB, 50 % Dulbecco’s modified Eagle’s 
medium (DMEM, Gibco), 20 mM HEPES and 100 μg/
ml gentamicin, at 37 °C in a CO2 atmosphere (Molz et al. 
2008) and slices were maintained for an additional 4 h 
period to evaluate cellular viability.

Effect of creatine treatment on glutamate‑induced 
neurotoxicity in hippocampal slices

To assess the ability of creatine treatment to counteract the 
excitotoxicity elicited by an in vitro challenge with gluta-
mate, creatine (10 mg/kg, po) or vehicle was administered 
to mice and 60 min later the hippocampi were sectioned 
into 400 µm slices. After the stabilization period (30 min), 
slices were incubated with glutamate (Sigma, St. Louis, 
MO; 10 mM, in KRB buffer) or KRB buffer for 60 min. 
After this period, the medium was withdrawn and replaced 
by a nutritive culture medium, described above, at 37 °C in 
a CO2 atmosphere and slices were maintained for an addi-
tional 4-h period to evaluate cellular viability.

Effect of in vitro creatine incubation on hippocampal slices 
of mice or rats challenged with glutamate

To assess the ability of creatine (in vitro) to counteract 
glutamate toxicity, hippocampi from mice or rats were dis-
sected and sectioned into transverse slices of 400 µm thick. 
After the stabilization period (30 min), the slices were incu-
bated with glutamate (10 mM) or KRB buffer for 60 min. 
Creatine at concentrations 2.5, 5 or 10 mM was added to 
the slices in the presence or absence of glutamate. After 
this period, the medium was withdrawn and replaced by the 
nutritive culture medium described above and slices were 
maintained for an additional 4-h period to evaluate cellular 
viability.

Behavioral tests

Tail suspension test (TST)

The total duration of immobility induced by tail suspension 
was measured according to the method described by Steru 
et al. (1985). Briefly, mice both acoustically and visually 
isolated were suspended 50 cm above the floor by adhe-
sive tape placed approximately 1 cm from the tip of the 
tail. Immobility time was recorded in a 6-min period by an 
observer blind to the drug treatment. Effective antidepres-
sant treatments decrease immobility time of mice (Steru 
et al. 1985).

Open‑field test

To assess the possible effects of creatine and/or the phar-
macologic agents on locomotor activity, mice were 
subjected to the open-field paradigm (Cunha et al. 
2008). Mice were individually placed in a wooden box 
(40 × 60 × 50 cm) with the floor divided into 12 equal rec-
tangles (13.3 × 15 cm). The number of rectangles crossed 
by the animal with its four paws (crossing) was registered 
in a 6-min session and was considered as indicative of 
locomotor activity. Although the evaluation in the open-
field paradigm is simple, non-automated method for assess-
ing locomotor activity, it is able to detect either hyperlo-
comotion (Machado et al. 2012; Rodrigues et al. 2005) or 
hypolocomotion (Cunha et al. 2008; Rosa et al. 2003).

Biochemical measurements

NOx analysis

NO is unstable and quickly oxidized to nitrate and nitrite 
after production. Then, NO metabolites were determined 
using the NOx analysis, a modified method described by 
Hevel and Marletta (1994). Briefly, homogenates from cer-
ebral cortex or hippocampus (pool of three hippocampi) 
were mixed with 25 % trichloroacetic acid and centrifuged at 
1,800g for 10 min. The supernatant was immediately neutral-
ized with 2 M potassium bicarbonate. Nitrate was measured 
as nitrite after enzymatic conversion by nitrate reductase by a 
colorimetric assay based on the Griess color reaction (Ludka 
et al. 2013; Zomkowski et al. 2012). A standard curve was 
performed using sodium nitrite (0–80 μM). Results were 
expressed as percentage of control (100 %).

Evaluation of cellular viability

In hippocampal or cerebral cortex slices, cellular viabil-
ity was determined through the ability of cells to reduce 
the formazan salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT) (Mosmann 1983). Hip-
pocampal or cortical slices were incubated with MTT 
(0.5 mg/ml) in KRB for 30 min at 37 °C. The tetrazolium 
ring of MTT can be cleaved by active dehydrogenases 
to produce a precipitated formazan. The formazan pro-
duced was solubilized by adding 200 µl dimethylsulfoxide 
(DMSO), resulting in a colored compound whose optical 
density was measured in an ELISA reader (540 nm).

Protein measurement

Protein content was evaluated according to the Lowry 
method (Lowry et al. 1951) using bovine serum albumin 
(Sigma Chemical Co.) as standard.
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Statistical analysis

Kolmogorov–Smirnov test was used to evaluate the nor-
mality assumption of behavioral and biochemical data. All 
variables in the present study showed a normal distribution. 
Comparisons between experimental and control groups 
were performed by Student’s t test (effect of creatine or 
ketamine on hippocampal and cerebrocortical NOx levels 
and effect of creatine on cellular viability of hippocampal 
and cerebrocortical slices) or two-way ANOVA (behavioral 
analysis). Post-hoc Tukey’s HSD test was used when the F 
values of ANOVA were significant. A value of p < 0.05 was 
considered to be significant.

Results

Effect of NMDA, d-serine or arcaine on anti-immobility 
effect of creatine in TST

Figure 1d shows that the treatment of mice with NMDA 
(0.1 pmol/mouse, icv) was able to abolish the anti-immo-
bility effect of creatine (10 mg/kg, po) in the TST in mice. 
Two-way ANOVA revealed significant differences for cre-
atine treatment [F(1,30) = 5.82, p < 0.01], NMDA treat-
ment [F(1,30) = 8.38, p < 0.01] and creatine × NMDA 
interaction [F(1,30) = 15.85, p < 0.01]. NMDA adminis-
tration alone or in combination with creatine did not sig-
nificantly affect ambulation in the open-field test (p > 0.05, 
data not shown).

Similarly Fig. 1e shows that the treatment of mice 
with d-serine (30 µg/mouse, icv) abolished the anti-
immobility effect of creatine (10 mg/kg, po) in the TST. 
Two-way ANOVA revealed significant differences for the 
creatine treatment [F(1,33) = 11.92, p < 0.01], d-serine 
[F(1,33) = 5.19, p < 0.05] and creatine × d-serine inter-
action [F(1,33) = 4.65, p < 0.05]. d-serine administration 
alone or in combination with creatine did not affect the 
ambulation in the open-field test (p > 0.05, data not shown).

Arcaine administration (1 mg/kg, ip) reversed the anti-
immobility effect of creatine in the TST (Fig. 1f). The 
two-way ANOVA revealed significant differences for the 
creatine treatment [F(1,26) = 6.27, p < 0.05] and arcaine 
× creatine interaction [F(1,33) = 4.69, p < 0.05], but 
not a main effect of arcaine treatment [F(1,33) = 1.63, 
p = 0.21]. Arcaine administration alone or in combination 
with creatine did not affect ambulation in the open-field 
test (p > 0.05, data not shown).

Effect of combined treatment with sub-effective doses of 
the NMDA antagonists MK-801 or ketamine and creatine 
in the TST.

Figure 2c shows that combined administration of sub-
effective doses of MK-801 (0.001 mg/kg, po) and cre-
atine (0.01 mg/kg, po) caused an anti-immobility effect 
in the TST, but the administration of creatine or MK-801 
alone did not reduce immobility time in the TST. Two-way 
ANOVA revealed significant differences for the creatine 
treatment [F(1,32) = 4.82, p < 0.01], MK-801 treatment 
[F(1,32) = 8.68, p < 0.01] and creatine × MK-801 inter-
action [F(1,32) = 6.07, p < 0.01]. Creatine administration 

A B C

D E F

Fig. 1  Activation of NMDA receptors abolishes the anti-immobility 
effect of creatine. Timeline of NMDA (a), d-serine (b) and arcaine 
(c) administrations to reverse the anti-immobility effect of creatine. 
Effect of treatments of mice with NMDA (0.1 pmol/mouse, icv), 
d-serine (30 µg/mouse, icv) or arcaine (1 mg/kg, ip) on the anti-

immobility effect of creatine (10 mg/kg, po) in the TST (d, e and f, 
respectively). Each column represents the mean + SEM. *p < 0.05, 
**p < 0.01 compared with the vehicle-treated control; #p < 0.05, 
##p < 0.01, as compared to same group treated with vehicle (creatine/
vehicle)
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alone or in combination with MK-801 did not affect ambu-
lation in the open-field test (p > 0.05, data not shown).

Combined administration of sub-effective doses of 
ketamine (0.1 mg/kg, ip) and creatine (0.01 mg/kg, po) 
produced synergistic anti-immobility effect in the TST 
(Fig. 2d). Two-way ANOVA revealed significant differ-
ences for creatine treatment [F(1,33) = 18.40, p < 0.01] 
and creatine × ketamine interaction [F(1,33) = 4.81, 
p < 0.05], but not a main effect of ketamine treatment 
[F(1,33) = 1.56, p = 0.22]. Ketamine administration alone 
or in combination with creatine did not significantly alter 
the ambulation in the open-field test (p > 0.05, data not 
shown).

Effect of the DNQX on the anti-immobility effect 
of creatine in the TST

Results depicted in Fig. 3 show that the anti-immobility 
effect of creatine (10 mg/kg, po) or fluoxetine (10 mg/kg, 
po) was not prevented by pretreatment of mice with the 
AMPA receptor antagonist DNQX (2.5 µg/mouse, icv) in 
the TST (p > 0.05, Fig. 3d, e, respectively). The number 
of crossings in open-field test was not altered by DNQX, 
creatine or fluoxetine treatments (p > 0.05, data not shown). 
Conversely, administration of DNQX abolished the anti-
immobility effect of ketamine in the TST (Fig. 3f). Two-
way ANOVA revealed significant differences for keta-
mine treatment [F(1,24) = 4.70, p < 0.05] and ketamine 
× DNQX interaction [F(1,24) = 4.95, p < 0.05], but 
not a main effect of DNQX treatment [F(1,24) = 1.64, 
p = 0.21]. Ketamine administration alone or in combina-
tion with DNQX did not affect ambulation in the open-field 
test (p > 0.05, data not shown).

Effect of creatine treatment on NOx levels in hippocampus 
and cerebral cortex

NOx measurement was performed in hippocampus and cer-
ebral cortex of mice treated with creatine at dose of 10 mg/
kg (po) or vehicle 60 before decapitation (Fig. 4). Creatine 
at dose of 10 mg/kg significantly increased NOx levels in 
hippocampus and cerebral cortex of mice (46.3 and 43.6 %, 
respectively), as compared with control group [T Test: 
t(10) = −2.92; p < 0.05; t(14) = −3.63; p < 0.01, respec-
tively]. Ketamine, used as a positive control, also increased 
NOx levels in the hippocampus and cerebral cortex [116.2 
and 93.2 %, respectively, t test: t(9) = 2.30; p < 0.05 and 
t(21) = 2.30; p < 0.05, respectively]. Considering that the 
effect of creatine on NOx levels was similar in both brain 
structures, the next experiments that investigate the influ-
ence of NO modulators on the creatine-induced increase 
in NOx levels were performed in cerebral cortex due to the 
higher amount of tissue available to the assays.

Effect of l-arginine, SNAP or 7-nitroindazole on the 
anti-immobility effect of creatine in the TST, and on 
cerebrocortical NOx levels

Taking into account that NO modulation may affect either 
behavioral responses of creatine in the TST or its abil-
ity to enhance NOx levels, the next set of the experiments 
evaluated the influence of the NO enhancers l-arginine and 
SNAP and the NOS inhibitors L-NAME and 7-nitroinda-
zole on the effect of creatine in the TST and on NOx lev-
els in the cerebral cortex. Figure 5c shows that treatment 
of mice with l-arginine (750 mg/kg, ip) abolished the 
anti-immobility effect of creatine (10 mg/kg, po) in TST. 

Fig. 2  A sub-effective dose of 
creatine produces an anti-immo-
bility effect in the TST when 
combined with sub-effective 
doses of NMDA receptor antag-
onists. Timeline of experimental 
protocol of mice treated with 
creatine in combination with 
MK-801 (a) or ketamine (b). 
Effects of sub-effective doses 
of creatine (0.01 mg/kg, po) 
in combination with MK-801 
(0.001 mg/kg, po, an NMDAR 
antagonist) or ketamine 
(0.1 mg/kg, ip, an NMDAR 
antagonist) on the immobil-
ity time in the TST (c and d, 
respectively). Each column 
represents the mean + SEM. 
**p < 0.01 compared with the 
vehicle-treated control
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Two-way ANOVA revealed significant differences for 
creatine treatment [F(1,23) = 23.48, p < 0.01], l-argi-
nine treatment [F(1,23) = 5.17, p < 0.05] and creatine × 

l-arginine interaction [F(1,23) = 5.11, p < 0.05]. l-arginine 
administration alone or in combination with creatine did 
not affect the ambulation in the open-field (p > 0.05, data 
not shown). Additionally, Fig. 5e shows that the treatment 
of mice with l-arginine (750 mg/kg, ip), at dose that per se 
produced an enhancement on NOx levels, was able to poten-
tiate the creatine-induced increase in NOx levels. Two-way 
ANOVA analysis revealed significant differences for the 
creatine treatment [F(1,24) = 43.02, p < 0.01] and l-argi-
nine treatment [F(1,24) = 17.17, p < 0.01], but not creatine 
× l-arginine interaction [F(1,24) = 0.37, p = 0.55].

Figure 5d shows that treatment of mice with the NO 
donor SNAP (25 µg/mouse, icv) was able to abolish the 
anti-immobility effect of creatine (10 mg/kg, po) in the TST. 
Two-way ANOVA revealed significant differences for cre-
atine treatment [F(1,24) = 5.47, p < 0.05], SNAP treatment 
[F(1,24) = 7.60, p < 0.05] and creatine × SNAP interac-
tion [F(1,24) = 5.81, p < 0.05]. SNAP administration alone 
or in combination with creatine did not affect ambulation 
in the open-field (p > 0.05, data not shown). Moreover, 
Fig. 5f shows that treatment of mice with SNAP, which per 
se produced an enhancement on NOx levels, enhanced the 
effect of creatine (10 mg/kg, po) on NOx levels. Two-way 
ANOVA revealed significant differences for SNAP treat-
ment [F(1,26) = 13.90, p < 0.01] and creatine × SNAP 
interaction [F(1,26) = 7.47, p < 0.05], but not a main effect 
for creatine treatment [F(1,26) = 0.50, p = 0.49].

Administration of a non-selective NOS inhibitor, namely 
L-NAME (175 mg/kg, ip), prevented the anti-immobility 
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Fig. 3  DNQX, an AMPA receptor antagonist, abolishes the anti-
immobility effect of ketamine, but not of creatine or fluoxetine. Time-
line of reversal protocol of the anti-immobility effect of creatine, 
fluoxetine or ketamine by DNQX (a, b and c, respectively). Effects 
of treatments of mice with DNQX (2.5 µg/mouse, icv) and creatine 

(10 mg/kg, po), fluoxetine (10 mg/kg, po) or ketamine (1 mg/kg, ip) 
on the immobility time in the TST (d, e and f, respectively). Each col-
umn represents the mean + SEM. *p < 0.05, **p < 0.01 compared 
with the vehicle-treated control; #p < 0.05, ##p < 0.01, as compared to 
same group treated with vehicle (creatine/vehicle)

Fig. 4  Creatine, similar to ketamine, increases NOx levels in hip-
pocampus and cerebral cortex. Effect of treatment with creatine 
(10 mg/kg, po) or ketamine (1 mg/kg, ip, an NMDAR antagonist) on 
the NOx levels in the hippocampus and cerebral cortex of mice. Each 
column represents the mean + SEM. *p < 0.05 compared with the 
vehicle-treated control. The NOx levels in the control group (100 %) 
was 13.20 µM nitrite/mg protein (hippocampus) and 22.3 µM nitrite/
mg protein (cerebral cortex)
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effect of creatine in the TST (Fig. 6b). Two-way ANOVA 
revealed significant differences for creatine treat-
ment [F(1,32) = 4.44, p < 0.05], L-NAME treatment 
[F(1,32) = 20.22, p < 0.01] and L-NAME × creatine inter-
action [F(1,32) = 18.24, p < 0.01]. L-NAME administra-
tion alone or in combination with creatine did not affect 
ambulation in the open-field (p > 0.05, data not shown). 
Figure 6d shows that treatment of mice with L-NAME 
abolished the increase in cerebrocortical NOx levels 
induced by creatine administration (10 mg/kg, po). Two-
way ANOVA revealed significant differences for creatine 
treatment [F(1,28) = 16.86, p < 0.01] and L-NAME treat-
ment [F(1,28) = 30.31, p < 0.01], but not for creatine × 
L-NAME interaction [F(1,28) = 0.15, p = 0.70].

Administration of a nNOS inhibitor 7-nitroindazole 
(50 mg/kg, ip) prevented the anti-immobility effect of cre-
atine in the TST (Fig. 6c). Two-way ANOVA revealed sig-
nificant differences for creatine treatment [F(1,26) = 10.67, 
p < 0.01] and 7-nitroindazole × creatine interac-
tion [F(1,26) = 5.62, p < 0.05], but not a main effect of 
7-nitroindazole treatment [F(1,26) = 4.09, p = 0.05]. The 

administration of 7-nitroindazole alone or in combination 
with creatine did not affect ambulation in the open-field test 
(p > 0.05, data not shown). Moreover, Fig. 6e shows that 
treatment of mice with 7-nitroindazole abolished creatine-
induced increase of NOx levels in cerebral cortex. Two-way 
ANOVA revealed significant differences for creatine treat-
ment [F(1,28) = 11.74, p < 0.01] and creatine × 7-nitroin-
dazole interaction [F(1,28) = 5.31, p < 0.05], but not for 
7-nitroindazole treatment [F(1,28) = 0.44, p = 0.51].

Effect of creatine on cellular viability of hippocampal 
and cerebrocortical slices

Cellular viability analysis was performed in mice adminis-
tered with creatine at dose of 10 mg/kg or vehicle 60 min 
before decapitation. Figure 7 shows increased cellular via-
bility (19.6 %) in hippocampal slices obtained from mice 
treated with creatine as compared with slices obtained 
from control group (mice administered with vehicle), as 
revealed by t test: t(16) = −2.40; p < 0.05. Moreover, cre-
atine administration significantly increased cellular viability 

Fig. 5  Influence of treatment 
with l-arginine or SNAP on the 
effect of creatine in the TST, 
open-field test and NOx levels. 
Timeline of reversal protocol 
of the anti-immobility effect 
of creatine by l-arginine (a) 
and SNAP (b). Effect of treat-
ment of mice with l-arginine 
(750 mg/kg, ip, a precur-
sor of NO) or SNAP (25 µg/
mouse, icv, a NO donor) on 
the immobility time in the TST 
(c and d, respectively) and 
on NOx levels in the cerebral 
cortex (e and f, respectively). 
Each column represents the 
mean + SEM. **p < 0.01 com-
pared with the vehicle-treated 
control; # p < 0.05, ##p < 0.01 as 
compared to group pretreated 
with creatine and treated with 
vehicle; $$p < 0.01 as compared 
to group pretreated with vehicle 
and treated with l-arginine. The 
NOx level in the control group 
(100 %) was 7.64 µM nitrite/mg 
protein (g) and 7.82 µM nitrite/
mg protein (h)
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(11.8 %) in the cerebral cortex as compared with the control 
group, as revealed by t test: t(15) = 3.84; p < 0.01 (Fig. 7). 
Considering that the effect of creatine was slightly higher in 
the hippocampus than in the cerebral cortex, the next exper-
iments that investigated whether creatine could counteract 
glutamate toxicity were performed in hippocampal slices.

Effect of creatine on the glutamate-induced neurotoxicity 
in hippocampal slices

Hippocampal slices obtained from mice administered 
with creatine at dose of 10 mg/kg or vehicle 60 min 
before decapitation were submitted to glutamate chal-
lenge (10 mM, in vitro) for 1 h. Slices incubated with glu-
tamate presented a reduced cellular viability when com-
pared to control slices. Creatine administration in mice 
was not able to reverse the glutamate-induced decrease 

in hippocampal cellular viability (Fig. 8a). The two-way 
ANOVA revealed significant differences for creatine treat-
ment [F(1,16) = 8.36, p < 0.05], glutamate incubation 
[F(1,16) = 50.76, p < 0.01] and creatine × glutamate inter-
action [F(1,16) = 4.67, p < 0.05].

We also investigated the protective effect of in vitro cre-
atine incubation (2.5, 5 and 10 mM) against neurotoxicity 
induced by glutamate (10 mM) in mice and rats hippocam-
pal slices (Fig. 8b, c, respectively). In vitro incubation of 
mice hippocampal slices with 5–10 mM creatine was effec-
tive to abolish glutamate-induced decrease in cellular via-
bility (Fig. 8b), as revealed by two-way ANOVA (creatine 
incubation [F(3,34) = 4.09, p < 0.05], glutamate incuba-
tion [F(1,34) = 113.20, p < 0.01] and creatine × glutamate 
interaction [F(3,34) = 6.55, p < 0.01]. Reinforcing the neu-
roprotective properties of creatine, the results presented in 
Fig. 8c show that the in vitro incubation of rats hippocampal 

Fig. 6  Influence of NOS inhibi-
tors on the effect of creatine 
in the TST, open-field test and 
NOx levels. Timeline of experi-
mental protocol for drug admin-
istrations and behavioral tests 
(a). Effect of treatment of mice 
with 7-nitroindazole (50 mg/
kg, ip, a neuronal nitric oxide 
synthase inhibitor) or L-NAME 
(175 mg/kg, ip, a nitric oxide 
synthase inhibitor) on the anti-
immobility effect of creatine 
(10 mg/kg, po) in the TST (b 
and c, respectively) and on cer-
ebrocortical NOx levels (d and 
e, respectively). Each column 
represents the mean + SEM. 
*p < 0.05, **p < 0.01 com-
pared with the vehicle-treated 
control; #p < 0.05, ##p < 0.01 as 
compared to group pretreated 
with creatine and treated with 
vehicle. The NOx level in the 
control group (100 %) was 
7.96 µM nitrite/mg protein (d) 
and 7.11 µM nitrite/mg protein 
(e)
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slices with 2.5, 5 and 10 mM creatine was also effective to 
abolish glutamate toxicity, as revealed by one-way ANOVA 
[F(1,4) = 6.06; P < 0.01].

Discussion

This study shows that oral administration of creatine, a sub-
strate of creatine kinase and a precursor of phosphocreatine, 

has an anti-immobility effect in TST, not influenced by any 
unspecific locomotor effect, by a mechanism that involves 
NMDAR and NO modulation.

The NMDAR antagonist ketamine has been shown to 
elicit a rapid antidepressant action in preclinical and clini-
cal reports (Autry et al. 2011; Berman et al. 2000; Li et al. 
2011). Interestingly, a study by Assis et al. (2009) showed 
that the acute administration of ketamine, besides pro-
ducing an anti-immobility effect, increased the creatine 
kinase activity in striatum, cerebral cortex and cerebellum. 
Memantine, another NMDAR antagonist with anti-immo-
bility effect, also increased creatine kinase activity in pre-
frontal cortex and hippocampus of rats (Reus et al. 2012). 
In vitro and in vivo studies have reported that ketamine 
and MK-801 facilitate recovery of phosphocreatine levels 
after ischemic or anoxic brain injury, clinical conditions 
associated with glutamatergic dysfunction (Bielenberg 
et al. 1987; Haraldseth et al. 1990; Raley and Lipton 1990; 
Spandou et al. 1999). Interestingly, creatine has been pro-
posed to modulate the glutamatergic system (Andreassen 
et al. 2001; Bender et al. 2005; Almeida et al. 2006; Royes 
et al. 2008), but the involvement of the glutamatergic sys-
tem in the anti-immobility effect of this compound was not 
previously explored. Therefore, this study investigated the 
involvement of the NMDAR in the anti-immobility effect 
of creatine in the TST.

We show that the behavioral response in the TST 
induced by creatine treatment involves a direct or indirect 
inhibition of NMDAR, since the treatment of mice with 
either NMDA or d-serine, a potent co-agonist of synaptic 

Fig. 7  Creatine increases cellular viability in hippocampal and 
cerebrocortical slices of mice. Effect of the treatment of mice with 
creatine (10 mg/kg, po) on cellular viability of hippocampal and 
cerebrocortical slices. Each column represents the mean + SEM. 
*p < 0.05 as compared to control group treated with vehicle

A B C

Fig. 8  In vitro, but not ex vivo, creatine protects against glutamate-
induced decrease in hippocampal cellular viability. Effect of admin-
istration of mice with creatine (10 mg/kg, po) on glutamate-induced 
neurotoxicity in hippocampal slices of mice (a) and the creatine 
incubation (2.5–10 mM) on the cellular viability of mouse or rat 

hippocampal slices exposed to glutamate (10 mM) (b and c, respec-
tively). Each column represents the mean + SEM. *p < 0.05 as com-
pared to control group treated with vehicle. **p < 0.01, ***p < 0.001 
as compared to control group treated with vehicle. #p < 0.05, 
##p < 0.01 as compared to group treated with glutamate
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NMDARs (Papouin et al. 2012), caused complete reversal 
of the anti-immobility effect elicited by creatine. Simi-
lar results have been reported for other compounds that 
exert anti-immobility effects by a mechanism dependent 
on NMDAR inhibition (Brocardo et al. 2008; Kaster et al. 
2012; Ludka et al. 2013; Moretti et al. 2011; Poleszak et al. 
2008; Zeni et al. 2011; Zomkowski et al. 2010). Corrobo-
rating the hypothesis that creatine modulates the NMDAR, 
we observed that arcaine, an antagonist of the polyamine 
site of the NMDAR, abolished the anti-immobility action 
of creatine. This result suggests that the anti-immobility 
effect of creatine could be due to its interaction with this 
modulatory site at NMDAR. In line with this, arcaine abol-
ished the antidepressant-like effect of putrescine, a polyam-
ine with anti-immobility effects in the TST and FST (Zom-
kowski et al. 2006). Moreover, it has been suggested that 
creatine could act as an agonist of the polyamine site at the 
NMDAR since endogenous polyamine spermidine intensi-
fies, while polyamine antagonist, such as arcaine, blocks 
enhanced spatial learning induced by creatine (Oliveira 
et al. 2008).

Another finding that reinforces the notion that an 
NMDAR modulation of glutamatergic system plays a role 
in the anti-immobility effect of creatine is the synergistic 
anti-immobility effect observed when sub-effective doses 
of creatine and MK-801 or ketamine were administered 
to mice. Accordingly, it has been reported that MK-801 
or ketamine produces similar effects when associated with 
several compounds that display antidepressant properties 
(Ludka et al. 2013; Moretti et al. 2011; Zeni et al. 2011; 
Zomkowski et al. 2012). In line with this, a combination 
of creatine and MK-801 provided protection in an experi-
mental model of anoxia in hippocampal slices (Carter et al. 
1995). Considering that dopamine D1 receptor activation is 
involved in the anti-immobility effect of creatine (Cunha 
et al. 2012) and that the dopamine D1 receptor agonist 
SKF38393 could enhance the antidepressant-like effect of 
non-competitive NMDAR antagonist MK-801 (Yuan et al. 
2011), it is possible that the interaction of NMDAR and 
dopamine D1 receptors could play a role in the anti-immo-
bility effect of creatine.

The antidepressant response induced by ketamine has 
been shown to be associated with stimulation of the post-
synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazole 
propionic acid (AMPA) receptors and BDNF release (Krys-
tal et al. 2013; Moghaddam et al. 1997). We hypothesized 
that creatine could share with ketamine a similar mecha-
nism of action, activating AMPA receptors in glutamater-
gic neurons. Interestingly, the AMPA receptor antagonist 
DNQX abolished the anti-immobility effect of ketamine in 
the TST, in agreement with literature data that reported a 
similar effect using NBQX (Koike et al. 2011), but did not 
affect the anti-immobility effect of creatine or fluoxetine. 

These results suggest that creatine and fluoxetine pro-
duce an anti-immobility effect in the TST by a mechanism 
independent of AMPA receptor activation, as opposed to 
ketamine.

Once NMDAR is activated, intracellular calcium levels 
increase, leading to NO synthesis by nNOS (Esplugues 
2002). High concentrations of NO lead to neuronal cell 
death, whereas lower concentrations are neuroprotective by 
controlling proliferation and differentiation of mouse neu-
ronal progenitor cells (Baranano and Snyder 2001; Cala-
brese et al. 2007; Cheng et al. 2003). A dual effect of NO 
was also suggested regarding mood regulation, since both 
the NO precursor l-arginine and NOS inhibitors, depend-
ing on the doses, may elicit antidepressant-like effects 
(da Silva et al. 2000; Inan et al. 2004). It is likely that NO 
exerts beneficial effects on mood, when present at low lev-
els. Interestingly, in the present study, creatine at 10 mg/kg 
increased the NOx levels in the hippocampus and cerebral 
cortex of mice. Of note, the administration of ketamine, at 
a dose that produces an anti-immobility effect in the TST 
(Ludka et al. 2013), caused a similar increase in the hip-
pocampal and cerebrocortical NOx levels. Therefore, in 
our study a slight increase in NO levels is associated with 
antidepressant-like responses. Ketamine also increased NO 
concentrations in the hippocampus and striatum of rats (Wu 
et al. 2000) and stimulated the l-arginine/NO pathway via 
neuronal NOS (Romero et al. 2011). Regarding the modu-
lation of NO, creatine was shown to increase the number of 
NOS-immunoreactive striatal neurons (Ducray et al. 2006), 
but was able to abolish the increase in NO levels induced 
by glutamate in neuronal/glial cells (Juravleva et al. 2003). 
Future investigations are necessary to understand the 
detailed mechanisms underlying the modulation of NO lev-
els by creatine.

The increase in NO levels, in turn, may regulate the 
monoaminergic tonus in the CNS. The experimental treat-
ment with l-arginine or NO donors was reported to induce 
an augmentation of dopamine release, suggesting that 
endogenous NO stimulates dopamine activity (Lorrain and 
Hull 1993). In addition, studies performed in hippocampal 
slices demonstrate that NO donors increase norepinephrine 
release (Satoh et al. 1996). Evidence also indicates that NO 
signaling plays an important role in the mechanism of nor-
epinephrine-induced neuroprotection in both in vivo and in 
vitro models (Chen and Russo-Neustadt 2007; Lonart et al. 
1992). In addition, the NO donor SNAP was reported to 
increase serotonin levels in the hippocampus, as opposed 
to the decrease in serotonin induced by NMDA (Segieth 
et al. 2001). Therefore, it is possible that creatine-induced 
increase in NO levels with consequent monoaminergic 
modulation may be associated with its anti-immobility 
effect in the TST. This hypothesis is consistent with the fact 
that the behavioral effects in the TST induced by creatine 
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are dependent on the activation of dopamine D1 and D2 
receptors, α1-adrenoceptors and 5-HT1A receptors (Cunha 
et al. 2012, 2013a, b).

Considering that the modulation on NO levels has been 
reported to be involved in the pathophysiology of depression 
(da Silva et al. 2000; Inan et al. 2004; Suzuki et al. 2001), 
we investigated the participation of the l-arginine/NO path-
way in the anti-immobility effect of creatine. Our results 
indicate that NO modulation influences the anti-immobility 
effect of creatine in the TST, because the treatment of mice 
with l-arginine or SNAP completely abolished its anti-
immobility effect, without altering locomotor activity of 
mice. These results are in line with previous studies which 
showed that the anti-immobility effects of several com-
pounds were prevented by l-arginine or SNAP (Brocardo 
et al. 2008; Kaster et al. 2005; Ludka et al. 2013; Moretti 
et al. 2011; Zomkowski et al. 2010). A study by Krass et al. 
(2011) also reported that pretreatment with l-arginine abol-
ished the anti-immobility effect of imipramine, venlafaxine 
and bupropion in the FST. Noteworthy, in the present study, 
either l-arginine or SNAP administration potentiated the cre-
atine-induced increase in NOx levels. Therefore, we postu-
late that a slight increase in NO is related with an anti-immo-
bility effect in the TST, as opposed to a higher increase in 
NO levels. This is in line with the hypothesis that NO exerts 
a dual role in the modulation of depression, since the admin-
istration of l-arginine significantly reduced the duration of 
immobility in the FST at low doses (250–500 mg/kg, ip), but 
not at higher doses (750–1,000 mg/kg) (da Silva et al. 2000). 
The reduction of immobility time induced by l-arginine was 
reversed by the NOS inhibitor L-NNA. Conversely, L-NNA, 
depending on its dose is able to cause an antidepressant-like 
effect, which can be reversed by l-arginine, administered at a 
dose that produces no effect in the FST (da Silva et al. 2000). 
Interestingly, exogenous administration of l-arginine (250–
500 mg/kg), at same doses that produce anti-immobility 
effect, increased neuronal NO signal (Heinzen and Pollack 
2002) and DETA/NONOate, a NO donor, produces anti-
immobility effect associated with enhancement of NOx lev-
els and hippocampal neurogenesis (Hua et al. 2008). Accord-
ingly, a low dose of L-NAME (100 mg/kg, ip) decreased 
the immobility time in the FST, whereas high doses (175–
300 mg/kg, ip) did not produce any anti-immobility effect in 
the FST (Harkin et al. 1999).

To further investigate the role of NO in the anti-immo-
bility effect of creatine, in another set of experiments, 
we evaluated the influence of the administration of the 
non-selective NOS inhibitor L-NAME and the potent and 
selective neuronal NOS inhibitor 7-nitroindazole on the 
effect of creatine in the TST. The ability of these NOS 
inhibitors to abolish either the anti-immobility effect of 
the creatine or the creatine-induced increase in NOx levels 
in cerebral cortex reinforces the hypothesis that the slight 

creatine-induced increase in NO levels may afford an anti-
immobility effect. Interestingly, a study reported that cre-
atine supplementation was able to prevent the reduction on 
ATP and creatine levels caused by L-NAME administration 
in rats, suggesting a relationship between NO modulation 
and creatine effects (Constantin-Teodosiu et al. 1995).

In summary, we provide evidence for a neuromodulatory 
effect of creatine on NMDAR and on NO levels, although 
the mechanisms by which creatine interacts with NMDAR 
require further studies. In line with our results, creatine 
(10 mM) has been shown to decrease the excitability of 
hippocampal slices of rats submitted to control or anoxia 
condition (Parodi et al. 2003) and to produce a direct 
inhibitory action on the hippocampal NMDAR-mediated 
calcium response (Genius et al. 2012). Notably, creatine 
binds to the central benzodiazepine receptor (Kawasaki 
et al. 2001), an effect that may be associated with NMDAR 
inhibition. Another possibility that may account for the 
observed results is that NO could inhibit NMDAR function 
through a direct action on the receptor-channel complex 
(Lei et al. 1992; Manzoni et al. 1992), in line with the find-
ing that creatine increased the hippocampal and cerebro-
cortical NOx levels. Nitrosylation of the NR1 and NR2 sub-
units of the NMDAR results in functional downregulation 
of the NMDAR activity, therefore, protecting neurons from 
excitotoxic insults caused by excessive receptor activation 
(Choi and Lipton 2000; Lei et al. 1992; Lipton et al. 1998).

Considering that antidepressant and neuroprotective 
effects may be correlated (Young, 2002; Zeni et al. 2011), 
in another set of experiments we investigated the effects of 
the administration of creatine at a dose that produced anti-
immobility effect in the TST (10 mg/kg) on the ex vivo 
cellular viability of hippocampal and cerebrocortical slices 
of mice, as compared to the slices obtained from mice not 
treated with creatine. Creatine (10 mg/kg, po) increased 
cellular viability of hippocampal and cerebrocortical slices, 
suggesting that the administration of this compound exerts 
a beneficial effect on the signaling mechanisms that main-
tain cell survival. In line with our results, creatine increased 
tyrosine hydroxylase positive cells in ventral mesence-
phalic organotypic tissue culture (Andres et al. 2005). 
Interestingly, other ex vivo treatments have been reported 
to cause similar effects, including ketamine that improved 
the quality (cellular viability) of neuronal brain slice prepa-
rations of neonatal mouse (de Oliveira et al. 2010). Accord-
ingly, NO, which was increased by either creatine or ket-
amine administration, is required for neuronal survival 
(Contestabile and Ciani 2004).

Interestingly, the glutamate-induced reduction on cel-
lular viability of hippocampal slices of mice was not pre-
vented by ex vivo creatine treatment (10 mg/kg, po), sug-
gesting that the anti-immobility effect of creatine is not 
associated with a protective effect against hippocampal 
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glutamate toxicity. However, creatine incubated in vitro 
(0.1–10 mM) was reported to protect against glutamate-
induced toxicity in cell cultures (Brewer and Wallimann 
2000; Genius et al. 2012; Juravleva et al. 2003, 2005). Con-
sidering that hippocampal slices offer certain advantages 
over cell cultures, as the pattern of synaptic connections 
within the slice is minimally altered and neuron–astro-
cyte–microglia interactions are preserved (Somjen et al. 
1987), in a next set of experiments the in vitro effect of 
creatine incubation in hippocampal slices was evaluated. 
To this end, creatine was incubated at relatively high con-
centrations in rat and mouse hippocampal slices challenged 
with glutamate. We demonstrated that high creatine con-
centrations (2.5–10 mM) incubated either in rat or mouse 
hippocampal slices prevented the toxicity induced by 
glutamate (10 mM). Opening NMDAR could reduce the 
membrane potential and lead to a reduced transport rate of 
creatine into the cytosol. Since creatine transporter works 
at half maximal rate under physiological conditions (Guer-
rero-Ontiveros and Wallimann 1998), the reduced transpor-
tation rate of creatine may be compensated by an elevated 
concentration of creatine in the incubation medium.

In conclusion, the present study indicates that modula-
tion of NMDAR and NO levels plays a significant role in the 
anti-immobility effect of creatine, and reinforces the notion 
that these are pivotal targets for antidepressant action. Fur-
thermore, the results presented herein show that creatine 
may also elicit a protective effect against glutamate-induced 
reduction on hippocampal cellular viability when present at 
high concentrations in the incubation medium, a result that 
warrants future studies for the investigation of creatine to 
counteract glutamatergic excitotoxicity. Under basal con-
ditions, the higher hippocampal cellular viability of slices 
obtained from mice-treated ex vivo with a dose of creatine 
that affords anti-immobility effect reinforces the notion that 
this compound should be further investigated as a promising 
antidepressant and neuroprotective agent.
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