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Introduction: short and sweet overview of O‑GlcNAc 
cycling

The reversible post-translational modification of proteins 
by β-O-linked N-acetyl-d-glucosamine (O-GlcNAc) is 
a nutrient-responsive mechanism that modulates cellu-
lar signaling. O-GlcNAc cycling on nucleocytosolic and 
mitochondrial proteins is controlled by only two genes, 
encoding O-GlcNAc transferase (OGT) and O-GlcNAcase 
(OGA) which target proteins with diverse functions in 
signaling, transcription, and chromatin remodeling. Like 
phosphorylation, O-GlcNAc modification of Ser/Thr resi-
dues can influence protein function, protein–protein inter-
actions, protein stability, localization, and enzyme activity 
(Butkinaree et al. 2010; Love and Hanover 2005; Zachara 
and Hart 2004). Blocking the expression of OGT splice 
variants or overexpressing OGT in zebrafish embryos 
results in morphological defects, impaired embryonic 
growth, and decreased cell survival (Webster et al. 2009). 
In murine models, OGT deficiency leads to termination of 
embryogenesis at day five (O’Donnell et al. 2004; Shafi 
et al. 2000). Likewise, knock-out of OGA impairs cellular 
division, embryonic growth, and is associated with early 
postnatal death (Yang et al. 2012). In addition to playing 
critical roles during embryonic development, O-GlcNAc 
cycling enzymes regulate glucose homeostasis and metab-
olism in adult animals. In the liver, the extent of protein 
O-GlcNAc modification fluctuates in response to nutrient 
status, rising with feeding and diabetes. O-GlcNAcylation 
of key transcription factors and co-factors regulating glu-
cose metabolism, such as peroxisome proliferator-activated 
receptor (PPAR γ), PPARγ-coactivator (PGC1α), CREB-
regulated transcription coactivator 2 (CRTC2), carbo-
hydrate-responsive element-binding protein (ChREBP), 
and liver X receptor (LXR α/β), modulates lipogenic and 
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gluconeogenic enzyme expression, thereby influencing the 
metabolic fate of hepatic glucose (Anthonisen et al. 2010; 
Dentin et al. 2008; Guinez et al. 2011; Housley et al. 2009; 
Ji et al. 2012; Yang et al. 2008). Also, OGT expression 
and protein O-GlcNAc modification are elevated in many 
human cancers [reviewed in (Ma and Hart 2013; Ma and 
Vosseller 2013; Singh et al. 2014)]. O-GlcNAc modifica-
tion of glycolytic enzymes in cancer cells shifts the metab-
olism of glucose toward the pentose phosphate pathway, 
supporting the production of intermediates required for 
tumor cell proliferation (Yi et al. 2012). Research efforts 
in the field are also focused on modulating the activity of 
these enzymes for protection against the aggregation and 
formation of neurofibrillary tangles, a hallmark of Alzhei-
mer’s disease [reviewed in (Yuzwa and Vocadlo 2014)], and 
the attenuation of ischemia/reperfusion injury [reviewed in 
(Vaidyanathan et al. 2014)].

OGT and OGA are uniquely positioned to modulate 
nutrient-responsive intracellular signaling pathways. An 
estimated 2–3 % of incoming cellular glucose is metabo-
lized by the hexosamine biosynthetic pathway (HBP) 
which generates uridine diphosphate-N-acetylglucosa-
mine (UDP-GlcNAc) as its major metabolic product. This 
nucleotide sugar is utilized for O-GlcNAc modification of 
nucleocytosolic proteins, and also acts as a donor for the 
incorporation of GlcNAc into proteoglycans, glycolipids, 
and N- and O-linked glycosylation of proteins in the ER 
and Golgi apparatus (Boehmelt et al. 2000; Hanover et al. 
2010; Marshall et al. 1991). OGT (uridine diphosphate-N-
acetylglucosamine:peptide β-N-acetylglucosaminyltransfer
ase) transfers β-N-d-acetylglucosamine from UDP-GlcNAc 
to the hydroxyl groups of Ser/Thr residues of target protein 
substrates (Haltiwanger et al. 1992), while OGA (O-gly-
coprotein 2-acetamido-2-deoxy-β-D-glucopyranosidase) 
catalyzes its removal (Dong and Hart 1994; Gao et al. 
2001). OGT exhibits multiple, distinct UDP-GlcNAc bind-
ing constants under different UDP-GlcNAc concentrations 
(Kreppel and Hart 1999; Lazarus et al. 2011), and vary-
ing UDP-GlcNAc levels also influences the incorporation 
of O-GlcNAc onto specific substrates (Kreppel and Hart 
1999). This suggests that, in addition to changes in expres-
sion of protein substrates, fluctuations in global UDP-Glc-
NAc concentrations or the establishment of UDP-GlcNAc 
gradients within the cell alters OGT substrate specificity. 
Because rates of HBP flux are sensitive to alterations in 
glucose, amino acid, acetyl-coA and nucleotide metabo-
lism, OGT and OGA have been characterized as cellular 
nutrient sensors (Butkinaree et al. 2010; Hanover et al. 
2012; Hart et al. 2011; Zachara and Hart 2004).

Enduring within the field are questions regarding the 
mechanisms which underlie OGT and OGA interactions 
with over 1,000 identified protein targets. O-GlcNAc modi-
fication of target substrates is a controlled process; however, 

there is much which remains to be understood regarding 
the upstream regulation of O-GlcNAc cycling enzymes 
themselves. The functional impact of O-GlcNAc modifica-
tion on protein targets has been reviewed elsewhere (Hart 
et al. 2011; Vaidyanathan et al. 2014). This review will dis-
cuss factors known and hypothesized to regulate OGT and 
OGA substrate bias. These mechanisms appear to be built 
into the cellular machinery at multiple-levels, and include 
inherent differences in structure and localization among 
OGT and OGA isoforms, post-translational modification of 
O-GlcNAc cycling enzymes, and interactions with regula-
tory protein partners which bias their actions toward spe-
cific substrate groups.

O‑GlcNAc transferase (OGT) and O‑GlcNAcase 
(OGA): structure and function (Fig. 1)

OGT is expressed in all mammalian tissues but is most 
abundant in pancreas, brain, heart, and skeletal muscle 
(Lubas et al. 1997; Nolte and Muller 2002). The human 
Ogt gene (~43 kb) resides at the Xq13.1 genomic locus and 
is alternatively spliced to generate nucleocytoplasmic (nc), 
mitochondrial (m), and short (s) isoforms. These isoforms 
are distinguished by their N-terminal domains which con-
tain a variable number of tetratricopeptide (34-amino acid) 
repeats (TPRs). The full-length human ncOGT isoform 
(~110 kDa) contains 13 TPRs, while mOGT (~103 kDa) 
and sOGT (~75 kDa) contain 9 and 3 TPRs, respectively 
(Hanover et al. 2003; Love et al. 2003). In addition, alterna-
tive usage of the fourth Ogt exon generates the N-terminal 
mitochondrial localization sequence and membrane-span-
ning α-helical region which targets mOGT to this organelle 
(Hanover et al. 2003; Love et al. 2003). All OGT isoforms 
share a common C-terminal domain which contains two 
catalytic regions related to the family of GT41 GT-B glyco-
syltransferase domains (Gao 2010). Zebrafish are the only 
vertebrates known to harbor two copies of the Ogt gene, 
resulting from a late duplication event during their specia-
tion (Sohn and Do 2005; Webster et al. 2009). An atypi-
cal O-GlcNAc transferase, extracellular OGT (EOGT), has 
also been characterized in Drosophila and mice. EOGT 
resides within the ER lumen and is structurally unrelated to 
X-linked OGT. Although EOGT utilizes UDP-GlcNAc as 
an O-GlcNAc donor for site modification, it modifies resi-
dues residing within epidermal growth factor (EGF)-like 
domains of secreted proteins and contributes to cell–matrix 
interactions (Sakaidani et al. 2012; Sakaidani et al. 2011).

The OGT TPR-domain participates in substrate rec-
ognition. Deletion analysis has shown that TPRs 1–6 are 
necessary for glycosylation of substrates such as nucleo-
porin (Nup) 62 (Lubas and Hanover 2000), the RNA Pol 
II C-terminal domain (Comer and Hart 2001), and the 
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OGT-interacting domain of the OGT-interacting protein 
(OIP) 106, also known as the motor-adaptor trafficking 
kinesin-binding protein-1 (TRAK1) (Iyer et al. 2003; Iyer 
and Hart 2003). The TPR domain is also necessary for 
docking of mammalian Sin3A (mSin3A), a member of the 
histone deacetylase (HDAC) transcriptional corepressor 
complex, and mediates binding of OGA to OGT (Cheung 
et al. 2008; Whisenhunt et al. 2006; Yang et al. 2002). The 
substantial surface area of the OGT N-terminal protein-
interaction domain is likely a determinant of its binding 
plasticity. Within this region TPR motifs are packed into 
anti-parallel α-helices, generating an extended superhelix 
for substrate docking (Jinek et al. 2004). Numerous con-
served asparagines, or an “asparagine ladder,” line the inner, 
concave-binding groove and mediate protein interactions. It 
has been suggested that the nature of this protein interface 
would enable promiscuous binding of a variety of substrate 
proteins (Jinek et al. 2004). In addition, a hinge-like region 
has been identified between TPRs 12 and 13 of ncOGT 
which may further regulate access of target proteins to the 
OGT substrate-binding cleft (Lazarus et al. 2011). While 
a conserved, OGT substrate consensus motif has yet to be 
strictly defined, several studies have demonstrated moder-
ate enrichment of O-GlcNAc modification events within 
variations on the P/V-P/V-V-gS/T-S/T sequence (Alfaro 
et al. 2012; Vosseller et al. 2006; Wang et al. 2010b). The 
resolved crystal structure of ncOGT in complex with UDP 

and the casein kinase II (CKII)-peptide substrate revealed 
that the presence of prolines and branched-chain amino 
acids around the target Ser/Thr enforces contacts between 
the enzyme and the substrate peptide backbone, rather than 
being rigorously defined by side-chain contacts (Lazarus 
et al. 2011). This is consistent with reports which describe 
a propensity for O-GlcNAc modifications to occur on dis-
ordered protein regions, areas which are also primarily 
targeted for phosphorylation (Trinidad et al. 2012). Enrich-
ment-based proteomics (Ma and Hart 2014) and protein 
microarray methodologies (Ortiz-Meoz et al. 2014) are 
enabling the identification of additional OGT substrates, 
and in the future may be applied to the characterization of 
substrate specificity among OGT isoforms.

The TPR domain may also influence OGT selectivity by 
mediating its oligomerization. Reported in tissues such as 
kidney, muscle, spleen, liver and pancreas are heterotrim-
eric OGT complexes comprised of two 110 kDa subunits 
and one 78 kDa subunit (possibly sOGT) (Akimoto et al. 
1999; Haltiwanger et al. 1992; Kreppel et al. 1997; Marz 
et al. 2006). Multimerization of OGT into homo-oligomers 
has been observed as well, and this is disrupted by trun-
cation of TPRs 1–6 (Kreppel and Hart 1999) which also 
reduces the auto-glycosylation of OGT (Lubas and Hano-
ver 2000). Homo-dimerization of the OGT TPR-domain 
is abolished through mutation of two conserved residues 
(W209 and I212, hOGT numbering) within the TPR 6–7 

Fig. 1  Structure and post-translational modification of OGT and 
OGA. Phosphorylated (red circles) and O-GlcNAc (blue squares) 
modified regions are represented on cartoons of the human a OGT 
and b OGA sequences. Brackets indicate peptides on which the exact 
site of modification is ambiguous. Also represented are interactions 
with select regulatory partners (gray arrows). a TPR tetratricopeptide 

repeats, CDI/CDII UDP-GlcNAc transferase domains, NLS nuclear 
localization sequence. The interaction of OGT with phosphatidylin-
ositol 3,4,5-triphosphate [PI(3,4,5)P3] via a basic patch in its C-ter-
minal domain is currently putative (Lazarus et al. 2011; Yang et al. 
2008). b N-acetyl-β-d-glucosamindase and acetyltransferase-like (AT) 
domains are indicated (color figure online)
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interface, and these same mutations attenuate the O-Glc-
NAcylation of Nup62 (Jinek et al. 2004). This suggests that 
OGT:OGT association may stabilize interactions with cer-
tain native substrates. There is also limited evidence sug-
gesting that the p78 OGT isoform can influence the interac-
tions of ncOGT with target protein substrates. One study 
shows that ncOGT activity is enhanced in the presence of 
Ataxin 10, and this interaction is disrupted in the presence 
of p78, implicating the short isoform as a negative regulator 
of ncOGT in some contexts (Marz et al. 2006). It should 
also be noted that OGT can associate with thyroid hormone 
receptor α, glucocorticoid receptor, and p38 MAPK inde-
pendently of its N-terminal TPR domain (Cheung and Hart 
2008; Li et al. 2012), suggesting the C-terminal domain 
also plays a role in protein docking.

Further complicating the OGT regulatory model, OGT 
exhibits endopeptidase activity against at least one sub-
strate, the host cell factor 1 (HCF-1) mitotic regulator. 
The proteolytic processing of HCF-1, which is O-GlcNAc 
modified at several sites (Mazars et al. 2010; Myers et al. 
2011; Nagel et al. 2013; Trinidad et al. 2012; Wang et al. 
2007; Wang et al. 2010a), into distinct N- and C-terminal 
fragments is essential for G1 entry/exit and M-phase pro-
gression. Several proteolytic repeats (20–26 amino acids) 
located in the central region of this protein appear to direct 
both the N-terminal O-GlcNAcylation and OGT-mediated 
proteolysis of HCF-1 (Capotosti et al. 2011). Interestingly, 
the mechanistic outcome of the reaction (i.e., proteolysis 
versus glycosylation, which take place in the same active 
site) may only be dependent on the presence of a single 
substrate-localized glutamate residue (Lazarus et al. 2013). 
These results define a novel role for OGT in the direct 
regulation of mitotic progression and cell signaling; how-
ever, additional proteolytic substrates of OGT have yet to 
be identified.

The gene encoding OGA was initially identified as a 
putative hyaluronidase [meningioma expressed antigen 5 
(Mgea5)] in a screen of a human meningioma expression 
library. This gene was later recognized as giving rise to the 
OGA cycling enzyme (Comtesse et al. 2001; Heckel et al. 
1998). OGA is a monomeric hexosaminidase (~130 kDa) 
which optimally cleaves β-linked GlcNAc moieties at near 
neutral pH (Braidman et al. 1974; Dong and Hart 1994; 
Gao et al. 2001; Wells et al. 2002). This, combined with 
its distribution in the nucleus and cytosol, distinguishes it 
from acidic hexosaminidases (A and B isoforms) which 
reside within the lysosomes (Comtesse et al. 2001). The 
human Mgea5 gene (~34 kb) is located on chromosome 10 
at the 10q24.1-q24.3 locus and encodes full-length (OGA) 
and short (Mgea5s or sOGA) isoforms (Comtesse et al. 
2001; Heckel et al. 1998). sOGA displays lower hexosa-
minidase activity toward protein substrates compared to 

the full-length variant (Keembiyehetty et al. 2011). Like 
OGT, OGA is ubiquitously expressed but is more abun-
dant in certain tissues such as the brain, skeletal muscle and 
pancreas (Comtesse et al. 2001; Dong and Hart 1994; Gao 
et al. 2001). In line with its role in nutrient metabolism, an 
OGA allele containing a single nucleotide polymorphism is 
associated with age of onset of type II diabetes in a Mexi-
can–American population (Lehman et al. 2005).

OGA contains an N-terminal N-acetyl-β-d-
glucosamindase domain and, within its C-terminal domain, 
a region which shares sequence homology with acetyltrans-
ferase (AT) enzymes (Comtesse et al. 2001). The AT-like 
domain is lacking in the sOGA isoform due to a missed 
splicing event within intron 10. The functional role of the 
AT-like domain remains to be clarified. While one study 
reported comparable levels of histone AT (HAT) activ-
ity between OGA and CREB-binding protein/p300 his-
tone acetyltransferase against synthetic and free core his-
tones (Toleman et al. 2004), these results have not been 
confirmed (Butkinaree et al. 2008). A more recent study 
reported a lack of detectable binding between acetyl-CoA 
and the recombinant AT-like domain of human OGA (Rao 
et al. 2013). It is possible that the C-terminal domain of 
OGA mediates protein interactions or the proper fold-
ing of OGA. For instance, the OGA C-terminal domain is 
cleaved from the N-terminal domain by the apoptotic pro-
tein caspase 3 during activation of programmed cell death. 
Although neither fragment alone is able to recapitulate 
the activity of the full-length isoform, equivalent levels of 
OGA activity were detected in cells expressing both N-ter-
minal and C-terminal fragments. It was determined that 
these truncated fragments interact with one another in vivo, 
suggesting their association following cleavage (Butkina-
ree et al. 2008). Therefore, the presence of the C-terminal 
domain appears to be necessary for the function of the full-
length isoform; however, the mechanisms regulating sub-
strate targeting of OGA are not known.

The crystal structure of human OGA has not been 
resolved; however, three-dimensional structures of related 
GH84 glycoside hydrolases from Gram-positive Clostrid-
ium perfringens and Gram-negative Bacteroides thetaio-
taomicron bacteria have provided structural insights (Den-
nis et al. 2006; Rao et al. 2006). Both bacterial hydrolases 
contain catalytic machinery which is housed within a tri-
osephosphate-isomerise (TIM)-barrel [(β/α)8] domain, and 
a high degree of sequence similarity between OGA and 
bacterial homolog catalytic domains suggests a conserved 
enzymatic mechanism (Dennis et al. 2006). This is further 
supported by the finding that the B. thetaiotaomicron GH84 
enzyme can de-glycosylate O-GlcNAc modified eukaryotic 
proteins in vitro; however, it does not possess hyaluroni-
dase activity.
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OGT/OGA are regulated through their 
post‑translational modification (Fig. 1)

Differential post-translational modification of the OGT and 
OGA enzyme pool may further regulate the function and 
substrate specificity of O-GlcNAc cycling enzymes. OGT 
O-GlcNAc modification appears to depend on TPR-medi-
ated contacts (Kreppel et al. 1997; Kreppel and Hart 1999; 
Lubas and Hanover 2000), and O-GlcNAc modified pep-
tides from both the TPR- and C-terminal domains have been 
observed (Lubas and Hanover 2000; Tai et al. 2004; Trinidad 
et al. 2012). OGT is phosphorylated at multiple Ser, Thr, and 
Tyr residues as well (Kreppel et al. 1997; Kreppel and Hart 
1999; Olsen et al. 2010). Acute insulin stimulation enhances 
insulin receptor-mediated OGT tyrosine phosphorylation 
and activity (Whelan et al. 2008). In addition, OGT is phos-
phorylated by the nutrient-sensitive AMP-activated protein 
kinase (AMPK) within its 12th TPR domain, and constitu-
tive phosphorylation of this site (T444), as approximated by 
a phosphomimetic, alters OGT substrate binding under both 
basal and AMPK-stimulated conditions (Bullen et al. 2014). 
Interplay also exists between OGT and the insulin-regulated 
mitotic protein glycogen synthase kinase (GSK3). GSK3β-
mediated phosphorylation of OGT at Ser3 or 4 enhances 
OGT activity (Kaasik et al. 2013), consistent with previous 
reports of altered global protein O-GlcNAcylation profiles 
in mammalian cells treated with a GSK3 inhibitor (Wang 
et al. 2007). Interestingly, Ser3 and 4 are also sites of O-Glc-
NAcylation (Kaasik et al. 2013). Numerous reviews have 
focused on the potential for cross-talk between O-GlcNAc 
modification and phosphorylation in cell signaling due to 
their shared ability to occupy Ser/Thr residues (Butkinaree 
et al. 2010; Hart et al. 2011; Zeidan and Hart 2010), and it 
is possible that such interplay may regulate the function of 
OGT itself. In addition, both AMPK and GSK3β are sub-
strates of OGT and their activities are altered in response 
to perturbations in global O-GlcNAc cycling (Bullen et al. 
2014; Kazemi et al. 2010; Lubas and Hanover 2000), exem-
plifying the dynamic regulation between OGT/OGA and 
kinase/phosphatase enzymes which is necessary for the coor-
dination of protein signaling networks (Fig. 2).

An exact site of O-GlcNAc modification has been 
described on OGA at Ser405 within the region which 
mediates its interaction with OGT (Khidekel et al. 2007; 
Whisenhunt et al. 2006). Interestingly, an O-linked 
N-acetylgalactosamine (GalNAc) modification event was 
also identified at this site (Steentoft et al. 2013). While both 
of these studies employed tandem mass spectrometry for 
site identification, which is unable to distinguish between 
GalNAc and GlcNAc, OGA has been independently veri-
fied as a substrate of ncOGT (Lazarus et al. 2006). The dif-
ferential modification of OGA by both sugars at different 
stages of protein maturation has not been ruled out.

OGT and OGA activity may be further modulated 
through modification of redox-sensitive cysteine residues. 
The synthesis of inducible nitric oxide synthase (iNOS), 
an enzyme which catalyzes the production of NO, is asso-
ciated with the immune response (Lechner et al. 2005). 
Interestingly, LPS stimulation of macrophages led to the 
de-nitrosylation and enhanced activity of cytosolic- but not 
nuclear-localized OGT. This suggests, somewhat counter-
intuitively, the presence of a mechanism which may pro-
mote OGT de-nitrosylation against an enhanced NO gra-
dient, although the details of such a mechanism have yet 
to be defined (Ryu and Do 2011). It also remains to be 
demonstrated whether a cysteine residue within the OGA 
active site may indicate a similar mode of redox-dependent 
regulation of this enzyme (Rao et al. 2006), analogous to 
control of protein tyrosine phosphatase activation (Tonks 
2006).

Intracellular partitioning of the OGT and OGA enzyme 
pool (Fig. 2)

The divergent subcellular localization of OGT and OGA 
isoforms further influences their interactions with sub-
sets of the cellular proteome. ncOGT contains a putative 
nuclear localization sequence (NLS) preceding its catalytic 
region (Kreppel et al. 1997; Lubas et al. 1997) and is active 
within both the nucleus and the cytosol (Akimoto et al. 
1999; Love et al. 2003; Lubas et al. 1997). In line with its 
nutrient-sensing role, OGT is rapidly redistributed from 
the nuclear compartment to the cytosol and plasma mem-
brane upon insulin stimulation in adipocytes and fibro-
blasts, respectively (Whelan et al. 2008; Yang et al. 2008). 
In myotubes, glucose- and nutrient/growth factor-depriva-
tion induces distinct effects on OGT localization, promot-
ing the primarily nuclear or cytosolic localization of OGT, 
respectively (Bullen et al. 2014). The mechanisms which 
modulate intracellular trafficking of OGT are not well 
understood. One potential mechanism is the interaction 
of OGT with TRAK1, a microtubule-associated protein, 
which appears to target the enzyme to RNA polymerase II 
(Iyer et al. 2003). The reciprocal modification of the RNA 
polymerase II C-terminal domain by O-GlcNAc or phos-
phorylation may, respectively, modulate its association with 
pre-initiation or elongation complexes (Comer and Hart 
2001; Kelly et al. 1993). Therefore, TRAK1 could target 
OGT to sites of transcriptional initiation for modification of 
RNA polymerase II or additional proteins associated with 
the transcriptional machinery.

OGA is also nucleocytosolic although some have 
described its preferential localization within the cytosol. 
While the sOGA isoform was initially reported as a nuclear-
localized variant (Comtesse et al. 2001), more recent 
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findings suggest that sOGA also localizes to the surface of 
nascent lipid droplets where it modulates proteasome-medi-
ated droplet remodeling (Keembiyehetty et al. 2011).

Mitochondria display low levels of O-GlcNAc modi-
fication relative to other cellular fractions (Holt and Hart 
1986; Love and Hanover 2005; Love et al. 2003), yet evi-
dence supports a role for O-GlcNAc cycling in the regu-
lation of mitochondrial function. O-GlcNAc modification 
events have been identified on functionally relevant mito-
chondrial proteins including the mtDNA-encoded com-
plex IV subunit COX1, as well as the genomically encoded 
mitochondrial NADH dehydrogenase NDUFA9 subunit 
of complex 1, core 1 and 2 subunits of complex III, and 
the voltage-dependent anion channel (VDAC) (Gawlowski 
et al. 2012; Hu et al. 2009; Jones et al. 2008; Ngoh et al. 
2008). Although OGA has yet to be localized within the 
mitochondria, overexpression of OGA diminishes O-Glc-
NAc modification of the mitochondrial fraction, and low 
levels of OGA activity have been detected within puri-
fied mouse heart mitochondria (Hu et al. 2009; Tan et al. 

2014). The role of O-GlcNAc cycling in mitochondrial 
dynamics appears complex. Some studies have demon-
strated detrimental effects of increased O-GlcNAc cycling 
on mitochondrial dynamics. For example, overexpres-
sion of mOGT triggers cellular cytotoxicity and apoptosis 
(Lubas et al. 1997; Shin et al. 2011). Also, exposure of 
cardiac myocytes to high glucose conditions stimulates an 
increase in global mitochondrial and COX1 specific O-Glc-
NAc modification and impairs respiratory complex func-
tion, while OGA overexpression prevents these effects (Hu 
et al. 2009). Increased O-GlcNAcylation of the mitochon-
drial fission and fusion proteins GTPase dynamin-related 
protein 1 (DRP1) and optical atrophy 1 (OPA1), respec-
tively, is associated with their impaired function and mito-
chondrial instability (Gawlowski et al. 2012; Makino et al. 
2011). On the other hand, overexpression of either OGT 
or OGA in a neuroblastoma cell line altered mitochondrial 
protein expression, disrupted mitochondrial morphology, 
and impaired respiration (Tan et al. 2014), suggesting that 
adequate dosing of the modification may be necessary for 

Fig. 2  Partitioning of the OGT and OGA enzyme pool. This car-
toon depicts mechanisms which may partition the nucleocytosolic 
OGT and OGA pool (gray backdrop) toward interaction/activity 
against substrate subsets (colored quadrants) within different sign-
aling contexts. Interaction between OGT/OGA and protein kinases 
is indicative of cross-talk between phosphorylation and O-GlcNAc 

modification which are cycled on both classes of modifying enzymes. 
Although represented here as distinct events, pathways contributing 
to OGT and OGA substrate bias are not necessarily mutually exclu-
sive (e.g., OGT likely associates with RNA Pol IIA as part of a larger 
epigenetic complex), and in some circumstances may dynamically 
regulate one another (color figure online)
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optimal mitochondrial function in this cell type. In addi-
tion, expression of OGT was shown to be protective against 
hypoxia-induced loss of mitochondrial membrane potential 
in neonatal cardiac myocytes (Ngoh et al. 2008). Altogether 
these data indicate that the tissue and/or stimulus-specific 
context of increased O-GlcNAcylation may produce dis-
tinct functional outcomes on mitochondrial processes.

The cellular role of nucleocytosolic sOGT is probably 
the least understood of the three OGT isoforms (Love and 
Hanover 2005). Reports are conflicting regarding the abil-
ity of sOGT to glycosylate peptide/protein targets (Feng 
et al. 2013; Lazarus et al. 2006; Liu et al. 2014; Ortiz-Meoz 
et al. 2014); however, as previously mentioned, this iso-
form may regulate ncOGT substrate specificity (Marz et al. 
2006). sOGT has also been identified as a protective fac-
tor against growth factor withdrawal-mediated apoptosis in 
myeloid progenitor cells (Fletcher et al. 2002), and for this 
reason it has been postulated that sOGT may counteract the 
pro-apoptotic activity of mOGT to coordinate cellular sur-
vival pathways (Hanover et al. 2012; Shin et al. 2011).

Yeast two-hybrid screens of brain tissue cDNA librar-
ies have revealed numerous, functionally distinct OGT-
interacting proteins which may predispose this enzyme 
toward glycosylation of specific substrates (Butkinaree 
et al. 2010; Cheung et al. 2008; Iyer et al. 2003; Iyer and 
Hart 2003). The myosin phosphatase targeting protein 1 
(MYPT1), a regulatory subunit of protein phosphatases 
(PP1) β and δ, enhances OGT interaction with select bind-
ing partners, although, interestingly, this association does 
not appear to be a determinant for OGT’s interaction with 
myosin or PP1β/δ (Cheung et al. 2008). OGT and OGA 
also co-localize with the microtubule-associated pro-
tein Aurora B kinase and PP1C at midbody structures in 
mitotic cells. This association indicates the centralization 
of these enzymes’ actions within modifying complexes for 
the reciprocal regulation of cytokinetic substrates such as 
vimentin (Slawson et al. 2005, 2008). Interaction of OGT 
with p38 mitogen-activated protein kinase (p38MAPK) 
under conditions of glucose deprivation in a neuroblas-
toma cell line does not result in its phosphorylation, but 
contributes to the p38MAPK-mediated O-GlcNAc modi-
fication of the neurofilament-H structural protein, suggest-
ing that this is a targeting association (Cheung and Hart 
2008).

OGT and OGA are also targeted to chromatin-remode-
ling complexes where they coordinate active and repressed 
transcriptional states through O-GlcNAc modification of 
histones, chromatin-remodeling enzymes, and transcrip-
tion factors (Fujiki et al. 2009; Hanover et al. 2012; Love 
et al. 2010a; Sakabe et al. 2010; Tai et al. 2004; Trinidad 
et al. 2012; Whisenhunt et al. 2006; Yang et al. 2002). 
OGA can co-localize with OGT and mSin3A at repressed 
promoters, potentially important for the timely reversal 

of repressed genes which are associated with high levels 
of O-GlcNAcylation (Whisenhunt et al. 2006; Yang et al. 
2002). On the other hand, ManNAc induction of murine 
orexin (Hcrt) neurons, which integrate sleep/wake states 
and feeding behaviors, is associated with decreased 
occupancy of OGT, mSin3A, and SIRT1, and increased 
recruitment of OGA, CREBBP, and p300, at active Hcrt 
promoters (Hayakawa et al. 2013). This suggests that the 
simultaneous co-localization of OGT and OGA does not 
represent a universal mechanism for O-GlcNAc-mediated 
regulation of transcriptional programs. Also, recently 
elucidated interactions between OGT and the ten-eleven 
translocation (TET) proteins are thought to recruit the 
O-GlcNAc cycling enzyme to sites of transcriptional ini-
tiation (Chen et al. 2013; Deplus et al. 2013; Vella et al. 
2013). The TET family of α-ketoglutarate-dependent 
dioxygenase enzymes modulates removal of DNA meth-
ylation marks through conversion of 5-methylcytosine to 
5-hydroxymethylcytosine (5-hmc), triggering pathways 
which result in the conversion of 5-hmc to an unmodified 
cytosine (Solary et al. 2014). Interestingly, the interaction 
of OGT with TET2/3 does not alter cytosine hydroxyla-
tion, but is necessary for formation of the SET1/COM-
PASS complex (containing OGT, O-GlcNAc modified 
HCF-1 and the SETD1A H3K4 methyltransferase) and 
activation of TET2/3-OGT-H3K4me3 gene targets (Deplus 
et al. 2013). Similarly, the OGT/TET2 interaction modu-
lates the O-GlcNAc modification of histone H2B at Ser112 
and is associated with transcriptional activation (Chen 
et al. 2013).

Regulation of OGT and OGA expression: many 
questions remain

OGT and OGA transcript and protein levels fluctuate with 
cell cycle progression (Dehennaut et al. 2007; Dehennaut 
et al. 2008; Drougat et al. 2012; Lefebvre et al. 2004; Slaw-
son et al. 2005; Yang et al. 2012), during tissue specifica-
tion (Andres-Bergos et al. 2012; Ogawa et al. 2012), and 
among tissue types. OGT transcription, protein expres-
sion, and activity are also impacted by various stressors 
(e.g., oxidative, UV-induced, osmotic, thermal, and nutri-
ent stress) (Cheung and Hart 2008; Zachara and Hart 2004; 
Zachara et al. 2004), consistent with its role as a stress 
modulator and nutrient sensor. A recent study demon-
strated significantly lower expression of OGT transcripts 
in male versus female human and mouse placental tissues, 
and showed that induction of prenatal maternal stress in 
murine models decreased OGT transcript expression to 
the greatest extent in male placental tissue. This not only 
exemplifies stress-induced impacts on OGT expression in 
a physiological setting, but also suggests that the maternal 
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stress response is linked to sex-specific impacts on OGT-
mediated embryonic development, possibly leading to 
changes in the early neonatal neurodevelopmental program 
(Howerton et al. 2013). The expression of OGA is likely 
also developmentally modulated, as it is required for neo-
natal survival (Yang et al. 2012). OGA protein levels are 
reduced upon induction of OGT knock-out, implicating the 
involvement of OGT in the regulation of OGA expression 
or stability. This effect was attenuated in the short term by 
pharmacological elevation of O-GlcNAc levels, suggesting 
that OGA protein levels are sensitive to changes in the rela-
tive abundance of this modification (Kazemi et al. 2010). 
Indeed, it has been suggested that the location of the OGA 
gene within the highly conserved NK homeobox gene clus-
ter may have implications for its regulation by OGT, since 
this region is targeted by the PcG repressor complex of 
which OGT is a component (Gambetta et al. 2009; Love 
et al. 2010b; Sinclair et al. 2009). Such compensatory 
mechanisms may allow the cell to more effectively control 
its response to sudden changes in nutrient concentrations or 
levels of either OGT or OGA.

Some evidence also suggests that tissue-specific regula-
tion of OGA and OGT is impacted during normal physi-
ological aging. Congruent with the imbalanced O-GlcNAc 
cycling observed in various age-related diseases, O-Glc-
NAcylation profiles are elevated in tissues such as brain, 
thymus, heart, lung, testes, and skin of senescent rats and 
mice. This phenomenon, however, does not always corre-
late with anticipated changes in enzyme levels or markers 
of enhanced HBP flux (Fulop et al. 2008; Yang et al. 2012). 
It is possible that one or more senescence-associated char-
acteristics, such as alterations in growth factor signaling, 
oxidative and inflammatory responses, and glucose metabo-
lism (Basu et al. 2006; Boss and Seegmiller 1981; Licastro 
et al. 2005; Lopez-Otin et al. 2013), converge to uncouple 
OGT and OGA activity and/or disrupt one or more mecha-
nisms contributing to substrate bias. Continuing to define 
the impact of such parameters on the regulation of these 
enzymes under normal, aged, and disease-state metabolic 
conditions will be important for a comprehensive under-
standing of the roles of OGT and OGA in the maintenance 
of homeostatic cell functions.

Fig. 3  A full understanding of the O-GlcNAc signaling paradigm 
includes a definition of the upstream mechanisms (e.g., post-trans-
lational modification, localization, partner associations, expression/
stability, or any combination thereof) influencing OGT/OGA sub-
strate bias under different metabolic states and with disease progres-

sion. A future model (outlined here in a highly simplified form) may 
be developed in which the effects of one or multiple stimuli on such 
mechanisms are more completely characterized under both normal 
and pathological conditions (color figure online)
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Summary (Fig. 3)

The O-GlcNAc post-translational modification is a critical 
mechanism for the regulation of cell development and sur-
vival; however, the upstream regulation of OGT and OGA, 
which target a wide variety of substrates, requires further 
definition. As we have explored within this review, there is 
evidence to support the regulation of OGA and OGT activ-
ity at every level of their processing. Structural variation 
among OGT and OGA enzyme isoforms is built into the 
genomic code, and these inherent differences in amino acid 
composition among splice variants influence the subcel-
lular distribution and substrate targeting of both enzymes. 
Additional modulation of enzyme activity is imparted by 
availability of their protein and/or sugar-donor substrates 
which are altered by glucose-, growth- and stress-activated 
signaling in a tissue-specific manner. The cell may further 
regulate OGT and OGA substrate specificity through their 
post-translational modification, stable associations with 
regulatory protein partners, or through the temporal con-
trol of enzyme expression/stability. An integrated model 
describing factors which bias the action of OGT and OGA 
toward specific substrates under different metabolic states 
may provide new insights for the manipulation of O-Glc-
NAc cycling during development, and in the treatment of 
common pathophysiological conditions arising in adults.
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