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Abstract Amino acids not only participate in intermedi-

ary metabolism but also stimulate insulin-mechanistic tar-

get of rapamycin (MTOR)-mediated signal transduction

which controls the major metabolic pathways. Among

these is the pathway of autophagy which takes care of the

degradation of long-lived proteins and of the elimination of

damaged or functionally redundant organelles. Proper

functioning of this process is essential for cell survival.

Dysregulation of autophagy has been implicated in the

etiology of several pathologies. The history of the studies

on the interrelationship between amino acids, MTOR sig-

naling and autophagy is the subject of this review. The

mechanisms responsible for the stimulation of MTOR-

mediated signaling, and the inhibition of autophagy, by

amino acids have been studied intensively in the past but

are still not completely clarified. Recent developments in

this field are discussed.
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Abbreviations

4E-BP1 Eukaryotic translation initiation factor 4E

binding protein 1

AA Amino acids

AMBRA1 Activating molecule in Beclin1-regulated

autophagy protein 1

AMPK AMP-activated protein kinase

ATF4 Activating transcription factor 4

ATG Autophagy related

BAD Bcl-2-associated death promoter

BARKOR Beclin1-associated autophagy-related key

regulator

Bcl-2 B cell lymphoma 2

Bcl-xL B cell lymphoma extra large

Beclin1 Bcl-2-interacting coiled-coil protein 1

BH3 Bcl-2 homology domain

BNIP3 Bcl-2/adenovirus E1B 19 kDa interacting

protein 3

CHO Chinese hamster ovary

DAPK Death-associated protein kinase

DEPTOR DEP domain-containing MTOR-interacting

protein

DFCP1 Double FYVE-domain-containing protein 1

eEF2

kinase

Eukaryotic translation elongation factor 2

kinase

eIF2a
kinase

Eukaryotic initiation factor 2a kinase

EP300 E1A binding protein p300

E1A Adenovirus early region 1A

FIP200 Focal adhesion kinase family-interacting

protein of 200 kDa

FoxO3 Forkhead box O3

GAP GTPase-activating protein

GATOR GTPase-activating protein toward Rags

Gcn2 General control non-depressible 2
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5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex,
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Gcn4 General control non-depressible 4

GDH Glutamate dehydrogenase

GEF Guanine nucleotide exchange factor

HEK293 Human embryonic kidney 293

HIF-1a Hypoxia-inducible factor 1a
IPMK Inositol polyphosphate multikinase

IRS Insulin receptor substrate

Lamp2 Lysosomal-associated membrane protein 2

LC3-I Microtubule-associated protein 1A/1B-light

chain 3

LC3-II Microtubule-associated protein 1A/1B-light

chain 3 conjugated with

phosphatidylethanolamine

LRS Leucyl-tRNA synthetase

MAP4K3 Mitogen-activated protein kinase kinase

kinase kinase 3

mLST8 Mammalian lethal with sec-13 protein 8

(also GbL)
mSin1 Mammalian stress-activated MAP kinase-

interacting protein 1

MTOR Mechanistic target of rapamycin (formerly

mTOR, mammalian target of rapamycin)

MTORC Mechanistic target of rapamycin complex

Nrf2 NF-E2-related factor 2

PDK1 Phosphoinositide-dependent kinase 1

PE Phosphatidylethanolamine

Pi Inorganic phosphate

PI(3)P Phosphatidylinositol 3-phosphate

PI(3,4)P2 Phosphatidylinositol 3,4-biphosphate

PI(3,4,5)P3 Phosphatidylinositol 3,4,5-triphosphate

PIK3C1 Phosphatidylinositol 3-kinase class I

PIK3C3 Phosphatidylinositol 3-kinase class III

PIK3R4 Phosphatidylinositol 3-kinase regulatory

subunit 4; also hVps15, formerly called p150

PKB Protein kinase B (formerly AKT)

PLD Phospholipase D

PRAS40 Proline-rich AKT substrate 40

PROTOR Protein observed with RICTOR

PTEN Phosphatase and tensin homolog deleted on

chromosome 10

Rag Ras-related GTP-binding protein

RAPTOR Regulatory-associated protein of MTOR

Rheb Ras homolog enriched in brain

RICTOR Rapamycin-insensitive companion of TOR

ROS Reactive oxygen species

S6 Ribosomal protein S6

S6K 70 kDa S6 kinase (formerly p70S6K)

SQSTM1 Sequestosome 1

T1R1 Taste receptor type 1 member 1

T1R3 Taste receptor type 1 member 3

TFEB Transcription factor EB

TSC Tuberous sclerosis

ULK1/2 Unc-51-like kinase1/2

UVRAG UV irradiation resistance-associated gene

v-ATPase Vacuolar ATPase

VMP1 Vacuole membrane protein 1

Vps15 Vacuolar protein sorting 15

Vps34 Vacuolar protein sorting 34

WIPI-1/2 WD repeat domain phosphoinositide-

interacting protein 1/2

Introduction

For maintenance of cellular homeostasis, it is not only

essential that cell components are synthesized and assem-

bled when required but also that these components are

removed and degraded when they are aberrantly synthe-

sized, become damaged or when they are functionally

redundant. When these processes are not carried out

properly, the cell may either die or turn into a tumor cell in

which cell growth proceeds unrestrained.

The major protein degradation systems include the

ubiquitin–proteasome pathway (responsible for the quality

control of newly synthesized proteins and the degradation

of short-lived proteins) (Ciechanover 2012), macroauto-

phagy (responsible for the degradation of long-lived pro-

teins, protein aggregates and entire organelles) (Klionsky

and Codogno 2013; Choi et al. 2013; Shen and Mizushima

2014) and chaperone-mediated autophagy (taking care of

the removal of specific cytosolic proteins carrying a lyso-

somal target motif) (Cuervo and Wong 2014). Cross talk

between these systems is also possible (Wang et al. 2013).

The process of macroautophagy (hereafter referred to as

‘‘autophagy’’) has gained tremendous scientific interest in

recent years. This is not only because of the partial

unraveling of the protein and lipid machinery participating

in this complicated cell biological process (Ohsumi 2014;

Feng et al. 2014) but also because of the control of auto-

phagic flux by growth factor- and amino acid-dependent

signal transduction (Meijer and Codogno 2009; Russell

et al. 2014). Above all, however, autophagy gained general

interest because dysregulation of the process is implicated

in many pathologies. These include, for example, cancer,

neurodegeneration, obesity, type 2 diabetes, aging, heart

and liver disease, lysosomal storage disorders, bacterial/

viral infection and immunity diseases (Rubinsztein et al.

2012; Lavallard et al. 2012; Lieberman et al. 2012; Lorin

et al. 2013a; Jiang and Mizushima 2014). In addition,

autophagic activity in neurons of the hypothalamus appears

to play an essential role in the control of body energy

expenditure, appetite and body weight (Kaushik et al.

2011; Lavallard et al. 2012; Quan and Lee 2013). After a

brief description of the process of autophagy as we know it
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today, the focus in this review will be on the regulation of

autophagy by amino acids. The history of this fascinating

topic, the discovery of amino acid-dependent signaling and

possible mechanisms contributing to the inhibition of

autophagy by amino acids, with recent developments in

this field, will be discussed.

Autophagy

According to current opinion, the primary function of

autophagy is to allow the cell to survive under stress

conditions rather than to function as a cell death mecha-

nism (Kroemer and Levine 2008). In the course of

autophagy, macromolecules are degraded to small mole-

cule precursors in order to support essential metabolic

pathways under these conditions. A classical example at

the whole body level is the autophagic production of amino

acids, in the liver or elsewhere in the body, for hepatic

gluconeogenesis during starvation (Schworer and Morti-

more 1979; Ueno et al. 2012), glucose being essential as

energy source for brain and erythrocytes under all

circumstances.

During autophagy, which occurs in all eukaryotic cells,

part of the cytoplasm is surrounded by a double membrane

to form an autophagosome that acquires hydrolytic

enzymes by fusion with endocytic compartments and

lysosomes to form an autophagolysosome. In this process,

the outer autophagosomal membrane fuses with the lyso-

somal membrane, and the inner autophagosomal membrane

vesicle is released in the lysosomal lumen ((Meijer and

Codogno 2009), for literature) upon which this vesicle,

including its sequestered material, becomes degraded. The

degradation products (e.g., amino acids) are transported to

the cytosol via specific permeases (Mizushima and Klion-

sky 2007). The rate-limiting step in the entire autophagic

pathway is the formation of the autophagosome. This for-

mation starts with the expansion of a membrane core, the

isolation membrane, or so-called phagophore (Seglen and

Bohley 1992; Klionsky and Seglen 2010). Although pro-

gress concerning the origin and the biogenesis of the iso-

lation membrane has been made, many questions still

remain to be answered (Lamb et al. 2013; Shibutani and

Yoshimori 2014). Very recent data suggest that the

phagophore may be built up from the ER-mitochondria

contact site (Hamasaki et al. 2013). However, other com-

partments such as the endoplasmic reticulum-Golgi inter-

mediate compartment (Ge et al. 2013), endosomes and the

plasma membrane also contribute to the formation of

autophagosomes (Puri et al. 2013). Many different proteins

are involved in autophagosome formation. More than 30

proteins have been identified in yeast (Ohsumi 2014; Feng

et al. 2014) which are referred to as ATG (Autophagy

related) proteins. Seventeen of these proteins are engaged

in the biogenesis of the autophagosome, most of which are

conserved in mammalian cells (including human cells) but

carry different names in order to distinguish them from

their yeast counterparts (Stanley et al. 2014). Among these

is LC3-I (equivalent to Atg8 in yeast) which, when lipi-

dated with phosphatidylethanolamine (and then named

LC3-II), is widely used as a marker of autophagosomes

(Klionsky et al. 2012).

Autophagosome formation and degradation can be

extremely rapid. For example, in rat hepatocytes in vivo,

the autophagic sequestration rate may vary from 0.2 % in

the fed state to 1–1.5 % of the cell volume/h in the fasted

state (Schworer and Mortimore 1979; Kovacs et al. 1982).

In vitro, with isolated hepatocytes or in the perfused liver,

in the absence of amino acids, this rate can be as high as

4 %/h (Blommaart et al. 1997a).

In the liver, autophagosomes are synthesized and

degraded with a half-life of 8 min (Pfeifer 1977, 1978;

Schworer and Mortimore 1979), and such short half-lives

also apply to other cell types (Hailey and Lippincott-Sch-

wartz 2009; Shibutani and Yoshimori 2014). Because of

this high turnover rate, the steady-state volume of auto-

phagosomes in the cell is low. It is important to stress that

the measurement of the steady-state level of autophago-

somes (a situation to be compared with the concentration of

an intermediate in a metabolic pathway) does not give any

information on the magnitude of the autophagic flux as is

often assumed, and this notion not only applies to hepa-

tocytes but to other cells as well (Meijer 2009; Klionsky

et al. 2012). In order to estimate autophagic flux, at least

for in vitro studies with perfused organs or cultured cells,

several methods have been recommended. Among these,

the most popular are the rate of 3-methyladenine (an

inhibitor of autophagosome formation, see below)-sensi-

tive degradation of long-lived proteins and the rate of

accumulation of LC3-II (not the level of LC3-II at one time

point), which is assumed to represent the rate of auto-

phagosome formation, when lysosomal function and/or

fusion is compromised by specific inhibitors (e.g., by

chloroquine or bafilomycin, respectively) (Klionsky et al.

2012). The latter method may be complicated by possible

feedback interactions caused by the accumulation of

autophagosomes (Ktistakis et al. 2011) so that the accu-

mulation of LC3-II may not always be linear with time.

Another approach to quantify autophagic flux measures the

rate of disappearance of p62/SQSTM1, an adapter protein

that serves to carry protein cargo to be degraded to the

phagophore (Bjorkoy et al. 2009). However, caution must

be taken because in some cell lines amino acids upregulate

the transcription of SQSTM1 (Sahani et al. 2014). Other

methods, including sophisticated fluorescence techniques,

are also available. For a complete description of these
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Fig. 1 Overview of the autophagic machinery. (Macro)autophagy

starts with the nucleation of an isolation membrane, named the

phagophore, which surrounds a fraction of the cytoplasm destined for

degradation. Upon induction of autophagy, e.g., in starvation, the

ULK1 complex localizes to a specialized domain of the ER called the

omegasome. This privileged site for the biogenesis of the phagophore

forms a cradle where the autophagosomal membrane elongates and

acts as a template for the spherical form of the autophagosome.

Downstream the ULK1 complex is the PIK3C3 complex, which

produces phosphatidylinositol 3-phosphate (PI(3)P) to allow the

recruitment of the PI(3)P-binding proteins WIPI1/2 and ZFYVE1/

DFCP1. Both contribute to the expansion and the closure of the

autophagosome together with the ATG12–ATG5-ATG16L complex

and the LC3-phosphatidylethanolamine (LC3-PE) conjugate.

Whereas ATG12–ATG5-ATG16L only transiently associates with

the autophagosomal membrane, LC3–PE constitutes a specific marker

of the autophagosome as it remains associated with the autophagos-

omal inner membrane. The newly formed autophagosome receives

input from the endocytic pathway and ultimately fuses with a

lysosome, allowing the degradation of autophagic substrates by

lysosomal hydrolases. Fusion of the autophagosome with the

lysosome requires the small Rab GTPases (such as Rab7, 8B and

24) and the transmembrane lysosomal protein LAMP2. The products

of autophagic degradation, such as amino acids, are recycled to the

cytosol where they exert a negative feedback on autophagy initiation.

In addition to amino acids, autophagy is also controlled by upstream

signaling pathways governed by insulin/growth factors, reactive

oxygen species (ROS) and the energy status (through AMPK). Most

of these factors regulate the two initiation complexes, ULK1 and

PIK3C3. As a master regulator of autophagy, MTORC1 integrates

multiple of these upstream signals and controls the activity of the

ULK1 complex
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techniques, the reader is referred to a recent paper

(Klionsky et al. 2012).

Autophagy is initiated by activation of a protein com-

plex containing the protein kinases ULK1 and 2 (the

mammalian counterpart of yeast Atg1), the proteins

ATG13, FIP200 (yeast Atg17), ATG101 and many other

components (Wong et al. 2013; Russell et al. 2014).

Phosphorylation of ATG13 by ULK1/2 promotes the

association of these proteins and is essential for initiation

of autophagy (Fig. 1). ULK1 binds to membranes through

its C-terminal domain (Chan et al. 2009). Downstream of

the ULK1/2 complex is a lipid kinase, PIK3C3 (yeast

Vps34), which produces PI(3)P and which is part of

another protein complex also containing the regulatory

protein PIK3R4 (yeast Vps15), the proteins Beclin1 (yeast

Atg6/Vps30), ATG14 (also known as BARKOR). In the

Beclin1-PIK3C3 core complex, Beclin1 can interact with

several proteins such as AMBRA1, UVRAG and VMP1 to

control autophagosome formation and/or maturation (Wirth

et al. 2013) (cf. also Fig. 2). ULK1 phosphorylates both

AMBRA1 and Beclin1 to initiate autophagosome forma-

tion (Russell et al. 2013; Lorin et al. 2013a). This results in

activation of PIK3C3. Production of PI(3)P recruits PI(3)P-

binding proteins involved in the initial formation of the

autophagosome, WIPI1/2 (yeast Atg18), ZFYVE1/DFCP1

and two ubiquitin-like conjugation systems ATG12–

ATG5-ATG16L and LC3-phosphatidylethanolamine

(LC3-II) (Polson et al. 2010; Weidberg et al. 2011; Mc-

Alpine et al. 2013). PI(3)P is also required to join the ends

of the autophagosomal membrane in statu nascendi (termed

the ‘‘omegasome’’ because of its cup-formed shape) (Axe

et al. 2008). The final fusion of the newly formed auto-

phagosome with the lysosome requires small Rab GTPases,

such as Rab7, Rab8 and Rab24, and the transmembrane

protein LAMP2 (Simonsen and Tooze 2009; Ao et al.

2014).

Association of Beclin1 with PIK3C3 is an essential step

in autophagosome formation. However, Beclin1 is a BH3

(Bcl-2 homology domain) protein and can also associate

with the anti-apoptotic proteins Bcl-2/Bcl-xL which con-

tain a BH3-binding groove. This means that association of

Beclin1 with these anti-apoptotic proteins is inhibitory for

autophagy and their dissociation is essential to allow Be-

clin1 to bind to PIK3C3 and to initiate autophagy. The

dissociation of the inhibitory Beclin1–Bcl-2 complex is

promoted by either JNK-1-mediated phosphorylation of

Bcl-2, by phosphorylation of Beclin1 mediated by the

tumor suppressor DAPK (a Ca2?-calmodulin-activated

protein kinase), or by displacement of Beclin1 from its

complex with Bcl-2 by other BH3-containing proteins such

as the proapoptotic protein BAD and the proautophagic

protein BNIP3 ((Meijer and Codogno 2009; Mariño et al.

2014a), for literature) (Fig. 2).

The insulin-amino acid-MTOR signaling pathway

The initiation of autophagosome formation is controlled

by the insulin/growth factor-PI3KC1-PKB-TSC-MTOR-

mediated signal-transduction pathway, which integrates

hormonal, nutritional, cellular energy and oxidative

stress inputs and which controls all major metabolic

pathways (Meijer and Codogno 2009; Avruch et al.

2009; Kim and Guan 2011; Laplante and Sabatini 2012;

Shanware et al. 2013; Cornu et al. 2013; Kim et al.

2013b).

The initial part of this signaling pathway, upstream of

MTOR, an evolutionary conserved serine/threonine protein

kinase which was first described by (Heitman et al. 1991),

involves the insulin receptor, IRS1 and IRS2, PIK3C1,

producing PI(3,4,5)P3 and PI(3,4)P2, PDK1 and PKB

(Fig. 2). For activation of MTOR, the presence of insulin

alone is not sufficient: The presence of amino acids is

indispensable (Blommaart et al. 1995; Hara et al. 1998;

Meijer and Codogno 2009; Barazzoni et al. 2012) (see

below).

The second part of the insulin-signaling pathway,

downstream of MTOR, may involve components such as

S6K, 4E-BP1, eIF2a kinase and eEF2 kinase. Phosphory-

lation of these proteins by MTOR promotes protein

synthesis.

MTOR itself is part of two multiprotein complexes.

MTORC1 contains MTOR, RAPTOR, mLST8, and the

inhibitory proteins DEPTOR and PRAS40. MTORC2

(not indicated in Fig. 2) contains MTOR, RICTOR,

mLST8, mSin1, PROTOR and DEPTOR. Activation of

MTORC1 simultaneously inhibits autophagy and stimu-

lates protein synthesis (Meijer and Codogno 2009; Lap-

lante and Sabatini 2012). Activation of MTORC2 does

not have these effects but rather phosphorylates, and

activates, PKB. In liver, for example, this results in

stimulation of glycolysis and lipid biosynthesis (Hagiw-

ara et al. 2012). MTORC1 and MTORC2 can be distin-

guished on the basis of their sensitivity toward inhibition

by rapamycin which only inhibits MTORC1 (Sarbassov

et al. 2006). Although the kinase activity of MTOR in

MTORC2 is insensitive to acute rapamycin treatment,

chronic exposure to the drug can disrupt its structure and

results in insulin resistance (Sarbassov et al. 2006; Ye

et al. 2012).

The activity of MTOR in MTORC1 is inhibited by the

heterodimer TSC1/TSC2: it acts as a GTPase-activating

protein complex for the small G-protein Rheb. RhebGTP,

not RhebGDP, binds and activates MTOR. PKB phos-

phorylates TSC2, which inactivates the TSC1/TSC2

complex and stimulates MTORC1 (Fig. 2). In addition,

MTORC1 is stimulated by PKB-dependent phosphory-

lation of PRAS40 (Manning and Cantley 2007).
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Interaction of the insulin-amino acid-MTOR signaling

pathway with autophagy

The insulin/growth factor-PIK3C1-PKB-MTOR signaling

pathway inhibits autophagosome formation at several

levels.

MTOR phosphorylates ULK1/2 and ATG13 which

results in their dissociation and in inactivation of ULK

(Ganley et al. 2009; Jung et al. 2009; Mizushima and

Komatsu 2011; Lorin et al. 2013a). MTOR also inactivates

PIK3C3, albeit indirectly, i.e., when the lipid kinase is

associated with ATG14, by phosphorylating ATG14 (Yuan

et al. 2013). Long-term regulation of autophagy by MTOR

occurs by phosphorylation of the transcription factor EB

(TFEB), a master regulator of the synthesis of ATG pro-

teins and of the biogenesis of lysosomes. This phosphor-

ylation prevents translocation of TFEB to the nucleus

(Settembre et al. 2012). In addition, the activity of TFEB is

inhibited by nutrient- and growth factor-dependent extra-

cellular signal-regulated kinase 2 in an MTOR-independent

fashion (Settembre et al. 2011) (Fig. 2). The same protein

kinase can also inhibit autophagy in the short term by

phosphorylation of TSC1/TSC2 (Kim et al. 2013b).

The complexity of the regulation of autophagy byMTOR

is illustrated by the fact that MTOR not only inhibits ULK1

but that, conversely, ULK1 also inhibits MTOR by phos-

phorylation. This inhibition of MTORC1 by ULK1 may

serve to amplify and stabilize initially small changes in

nutrient signaling (Chang et al. 2009; Jung et al. 2011).

Autophagy is also controlled by PKB. Short-term regu-

lation occurs by PKB-dependent phosphorylation of Beclin1

(Wang et al. 2012) (Fig. 2). Long-term regulation by PKB

occurs by phosphorylation of FoxO3, another transcription

factor responsible for the synthesis of ATG proteins

(Mammucari et al. 2007). This set of ATG proteins differs

from that controlled by TFEB (Settembre et al. 2011).

In addition to these various phosphorylation mecha-

nisms, PI(3,4,5)P3 and PI(3,4)P2, the products of PIK3C1,

are inhibitors of autophagy, possibly because these lipids

compete with PI(3)P (Petiot et al. 2000; Meijer and Cod-

ogno 2009; Farrell et al. 2013).

Regulation of autophagy by amino acids and hormones:

some history

Initial studies on the regulation of autophagy were primarily

carried out with liver, both in vitro with the perfused liver

and isolated hepatocytes, and in vivo. The process was

known to be product inhibited by amino acids (Schworer

cFig. 2 Regulation of autophagy by amino acids. Autophagosome formation is regulated by two major modulators of autophagy, the MTORC1

and PIK3C3 complexes, which integrate amino acid signaling. Under fed conditions, when MTORC1 is fully active, MTORC1 downregulates

autophagy by phosphorylating ULK1 and ATG13, which inhibits the ULK1 complex. MTORC1 also inhibits the synthesis of ATG proteins and

the synthesis of proteins involved in the biogenesis of lysosomes at the transcription level, by preventing the translocation of TFEB to the

nucleus. MTORC1 is activated in two ways: first, by insulin/growth factor signaling which involves PIK3C1, PDK1, PKB and TSC1/TSC2 as

signaling components, and second, by amino acids through the Rag GTPases. To be active, MTORC1 has to localize at the lysosomal membrane,

where its co-activator RhebGTP resides. In response to amino acids, Rag promotes the translocation of MTORC1 to the lysosomal membrane and

its consecutive activation. Rag proteins are heterodimers of two subunits: RagA/B and RagC/D in which RagA/B is linked to GTP and RagC/D to

GDP in the most active form of the dimer. The Rag GTPases are regulated by the v-ATPase, Ragulator and leucyl-tRNA synthetase (LRS). The

nucleotide status of RagA/B and of RagC/D is regulated by GATOR and folliculin, respectively (not shown in the figure, for the purpose of

clarity; see main text). In response to a rise in the intralysosomal pool of amino acids, the v-ATPase, present in the lysosomal membrane, changes

its conformation and recruits Ragulator which displays a guanine nucleotide exchange factor (GEF) activity toward RagA/B. This results in the

formation of RagA/BGTP and the activation of MTORC1. In this mechanism, the transporter PAT1, responsible for the efflux of amino acids from

the lysosome, controls the concentration of amino acids in the lysosomal lumen and thus the extent of MTORC1 activation. In the presence of

cytosolic leucine, binding of leucine to LRS reveals its GTPase-activating protein (GAP) activity toward RagC/D, resulting in the formation of

RagC/DGDP and activation of MTORC1. The activity of Rag is also promoted by glutamate dehydrogenase (GDH). This mitochondrial enzyme,

which plays a central role in amino acid catabolism, is allosterically activated by leucine. The production of 2-oxoglutarate by GDH may

stimulate the loading of RagB with GTP. GDH may also activate MTORC1, and inhibit autophagy, through other distinct mechanisms. (1) The

production of NAD(P)H by GDH may lead to the reduction of ROS, a potent activator of autophagy which acts through MTORC1-dependent and

MTORC1-independent pathways (i.e., by inhibiting MTORC1 and PKB and by activating AMPK and ATG4). In addition to NAD(P)H,

2-oxoglutarate can also act as a scavenger of ROS, which oxidizes 2-oxoglutarate to succinate non-enzymatically. (2) The production of

2-oxoglutarate by GDH replenishes the citric acid cycle intermediates, increases the rate of ATP production and inhibits AMPK. The fall in

AMPK activity may inhibit autophagy by MTORC1-dependent and MTORC1-independent mechanisms (i.e., by inhibition of TSC1/TSC2,

stimulation of MTORC1 and inhibition of the ULK1 complex and of Beclin1). Probably acting in parallel with the Rag GTPase pathway,

MAP4K3 and IPMK are other proteins involved in the regulation of MTORC1 by amino acids. The extracellular pool of amino acids may be

sensed by the plasma membrane amino acid receptor T1R1/T1R3, which regulates MTORC1 and autophagy. The other major protein complexes

controlling autophagy contain the Beclin1 protein. The core proteins of these two complexes are Beclin1, PIK3C3 and PIK3R4. When associated

with ATG14 and AMBRA1, Beclin1 stimulates the early steps of autophagosome formation, downstream of the ULK1 complex. When

associated with UVRAG, Beclin1 is mainly involved in the formation and maturation of autophagosomes. In response to amino acids, the protein

kinase JNK1 becomes inhibited, leading to the formation of a stable complex between Beclin1 and Bcl-2 which sequesters Beclin1 and results in

inhibition of autophagy. Beclin1 is also inhibited by PKB-dependent phosphorylation, which likewise inhibits autophagy. Long-term regulation

of autophagy by PKB occurs by phosphorylation of FoxO3, another transcription factor (in addition to TFEB) responsible for the synthesis of

ATG proteins. For further details, see main text. For reasons of clarity, the control of the inhibitory acetylation of ATG proteins by mitochondrial

amino acid catabolism, which increases the concentration of acetyl CoA in the cytosol, is not indicated in the figure
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and Mortimore 1979; Seglen et al. 1980), stimulated by

glucagon (Ashford and Porter 1962; Deter et al. 1967) and

inhibited by insulin (Mortimore and Mondon 1970), but the

mechanisms underlying these effects were unknown at the

time. Interestingly, in the perfused liver insulin and gluca-

gon did only affect autophagy at intermediate amino acid

concentrations but had no effect in the absence of amino

acids when autophagic flux was maximal, nor did they have

an effect in the presence of high concentrations of amino

acids that inhibited autophagy maximally (Schworer and

Mortimore 1979; Mortimore et al. 1987). It was also clear

that regulation of autophagy by these factors was primarily

exerted at the level of autophagosome formation (the

autophagic sequestration step), although effects at later

stages in the autophagic pathway could not be excluded

(Hoyvik et al. 1991; Luiken et al. 1996). One confounding

factor in experiments in vitro has been the accumulation of

ammonia, derived from amino acid degradation which was

found to increase the intralysosomal pH because of its ac-

idotropic properties (Seglen 1977; Kadowaki and Kanaza-

wa 2003). Even today, this complication is not always

appreciated and unawareness of it may lead to erroneous

conclusions (Meijer 2009).

Our own interest in the regulation of autophagy by

amino acids was triggered by experiments performed with

freshly isolated, perifused, rat hepatocytes under true

steady-state conditions. Intriguingly, we found that a sim-

ple combination of leucine and alanine (which was selected

on the basis of existing literature) at near-physiological

concentrations could mimic the inhibitory effect on auto-

phagic proteolysis of a complete mixture of all amino acids;

either alanine or leucine alone had no effect (Leverve et al.

1987). Similar observations were made by Mortimore and

colleagues for the perfused liver (Mortimore et al. 1988).
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Combinations of low concentrations of leucine and either

proline, glutamine, or asparagine were also effective as

inhibitors of autophagy (Caro et al. 1989). With leucine

present, the inhibition by alanine, but not by proline, glu-

tamine, or asparagine, was sensitive to inhibition by amino-

oxyacetate, a transaminase inhibitor (Leverve et al. 1987;

Caro et al. 1989). This indicated that metabolism of alanine,

but not that of leucine, was required for its inhibitory effect

on autophagy. As conversion of proline and glutamine to

glutamate and of asparagine to aspartate does not require

transamination reactions, we suspected that a combination

of leucine with intracellular glutamate or aspartate (which

does not readily leave hepatocytes) was sufficient to inhibit

autophagy maximally. Indeed, in the presence of leucine

and either alanine, proline, glutamine, or asparagine, there

was an inverse relationship between the rate of autophagic

proteolysis and the intracellular concentration of glutamate

plus aspartate (Caro et al. 1989). However, the underlying

mechanism for the inhibition of autophagy was entirely

unknown. Interestingly, the same amino acids that inhibited

hepatic autophagic proteolysis were also known to inhibit

proteolysis in other tissues, including skeletal muscle, heart

and kidney, with leucine being most effective (Blommaart

et al. 1997a).

A new factor in the control of autophagic protein deg-

radation was introduced with the observation, initially

reported for liver but later extended to other cell types, that

an increase in cell volume was able to mimic several of the

anabolic properties of insulin, including inhibition of gly-

cogenolysis (Lang et al. 1989), inhibition of proteolysis

(Hallbrucker et al. 1991), stimulation of protein synthesis

(Stoll et al. 1992) and lipogenesis (Baquet et al. 1991). Cell

swelling was induced by either hypo-osmotic conditions or

by Na?-dependent concentrative transport of amino acids

across the plasma membrane. We suspected that intracel-

lular accumulation of impermeant metabolites such as

glutamate and aspartate, derived from amino acid degra-

dation, also helped to increase the intracellular osmolarity

and in this way contributed to cell swelling. In freshly

isolated hepatocytes, cell swelling was found to mimic the

effect of insulin in that it potentiated the ability of a

complete mixture of amino acids, or of a combination of

leucine with tyrosine and phenylalanine, to inhibit auto-

phagic proteolysis (Meijer et al. 1993; Luiken et al. 1994).

Around the same time, our group in Amsterdam, in

collaboration with the group of Hue in Brussels, studied the

mechanism of the stimulation by amino acids of glycogen

synthesis from glucose. This stimulation, first reported by

Katz and colleagues (Katz et al. 1976), had been investi-

gated by many laboratories but its mechanism was never

elucidated. We discovered that the synthesis of glycogen,

too, was due to an amino acid-induced increase in cell

volume (Baquet et al. 1990). Leucine, which did not

increase cell volume, had no effect, indicating that the

mechanism of the stimulation of glycogen synthesis by

amino acids differed from that of their inhibition of

autophagy. It was known at the time that, in response to an

increase in cell volume, cells undergo ‘‘regulatory volume

decrease’’ in which they try to restore, at least in part, the

original volume by releasing KCl (Hoffmann and Simon-

sen 1989; Häussinger 1996). We then found that the

enzyme glycogen synthase phosphatase was inhibited by

intracellular chloride and that the fall in chloride in

response to cell swelling was sufficient to activate this

enzyme and thus the synthesis of glycogen (Meijer et al.

1992). With regard to autophagy, the mechanism of inhi-

bition by cell swelling was, and still is, not clear. Perhaps

chloride ions are involved because they accompany pro-

tons, driven by the ATP-dependent lysosomal proton

pump, to the lysosomal interior (Ishida et al. 2013). Very

recent evidence suggests that this may, indeed, be the case

(Hosogi et al. 2014). An effect of cell swelling on the

cytoskeleton, mediated by integrins, is another, or addi-

tional, possibility (Häussinger et al. 2006).

In summary, in the control of autophagy, leucine

appeared to be the most inhibitory amino acid. In addition,

its anti-proteolytic effect was potentiated by insulin and by

cell swelling.

Discovery of amino acid signaling and its relationship

with autophagy

Early studies by Seglen and coworkers with protein kinase

and protein phosphatase inhibitors indicated that protein

phosphorylation was involved in the regulation of

autophagy in hepatocytes, but the connection with amino

acids was not made (Holen et al. 1992, 1993).

A breakthrough in our understanding of the mechanism

by which amino acids inhibit autophagy (and stimulate

protein synthesis) was obtained by the Amsterdam group in

a study carried out with [32P]Pi-labeled rat hepatocytes. It

was discovered that the same amino acid mixtures that

inhibited autophagy greatly stimulated (up to fivefold) the

phosphorylation of a protein that was identified as ribo-

somal protein S6, with rapid kinetics (t1/2, 10 min). The

stimulation of S6 phosphorylation by amino acids was not

due to the inhibition of a protein phosphatase acting on S6

(Luiken et al. 1994; Blommaart et al. 1995). Dephospho-

rylation of S6 followed similar rapid kinetics upon with-

drawal of amino acids or by addition of rapamycin. We

observed synergy between either insulin or cell swelling

and low concentrations of a complete mixture of amino

acids, not only with regard to their inhibition of autophagic

proteolysis but also with regard to their ability to promote

S6 phosphorylation. Addition of insulin alone, in the
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absence of added amino acids, did not stimulate S6 phos-

phorylation. In the presence of high concentrations of

amino acids, S6 phosphorylation was maximal and not

further increased by insulin. Glucagon, on the other hand,

stimulated autophagy and inhibited S6 phosphorylation at

low, but not at high concentrations of amino acids or in

their absence. Among various amino acids, leucine, not

valine, appeared to be very effective. Under several incu-

bation conditions, with different amino acid mixtures, in

the absence or presence of insulin and glucagon, there

appeared to be a linear relationship between the percentage

of inhibition of autophagic proteolysis (measured in the

presence of a low concentration cycloheximide sufficient to

inhibit simultaneous protein synthesis) and the degree of

phosphorylation of S6 (Blommaart et al. 1995). Amino

acid-induced S6 phosphorylation was completely pre-

vented by rapamycin, indicating that MTOR and S6K were

components of the signaling pathway. Of great significance

was the fact that rapamycin could partly (albeit not com-

pletely, this will be explained later) reverse the inhibition

of autophagy by amino acids. It should be stressed, how-

ever, that in the absence of cycloheximide, rapamycin also

did not completely inhibit protein synthesis. Because at

that time MTOR signaling was known to be involved in the

regulation of protein synthesis, it was concluded that

(global) protein synthesis and (autophagic) protein degra-

dation were under the opposite control by the same sig-

naling pathway, which was considered to be metabolically

efficient (Blommaart et al. 1995).

These studies were the first to demonstrate that amino

acids were essential for MTOR-mediated signaling and that

this signaling was connected to the regulation of autoph-

agy. They were also the first demonstration that rapamycin

was able to stimulate autophagy.

The stimulation of autophagy by rapamycin was con-

firmed several years later for other cell types (Mordier et al.

2000; Eskelinen et al. 2002; Moazed and Desautels 2002),

including yeast (Noda and Ohsumi 1998), and rapamycin is

nowadays widely used as an activator of autophagy (Ru-

binsztein et al. 2012). Torin1, a newly developed ATP-

competitive inhibitor of MTOR, acts similarly (Thoreen

et al. 2009).

The ability of amino acids to stimulate signaling even in

the absence of insulin, and the synergy of amino acids with

insulin, was confirmed for hepatocytes (Krause et al. 1996)

and for other insulin-sensitive cell types, including muscle

cells, adipocytes, hepatoma cells, CHO cells and pancreatic

b-cells (Hara et al. 1998; Wang et al. 1998; Fox et al. 1998;

Patti et al. 1998; Xu et al. 1998; Iiboshi et al. 1999). In

these studies, it was shown that, in addition to S6, other

downstream targets of MTOR such as S6K, 4E-BP1, eIF2a
kinase (the equivalent of Gcn2 in yeast) and eEF2 kinase

were found to be phosphorylated in response to amino

acids. However, these studies also indicated that amino

acids did not affect PKB activity and PIK3C1, signaling

proteins upstream of MTOR that were known to be stim-

ulated by insulin. It was also demonstrated that in case

insulin alone, in the absence of added amino acids, stim-

ulated MTOR signaling, this was dependent on the pre-

sence of amino acids that were generated by autophagic

proteolysis (Shigemitsu et al. 1999a; Beugnet et al. 2003;

Duran et al. 2011). Noteworthy is that the kinetics of the

stimulation by amino acids of MTOR-mediated phospho-

rylations in these various cell types were similar to those

observed by Blommaart et al. (1995) with regard to S6

phosphorylation in hepatocytes. They were also similar to

the rapid phosphorylations reported very recently in an

extensive study on the early temporal dynamics of the

phosphoproteome in breast cancer cells upon initiation of

autophagy by either withdrawal of amino acids or by

addition of rapamycin (Rigbolt et al. 2014).

Most studies agreed that leucine (but not the other bran-

ched-chain amino acids), independent of the cell type, was

the most effective amino acid in stimulating signaling but

that, in addition, some other amino acidswere required (Hara

et al. 1998;Wang et al. 1998; Fox et al. 1998; Patti et al. 1998;

Xu et al. 1998; Kimball et al. 1999; Shigemitsu et al. 1999b;

van Sluijters et al. 2000; Lynch et al. 2000; Atherton et al.

2010). In analogy with the inhibition of autophagy and the

stimulation of S6 phosphorylation by amino acids (see

above), it was proposed that leucine, in combination with

amino acid-induced cell swelling, would be sufficient to

stimulate signaling (van Sluijters et al. 2000). In line with

this, Krause et al. (2002b) showed synergy between gluta-

mine, a potent amino acid in promoting cell swelling, and

leucine with regard to S6K phosphorylation in hepatocytes.

In intestinal cells, with their rapid growth, in addition to

glutamine and leucine, arginine has also been mentioned as

an activator of MTOR signaling (Nakajo et al. 2005; Marc

and Wu 2009). In CHO cells, arginine also stimulated sig-

naling albeit less effective than leucine (Hara et al. 1998).

Although never considered, it is possible that the effect of

arginine may be attributed, at least in part, to glutamate

produced from arginine by the combined actions of arginase,

ornithine aminotransferase and pyrroline 5-carboxylate

dehydrogenase. Involvement of NO production from argi-

nine can also not be excluded (Angcajas et al. 2014).

In order to account for the synergy between amino acids

and insulin with respect to the activation of MTOR, it had

to be assumed that MTOR received two parallel input

signals, one from the insulin-PIK3C1-PKB signaling

branch and one from amino acids (cf. (van Sluijters et al.

2000; Shah et al. 2000), for reviews). We now know that

this is, indeed, the case (cf. Fig. 2): Insulin activates

MTOR through PKB-dependent phosphorylation of TSC2,

which results in activation of Rheb, and of PRAS40 as
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discussed earlier, while amino acids separately activate

MTOR by mechanisms to be discussed below. However,

the relative contribution of insulin and amino acids in the

regulation of MTORC1 and autophagy may be tissue

dependent. Thus, in mice in vivo, insulin appeared to be

more potent in stimulating MTORC1 and inhibiting

autophagy in muscle than in liver. By contrast, amino acids

were more potent in the control of MTORC1 and autoph-

agy in the liver than in muscle (Naito et al. 2013). This

difference between the two tissues was tentatively ascribed

to the regulation of MTORC1 and of autophagy by glu-

cagon in the liver, but not in muscle. Another possibility is

that there are differences in the intramuscular and intra-

hepatic amino acid concentrations.

S6K was also shown to phosphorylate, and inhibit, IRS1

(Tremblay and Marette 2001). Although this feedback

effect of S6K has been proposed to participate in the eti-

ology of insulin resistance (Um et al. 2004; Efeyan et al.

2014), it may also act as a mechanism to prevent overac-

tivation of the MTOR pathway in order to allow some

autophagy to continue even under nutrient-rich conditions

(Meijer and Codogno 2009).

The inhibition of MTOR signaling by glucagon was

later shown to proceed through a mechanism dependent on

protein kinase A (Kimball et al. 2004), which stimulates

autophagy (Mavrakis et al. 2006). It must be pointed out

that, in contrast to mammalian cells, activation of protein

kinase A in yeast cells inhibits autophagy (Stephan et al.

2009). In this context, it is important to stress that the

function of cAMP in yeast, in contrast to that in mamma-

lian cells, is to stimulate cell growth (Thevelein and de

Winde 1999).

The requirement of PI(3)P for autophagy

Although in the presence of amino acids, rapamycin was

able to stimulate autophagy, interruption of signaling by

the PIK3C1 inhibitors wortmannin and LY294002, unex-

pectedly, did not. Even more surprising was the finding that

in the absence of amino acids, with maximal autophagic

flux, these two compounds strongly inhibited autophagy

(Blommaart et al. 1997b). At the time, mammalian cells

were known to contain both PIK3C1 and PIK3C3 while

yeast only contained the homolog of PIK3C3, Vps34 (and

its adapter protein Vps15). Vps34 was known to be

involved in processes requiring membrane flow (Schu et al.

1993), but its relationship with autophagy was not yet

studied in this organism. Because the phosphatidylinositol

3-kinase inhibitors wortmannin and LY294002 were not

specific in that they could not distinguish between PIK3C1

and PIK3C3, it was postulated that perhaps PIK3C3, and

thus its product PI(3)P, might be essential for autophagy

(Blommaart et al. 1997a, b). This hypothesis was tested,

and confirmed, in transfection experiments using HT-29

cells, a human colon cancer cell line, which showed that

PI(3)P was, indeed, required for autophagy. Moreover, the

products of PIK3C1, PI(3,4)P2 and PI(3,4,5)P3 acted as

inhibitors of autophagy (Petiot et al. 2000). In further

support of this, it was found that overexpression of PTEN,

which removes the phosphate from the 3-position of

PI(3,4)P2 and PI(3,4,5)P3, increased autophagy (Arico

et al. 2001).

These observations were the first to show that PI(3)P

participated in the process of autophagy. They have been

amply confirmed for both mammalian cells and yeast

(Kihara et al. 2001; Suzuki et al. 2001; Jaber et al. 2012;

Schink et al. 2013; Cheng et al. 2014).

3-Methyladenine

An important spin-off from these studies was our finding

that 3-methyladenine, a specific inhibitor of autophagy

described by Gordon and Seglen in as early as 1982 (Se-

glen and Gordon 1982), and which has proven to be

extremely useful in studies on autophagy (to this day),

turned out to be an inhibitor of PIK3C3. This provided a

satisfactory explanation for its mechanism of action

(Blommaart et al. 1997b; Petiot et al. 2000).

Autophagy regulation and energy: the role of AMPK

Apart from being activated by insulin and amino acids,

MTOR was also found to be affected by the cellular energy

state. Initial studies with HEK293 cells indicated that

MTOR may also act as a sensor of the intracellular ATP

concentration (Dennis et al. 2001). It was noted that among

various protein kinases the Km of MTOR for ATP in vitro

was exceptionally high and within the physiological (mM)

range of ATP concentrations. Because intracellular AMP is

much more sensitive than ATP as an indicator of the cel-

lular energy state, being connected to ATP in the reversible

adenylate kinase reaction, AMPK was later considered as

another candidate controlling MTOR activity. Indeed,

studies simultaneously reported by several laboratories,

including our own, demonstrated that, rather than the

decreased ATP concentration, it was the activation of

AMPK that was responsible for the inhibition of MTOR

when energy falls short (Fig. 1) (Dubbelhuis and Meijer

2002; Bolster et al. 2002; Larsen et al. 2002; Krause et al.

2002a; Kimura et al. 2003). In agreement with the notion

that inhibition of MTOR results in stimulation of autoph-

agy (as discussed earlier), and also in line with its function

to stimulate catabolism (Hardie 2007), it was reported, first
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by us (Meley et al. 2006) and later by others (Hoyer-

Hansen et al. 2007; Liang et al. 2007), that AMPK is

essential for autophagy. The activation of AMPK also

underlied the stimulation of autophagy in cerebral (Adhami

et al. 2006) and cardiac ischemia (Matsui et al. 2007).

The mechanism by which AMPK inhibited MTOR was

twofold. The first mechanism proceeded via AMPK-med-

iated phosphorylation, and activation, of TSC2 (Inoki et al.

2003; Corradetti et al. 2004) which catalyzes the conver-

sion of RhebGTP to RhebGDP. The second mechanism

proceeded via phosphorylation, and inactivation, of RAP-

TOR (Gwinn et al. 2008) (Fig. 2).

The stimulation of autophagy by AMPK, however, was

not only through inhibition of MTOR but also occurred by

AMPK-mediated phosphorylation, and activation, of ULK1

(Egan et al. 2011; Kim et al. 2011a). Interestingly, ULK1 is

thus phosphorylated by both MTOR and AMPK, but at

different sites, with opposing effects on ULK1 activity

(Meijer and Codogno 2011). In addition, it was recently

shown that in response to glucose starvation AMPK phos-

phorylates, and activates, Beclin1 provided it is associated

with PIK3C3 and ATG14 (Kim et al. 2013a). Thus, as

ULK1, Beclin1 is phosphorylated at different sites, with

opposing effects: in this case by AMPK (activation) and, as

discussed earlier, by PKB (inhibitory) (Fig. 2).

Inhibition of AMPK activity by amino acids (cf. next

paragraph), and thus inhibition of Beclin1, would account

for an earlier observation showing that amino acids

decreased Beclin1-associated PIK3C3 activity (Tassa et al.

2003). An additional explanation is that amino acids pro-

mote the association between Beclin1 and Bcl-2, and thus

Beclin1 sequestration (Pattingre et al. 2005), through

inhibition of JNK1-mediated phosphorylation of Bcl-2

(Wei et al. 2008).

Yet another mechanism by which AMPK can promote

autophagy may proceed through activation of Sirtuin1,

an NAD-dependent protein deacetylase (Canto et al.

2009; Ruderman et al. 2010). Sirtuin1, which increases

in starvation, is known to stimulate autophagy by

increasing the deacetylation of several ATG proteins

(Lee et al. 2008). In addition, Sirtuin1 stimulates the

deacetylation of FoxO3 which also results in activation

(Canto et al. 2009). Conversely, acetylation of ATG

proteins, which inhibits their activity, is brought about

by the acetyltransferase P300 (also known as EP300)

(Lee and Finkel 2009).

In principle, the inhibition of AMPK by amino acids

would be an attractive mechanism to account for their

ability to inhibit autophagy and to stimulate MTOR

activity. Such an effect of amino acids on AMPK could be

mediated by glutamate dehydrogenase, which plays a

central role in amino acid catabolism and which is known

to be specifically stimulated by leucine, not by the other

branched-chain amino acids (Sener and Malaisse 1980;

Fahien et al. 1990). This enzyme produces 2-oxoglutarate,

replenishes citric acid cycle intermediates and thus helps to

increase the rate of ATP production. Indeed, in many

studies, inhibition of AMPK by amino acids has been

observed (Xiao et al. 2011; Ghislat et al. 2012; Li et al.

2013). This was not always the case, however (Krause et al.

2002a; Kim et al. 2011a; Wauson et al. 2012; Duran et al.

2013; Rahman et al. 2014).

Because metabolism differs among cell types, e.g., with

differences in the use of oxidizable substrates, it is

understandable that the effect of amino acids on AMPK

may vary. Although it is possible that AMPK is involved in

amino acid regulation of autophagy and of MTOR signal-

ing in some cell types, other amino acid sensing mecha-

nisms may also exist. These will be discussed below.

Mechanisms of amino acid signaling

The mechanism by which amino acids stimulate MTOR

activity, and inhibit autophagy, has remained, and still is to

some extent, an enigma for a long time. Amino acids do not

directly stimulate signaling upstream of MTOR, as dis-

cussed above, nor do they stimulate MTOR directly (van

Sluijters et al. 2000; Kim and Guan 2011; Laplante and

Sabatini 2012). However, as discussed in the previous

paragraph, they can do so indirectly by inhibition of

AMPK, depending on the cell type. As also mentioned

earlier, in most cell types, among the various amino acids,

leucine, but not the other branched-chain amino acids

valine and isoleucine, is most potent in inhibiting autoph-

agy and stimulating MTOR, and non-metabolizable ana-

logs of leucine could mimic its effect. Catabolism of

leucine does not seem to be required (Lynch et al. 2003).

Indeed, fibroblasts from patients with defects in leucine

catabolism displayed enhanced MTOR activity (Schriever

et al. 2013). However, a role for leucine catabolites in

MTOR signaling cannot entirely be ruled out. Thus, in

experiments in man, administration of the leucine metab-

olite b-hydroxy-b-methylbutyrate, a compound that in

clinical settings is used to treat disease-related muscle

wasting, has been shown to stimulate skeletal muscle

growth through the MTOR pathway (Wilkinson et al.

2013). It cannot be excluded that this compound, by

serving as an oxidizable substrate, decreases AMPK

activity and in this way stimulates MTOR signaling. A link

between b-hydroxy-b-methylbutyrate-stimulated MTOR

activity and the control of autophagy was not established.

It is concluded that any mechanism of amino acid

sensing must account for the high leucine specificity.

Several factors involved in amino acid-MTOR sig-

naling have been described in the past and have been
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reviewed in detail elsewhere (Dann and Thomas 2006;

Avruch et al. 2009; Meijer and Codogno 2009; Kim and

Guan 2011; Laplante and Sabatini 2012) (Fig. 2). These

include, a.o., MAP4K3, PIK3C3, the G-protein Rheb,

proton-assisted amino acid transporters in the lysosomal

membrane, the Rag GTPases, leucyl-tRNA synthetase,

the adapter protein p62, phospholipase D and inositol

polyphosphate multikinase. The evidence in support of

these various factors relied on the observation that

elimination of any one of them strongly interfered with

the ability of amino acids to stimulate MTOR signaling.

In none of these studies, however, the nature of the

primary amino acid sensor was identified. As will

become clear, some of these factors are part of one

mechanism responsible for the activation of MTOR

activity by amino acids, whereas others participate in

mechanisms that are independent of, but act in parallel

to, each other.

Rheb

A potential mechanism of amino acid sensing was sug-

gested by the observation that amino acids, leucine in

particular, promote the association of Rheb with MTOR

(Long et al. 2005). Although the effect was said not to be

due to increased loading of Rheb with GTP (Long et al.

2005), other data indicate that amino acids did in fact

promote the loading of Rheb with GTP (Smith et al. 2005;

Roccio et al. 2006; Tzatsos and Kandror 2006; Sun and

Chen 2008), but the reason for this increase in GTP loading

was not explained. It is important to stress, however, that in

TSC knockdown cells in which Rheb was fully charged

with GTP, irrespective of the presence of amino acids,

activation of MTOR remained amino acid dependent

(Smith et al. 2005; Roccio et al. 2006). This indicated at

least one other mechanism for amino acid activation of

MTOR activity.

Rag

A big step forward in the search for a mechanism of amino

acid sensing was the demonstration that the Rag GTPases

are essential for the activation of MTOR by amino acids

(Kim et al. 2008; Sancak et al. 2008) and that active

MTORC1 appeared to be localized at the lysosomal

membrane (Sancak et al. 2010). The Rag proteins form

heterodimers between RagA/B and RagC/D, and in its most

active form, RagA/B is in the GTP form and RagC/D in the

GDP form (Tsun et al. 2013). Interestingly, amino acids

increased the charging of RagA/B with GTP (Sancak et al.

2008). It was proposed that the v-ATPase in the lysosomal

membrane, in addition to its role in proton pumping, acts as

the amino acid sensor in MTOR signaling (Zoncu et al.

2011). The v-ATPase responds to an increase in the in-

tralysosomal, rather than the cytosolic, amino acid con-

centration with a conformational change. This causes

increased binding of Ragulator, a scaffolding protein

complex consisting of 5 different proteins with guanine

nucleotide exchange activity toward RagA and RagB,

which anchors the Rag proteins to the lysosomal surface

(Bar-Peled et al. 2012). At the extralysosomal surface

MTORC1 interacts with Rheb and becomes activated.

Recruitment of the MTOR–Rag protein complex to the

lysosome requires binding to the tumor suppressor protein

folliculin. Folliculin is a GTPase-activating protein that

specifically regulates the nucleotide status of RagC/D, not

of RagA/B. Folliculin binding to the lysosome further

requires association with the folliculin interacting proteins-

1 and 2 (Petit et al. 2013; Tsun et al. 2013). A protein

complex, called GATOR, composed of two subcomplexes,

GATOR-1 and -2, also interacts with the Rags. As follic-

ulin, GATOR-1 acts as a GTPase-activating protein but in

this case toward RagA and RagB, not RagC and D, and

thereby suppresses MTORC1 activity (Bar-Peled et al.

2013). Inactivating mutations of its components, which

may occur in cancer, makes MTORC1 signaling resistant

to amino acid deprivation. GATOR-2, in turn, negatively

regulates GATOR-1 so that inhibition of GATOR-2 sup-

presses MTORC1 signaling.

The v-ATPase-mediated mechanism of amino acid

sensing by MTORC1 at the lysosomal surface requires the

proton gradient across the lysosomal membrane (Settembre

et al. 2012). The activity of the lysosomal proton-assisted

amino acid transporter PAT1, responsible for the efflux of

amino acids from the lysosomes, may control the concen-

tration of amino acids within the lysosomal lumen and thus

the extent of MTORC1 activation (Zoncu et al. 2011), but

the participation of other amino acid transporters in the

lysosomal membrane cannot be ruled out (Efeyan et al.

2012). If the mechanism is correct, it must be speculated

that among the various amino acids leucine is specially

active in inducing the conformation change of the v-ATP-

ase. In vitro experiments with isolated lysosomes in which

the conditions for binding to the lysosomal membrane, and

activation, of MTORC1 were analyzed have suggested that

this may, indeed, be the case (Zoncu et al. 2011).

The fact that MTOR activity in MTORC1 is determined

by the size of the intralysosomal pool of amino acids

implies that the use of compounds such as the v-ATPase

inhibitor bafilomycin or the acidotropic agent chloroquine

cannot be recommended to estimate autophagic flux by

monitoring the accumulation of the autophagosomal mar-

ker LC3-II. This is because inhibition of proteolysis within

the lysosomes will directly affect the intralysosomal pool
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of amino acids, and thus leads to underestimation of

MTOR activity and overestimation of autophagic flux

(Juhasz 2012; Klionsky et al. 2012).

Puzzling is a recent report showing that\10 % of total

intracellular Rag colocalized with the lysosomes, although

loss of Rag from the lysosomal fraction to the cytosol

during cell disruption and fractionation by differential

centrifugation on sucrose density gradients could not be

excluded (Oshiro et al. 2013).

In addition to the localization of active MTOR, as part

of MTORC1, at the lysosomal membrane, MTOR present

in MTORC2 is localized at the mitochondria (Schieke et al.

2006; Ramanathan and Schreiber 2009; Betz et al. 2013),

presumably at the mitochondrial-endoplasmic reticulum

contact site where it controls mitochondrial function (Betz

et al. 2013).

Leucyl-tRNA synthetase

An early hypothesis proposed that free, uncharged, tRNA

participates in amino acid sensing (Hara et al. 1998; Iiboshi

et al. 1999). This hypothesis was based on observations

with yeast in which, on amino acid starvation, free tRNA

binds with high affinity to the protein kinase GCN2 (the

equivalent of eIF2a-kinase) because the active center of

GCN2 strongly resembles that of aminoacyl-tRNA syn-

thetases (Hinnebusch 1997; Dong et al. 2000). GCN2

activation results in phosphorylation of eIF2a which then

results in the derepression of GCN4 mRNA translation.

GCN4 (equivalent to mammalian ATF4) is a transcrip-

tional activator that promotes the transcription of many

genes involved in nitrogen metabolism, not only genes

involved in amino acid biosynthesis but also in autophagy

(Natarajan et al. 2001; Tallóczy et al. 2002; B’chir et al.

2013). The particular potency of leucine in activating

MTOR was proposed to be related to the frequency of

utilization of this amino acid in protein synthesis and by the

existence of multiple leucyl-tRNA synthetases arising from

the sixfold codon degeneracy (Hara et al. 1998). Because

uncharged tRNA did not affect the in vitro activity of

immunoprecipitated MTOR, it was postulated that free

tRNA interacted with an as yet unknown, signal-trans-

duction component regulating MTOR (Iiboshi et al. 1999).

Incompatible with the tRNA hypothesis, however, were

kinetic considerations (the Km of leucine for leu-tRNA

synthetase being orders of magnitude lower than prevailing

intracellular leucine concentrations) and because specific

aminoalcohols, inhibiting leu-tRNA synthetase, did not

affect MTOR signaling (Lynch et al. 2000) (contrast (Ii-

boshi et al. 1999)). Finally, at least in HEK-293 cells, free

tRNA levels did appear to change by amino acid starvation

(Dennis et al. 2001).

Interest in the tRNA mechanism revived with the finding

that leucyl-tRNA synthetase directly binds to Rag GTPase

in a leucine-dependent manner and functions as a GTPase-

activating protein (GAP) for Rag GTPase to activate

MTORC1 (Han et al. 2012). In this mechanism, leucylation

of the tRNA is not required. It is sufficient that leucine

binds to the leucine-binding domain of the leucyl-tRNA

synthetase and activates the enzyme, as measured by ATP-

[32P]PPi exchange activity (Han et al. 2012). In this con-

text, it is noteworthy that diadenosine tetraphosphate

(Ap4A), a byproduct of the aminoacyl-tRNA synthetase

reaction, was previously proposed by us as a factor

involved in MTOR stimulation by amino acids because

Ap4A is a strong inhibitor of AMPK (Meijer 2008).

It is important to stress that the two mechanisms of

amino acid sensing, discussed in the previous paragraphs,

detect different pools of amino acids: The v-ATPase senses

the intralysosomal pool of amino acids, while the leucyl-

tRNA synthetase senses cytosolic leucine. It is perfectly

possible that these two mechanisms coexist in amino acid

sensing (Yoon et al. 2011; Duran and Hall 2012a).

Glutamate dehydrogenase

Some years ago, on the basis of existing literature, we

hypothesized that glutamate dehydrogenase (GDH), in

addition to its role in amino acid catabolism, is involved in

amino acid sensing and in controlling autophagy (Meijer

2008; Meijer and Codogno 2008, 2009). The arguments

were as follows. As discussed earlier, this mitochondrial

enzyme is specifically activated by leucine. In pancreatic

b-cells, the ability of leucine (but not of valine or isoleu-

cine) to stimulate production of insulin and to stimulate

rapamycin-sensitive S6K phosphorylation was ascribed to

stimulation of GDH (Xu et al. 2001). Moreover, a mutation

in GDH, which results in overactivation of the enzyme,

underlies the hyperinsulinism/hyperammonia (HHS) syn-

drome (Li et al. 2012b). A combination of glutamine (a

glutamate donor) and leucine, which maximizes the flux

through GDH, is most effective in stimulating MTOR and

in inhibiting autophagic flux in several cell types, including

a.o., b-cells and hepatocytes ((Meijer and Codogno 2009),

for literature), as discussed earlier (cf. section ‘‘Discovery

of amino acid signaling and its relationship with autoph-

agy’’). Recent studies by Duran et al. (2012) using both

genetic and pharmacological methods have now provided

strong experimental evidence that in the course of gluta-

mine metabolism, GDH does, indeed, play a crucial role in

the activation of MTOR. It was also demonstrated that it is

the production of 2-oxoglutarate by GDH which stimulates

loading of RagB with GTP. The link between 2-oxoglu-

tarate and MTORC1 was proposed to be prolylhydroxylase
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which, in a HIF-1a-independent manner, somehow results

in increased RagBGTP (Duran et al. 2013). In these studies,

the possibility of increased production of GTP by succinyl

CoA synthetase in the course of 2-oxoglutarate oxidation in

the mitochondria, suggested by us in the past (Meijer and

Codogno 2009), was not explored.

By contrast, other data have indicated that the charging

of RagA/B with GTP does not play a role in the mechanism

of amino acid sensing. Thus, Rag heterodimers extracted

from [32P]Pi-labeled whole cells or from the pool associ-

ated with the lysosomal membrane exhibited constitutive

[32P]GTP charging that was unaltered by amino acid

withdrawal. In addition, in cells with mutant Rag which

was unable to bind GTP, activation of MTOR by amino

acids still occurred (Oshiro et al. 2013). Another concern is

that dimethyl-2-oxoglutarate, a cell-permeable analog of

2-oxoglutarate, has been shown to inhibit, rather than

stimulate, MTORC1 activity (Tan and Hagen 2013). The

reason for these differences in results is not clear.

The importance of GDH in the activation of MTOR was

also indicated, albeit indirectly, by studies of van der Vos

et al. (2012) showing that overexpression of glutamine

synthetase inhibited MTOR activity, inhibited the translo-

cation of MTOR to the lysosomes and activated autophagy.

Surprisingly, it was concluded that glutamine itself func-

tions as an inhibitor of MTOR, and thus as an activator of

autophagy, a conclusion which is in contrast to existing

literature (see above). However, the fact that increased flux

through glutamine synthetase results in increased flux

through GDH, in this case in the direction of amination,

i.e., from 2-oxoglutarate to glutamate, because of the use of

glutamate for glutamine synthesis, was overlooked (Duran

and Hall 2012b). In agreement with this interpretation is

the finding that in glutamine-depleted cells pharmacologi-

cal inhibition of glutamine synthetase greatly stimulated

MTOR activity (Tardito et al. 2012).

Apart from a role of GDH in the production of 2-oxo-

glutarate for the activation of MTOR, it is also possible that

NADPH, another product of the deamination reaction,

activates MTOR, and inhibits autophagy, by eliminating

reactive oxygen species (ROS) which are predominantly

produced in the mitochondria (Meijer and Codogno 2009).

This may occur by, e.g., the glutathione–glutathione

reductase system, and/or through direct prevention by

NADPH of ROS production at the FMN-a site of complex I

of the mitochondrial respiratory chain (Albracht et al.

2011). In this context, it is worthwhile to note that gluta-

minase-2 (liver-type), in contrast to glutaminase-1 (kidney-

type), is not sensitive to product inhibition (Kovacevic and

McGivan 1983; Mates et al. 2013). This allows a high flux

through glutaminase and GDH at a relatively high steady-

state intramitochondrial glutamate concentration. This is

not only of importance for production of NADPH via GDH

with its high Km for glutamate but it is also favorable for

the synthesis of glutathione. Interestingly, not only does a

high flux through GDH stimulate MTORC1 but, con-

versely, does MTORC1 activate GDH through transcrip-

tional repression of SIRT4, the mitochondrial localized

sirtuin that inhibits GDH (Csibi et al. 2013). This is very

efficient from the point of view of metabolic regulation.

In addition to NADPH, 2-oxoglutarate, the other product

of the GDH reaction, can also act as a scavenger of ROS,

which oxidizes 2-oxoglutarate to succinate non-enzymi-

cally (Mailloux et al. 2007).

When the production of ROS exceeds its degradation,

excessive ROS levels induce oxidative stress and damage

of cellular components including DNA, proteins and lipids.

A rise in ROS levels (e.g., in starvation) activates

autophagy as a protective mechanism, and this occurs in a

manner that is sensitive to antioxidants (Scherz-Shouval

et al. 2007; Li et al. 2012a; Morales et al. 2014; Rahman

et al. 2014) which, simultaneously, stimulate MTOR

activity (Li et al. 2013). The importance of ROS in the

initiation of autophagy was also indicated by the observa-

tion that knockdown of the antioxidant transcription factor

Nrf2 in breast cancer cells substantially increased autoph-

agy in response to oxidative stress (Rao et al. 2010). Pos-

sible targets of ROS contributing to the stimulation of

autophagy by ROS are ATG4 (Scherz-Shouval and Elazar

2011), PKB (Rahman et al. 2014), Beclin1 (Bolisetty and

Jaimes 2013) and AMPK (Toyoda et al. 2004).

Experiments very recently carried out in our laboratories

(Lorin et al. 2013b) showed that the production of ROS by

starved HeLa cells, a cervix cancer cell line, was sup-

pressed by either a complete mixture of all amino acids or

by a combination of glutamine plus leucine alone.

Knockdown of GDH prevented these effects. At the same

time, knockdown of GDH stimulated autophagy and

inhibited MTOR signaling in the presence of amino acids.

By what mechanism oxidative stress inhibits MTOR is

unknown. Possibilities are increased AMPK and decreased

PKB activities (cf. the previous paragraph). It is also pos-

sible that one, or more, of the components involved in the

amino acid sensing mechanisms discussed above is redox

sensitive. A very recent development is the finding that

TSC1/TSC2 is a target for ROS, in this case of ROS pro-

duced by peroxisomes. Interestingly, both TSC1/TSC2 and

Rheb were found to be bound to peroxisomes and TSC1/

TSC2 became activated by ROS produced by the peroxi-

somes. This resulted in the conversion of peroxisome-

bound RhebGTP to RhebGDP and in inhibition of lysosome-

bound MTORC1 (Zhang et al. 2013). This was accompa-

nied by activation of autophagy. How peroxisomal activa-

tion of TSC1/TSC2 and inhibition of Rheb caused

inactivation of lysosomal MTORC1 was not clear because

MTORC1 did not colocalize with the peroxisomes
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((Benjamin and Hall 2013; Betz and Hall 2013), for dis-

cussion). An attractive mechanism would be that MTORC1,

TSC1/TSC2 and/or Rheb shuttle between various sites in

the cell where ROS is produced locally to bring the signal to

the lysosomes which is considered to be the site responsible

for amino acid activation of MTORC1. In line with this is,

the very recent finding that deprivation of insulin and of

amino acids recruits the TSC complex to the lysosomes

where it acts to inactivate Rheb (Menon et al. 2014; De-

metriades et al. 2014). It will be of interest to see whether a

system similar to that found for peroxisomal ROS is also

present for ROS produced by the mitochondria. Indeed,

association of Rheb and MTORC1 with mitochondria

cannot be excluded (Schieke et al. 2006; Groenewoud and

Zwartkruis 2013).

In this context, it is important to note that glutamine

deprivation in pancreatic cancer cells also resulted in

increased ROS production (Son et al. 2013). Suppression of

ROS by glutamine was ascribed to production of oxalo-

acetate from glutamine-derived aspartate, followed by its

reduction to malate and subsequent production of NADPH

(and pyruvate) by malic enzyme in the cytosol. Elimination

of cytosolic aspartate aminotransferase, indeed, greatly

increased production of ROS, which could be counteracted,

at least in part, by addition of oxaloacetate (Son et al.

2013). However, net production of oxaloacetate from glu-

tamine requires net production 2-oxoglutarate, and this

cannot proceed without the participation of GDH or of

glutamate pyruvate transaminase (Yang et al. 2009). The

finding that addition of oxaloacetate in the absence of

aspartate aminotransferase could suppress ROS accumu-

lation is not surprising because a-oxoacids react non-

enzymically with ROS (Holleman 1904; Andrae et al.

1985; Mailloux et al. 2007).

In retrospect, the participation of glutamate dehydrogenase

in the control of autophagy is in agreement with the obser-

vation that autophagy was stimulated pharmacologically by

the green tea component epigallocatechin gallate (Li et al.

2011; Zhou et al. 2014). This compound is a powerful inhib-

itor of glutamate dehydrogenase (Li et al. 2006), but the link

between these phenomena was not made.

Involvement of GDH in amino acid sensing has serious

consequences for the use of chloroquine in the measure-

ment of autophagic flux. This compound not only

increases the intralysosomal pH and in this way affects

the intralysosomal amino acid pool, as discussed above

(cf. section ‘‘Rag’’) but, in addition, is also a potent

inhibitor of GDH (Jarzyna et al. 1997). This, too, leads to

overestimation of autophagic flux. Along the same line,

stimulation of autophagy by ammonia (Eng et al. 2010;

Harder et al. 2014) may be ascribed to the fact that this

metabolite drives the GDH reaction in the direction of

glutamate synthesis. An alternative, or perhaps additional,

mechanism is activation of AMPK by ammonia (Harder

et al. 2014). It must be pointed out that in the latter

experiments, ammonia was used at mM concentrations.

Although the data indicated that ammonia increased the

rate of autophagosome formation, it is highly likely that

under these conditions the intralysosomal pH was also

affected. Autophagic flux under turnover conditions, as

measured by 3-methyladenine-sensitive proteolysis, was

not analyzed, however.

PIK3C3 and p62/SQSTM1

Some years ago it was proposed that PIK3C3 is required

for amino acid signaling, an effect that is mediated by an

amino acid-induced rise in cytosolic Ca??, which results in

increased binding of Ca??/calmodulin to, and activation

of, PIK3C3 (Nobukuni et al. 2005; Gulati et al. 2008).

Apart from the fact that a rise in Ca??/calmodulin stimu-

lates autophagy through activation of AMPK by calmod-

ulin-dependent kinase–kinase-b (Hoyer-Hansen et al. 2007;

Meijer and Codogno 2009; Pfisterer et al. 2011; Ghislat

et al. 2012) and that it is more likely that cytosolic Ca??

decreases rather than increases in the presence of amino

acids (Meijer and Codogno 2009; Ghislat et al. 2012),

although this issue has been controversial (Wauson et al.

2012), these observations were puzzling because PIK3C3

also participates in the formation of autophagosomes.

A similar problem relates to the proposal that p62/

SQSTM1 participates in amino acid signaling (Duran et al.

2011), because this protein does not inhibit autophagy but

rather is required for this process.

In order to solve the problem with PIK3C3, it was

proposed that the enzyme is part of different protein

complexes with different functions (Kim and Guan 2011;

Ktistakis et al. 2012). Recent experiments indicate that this

is, indeed, the case and that different PIK3C3 complexes

exist which are differentially regulated by amino acids

(Yuan et al. 2013; Kim et al. 2013a).

It has been proposed that amino acids, by locally acti-

vating the formation of PI(3)P, actually stimulate the pro-

duction of PI(3,5)P2 by phosphatidylinositol-3-phosphate-

5-kinase. PI(3,5)P2 is able to bind to RAPTOR where it

serves to recruit MTOR downstream targets and/or to bring

MTORC1 to the proper location in the cell (Bridges et al.

2012; Jin et al. 2014).

p62/SQSTM1 may also be compartmented because

only a small part of the total cellular p62 is bound to

the MTORC1 complex through its association with the

Rag GTPases (Duran et al. 2011). As an alternative

explanation, however, we propose that autophagy itself

produces amino acids which then stimulate MTOR

activity (Shigemitsu et al. 1999a; Beugnet et al. 2003;
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Yu et al. 2010; Inoki et al. 2012). Thus, overexpression

of PIK3C3 or p62 initially activates autophagy, resulting

in increased production of amino acids from proteins

within the lysosomes. This increases the size of the

intralysosomal pool of amino acids which is sensed by

the v-ATPase in the lysosomal membrane and activates

MTOR according to the mechanism discussed above.

Conversely, if PIK3C3 or p62 becomes inhibited, auto-

phagic flux declines, the intralysosomal amino acid pool

decreases and MTOR becomes inhibited. The observa-

tion that in skeletal muscle of mice deficient of myo-

tubularin, the lipid phosphatase responsible for the

degradation of PI(3)P, autophagy is defective and

MTOR overactivated (Fetalvero et al. 2013) may be

explained similarly. Perhaps initially, autophagy is

overactivated because of the rise in PI(3)P. This results

in increased autophagic proteolysis, a rise in the con-

centration of lysosomal amino acids, upon which MTOR

becomes activated and autophagy inhibited again.

Phospholipase D

The phosphatidic acid-producing enzyme phospholipase D

(PLD) (Fang et al. 2001) has also been implicated as one of

the components taking part in the mechanism by which

amino acids activate MTORC1.

It has been reported that amino acids activate PLD1 in a

PIK3C3-dependent manner and that PLD1 is indispensable

for translocation of MTORC1 to the lysosomes and its

activation by amino acids (Yoon et al. 2011; Xu et al.

2011). In the absence of PIK3C3, addition of phosphatidic

acid only activated MTORC1 when amino acids were also

present. Addition of exogenous PI(3)P stimulated PLD1

activity in the absence of amino acids but did not activate

MTORC1 (Yoon et al. 2011). These and other observa-

tions led to the suggestion that PLD1 may be part of the

protein complex anchoring MTORC1 to the lysosomal

membrane and that the PIK3C3-PLD1 pathway acts in

parallel to the Rag pathway in regulating amino acid

activation of MTORC1 (Yoon et al. 2011; Wiczer and

Thomas 2012). Unexpectedly, the effect of PLD1 on

autophagy has been controversial: both stimulation (Dal-

l’Armi et al. 2010) and inhibition (Jang et al. 2014) of

autophagy have been reported. It was suggested that this

dual effect of PLD on autophagy, as with PIK3C3, is

dependent on the subcellular localization of PLD (Jang

et al. 2014). However, as discussed in the previous section,

it cannot be excluded that the PIK3C3-phosphatidic acid

pathway is actually required for autophagy but that

MTORC1 becomes activated after the intralysosomal pool

of amino acids has sufficiently expanded by autophagic

proteolysis.

Inositol polyphosphate multikinase

Inositol polyphosphate multikinase is another component

implicated in the mechanism responsible for stimulation of

MTOR activity by amino acids (Kim et al. 2011b). Inde-

pendent of its catalytic activity the enzyme appeared to

stabilize the binding between MTOR and RAPTOR in the

MTORC1 complex through its aminoterminal amino acid

sequence which forms a unique mammalian MTOR bind-

ing site (Kim et al. 2011b).

MAP4K3

MAP4K3 is another protein that acts upstream (Findlay

et al. 2007; Yan et al. 2010) of MTOR which becomes

activated by amino acids. Its role in amino acid sensing is

not entirely clear. It is unlikely that this kinase participates

in either the v-ATPase or the leucyl-tRNA synthetase

mechanism of amino acid sensing. Presumably, MAP4K3

is part of another pathway leading to amino acid-induced

MTOR activation (Kim and Guan 2011).

Plasma membrane amino acid receptor

Early evidence indicated that the amino acid receptor was

intracellular rather than extracellular (Martin and Suther-

land 2001; Christie et al. 2002; Beugnet et al. 2003).

However, this may not entirely be true. There are indica-

tions that the plasma membrane can also contribute to

amino acid sensing. Thus, it has been suggested that the

plasma membrane of hepatocytes contains a leucine-spe-

cific receptor protein (which does not transport leucine)

which controls autophagy independently of MTOR

(Kanazawa et al. 2004).

In analogy with yeast, plasma membrane amino acid

transporters have also been implicated in the sensing of

(extracellular) amino acid availability by mammalian cells

(Hundal and Taylor 2009; Kim and Guan 2011). Such a

role was attributed to a transport protein that mediates the

exchange between extracellular leucine and intracellular

glutamine, which allows leucine to be transported against a

concentration gradient (Nicklin et al. 2009). It must be

pointed out, however, that an intracellular localization of

the amino acid sensor implies that any process affecting the

intracellular concentration of leucine, whether it is its

transport across the plasma membrane or the rate of the

intracellular metabolism of leucine, will affect the ability

of leucine to stimulate MTOR activity.

Very recently, it was reported that the G-protein-cou-

pled taste receptor complex T1R1/T1R3, an amino acid

receptor in the plasma membrane, originally discovered in
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gustatory neurons as a detector of the umami flavor and

present in many tissues, is an early sensor of extracellular

amino acid availability (Wauson et al. 2012). Reduced

expression of T1R1/T1R3 impaired the activation of

MTOR by amino acids, caused mislocalization of

MTORC1, and accelerated autophagy under nutrient-rich

conditions. Interestingly, the intracellular concentration of

amino acids, leucine included, was not affected by

knockdown of the taste receptor even though the expres-

sion of several plasma membrane amino acid transporters

greatly increased under these conditions (Wauson et al.

2012). The question of how inactivation of MTOR and

activation of autophagy in T1R1/T1R3 receptor knock-

down cells could occur in the absence of changes in

intracellular amino acid concentrations remained unan-

swered. An obvious explanation could be that GDH was

downregulated after knockdown of the taste receptor. But

this is unlikely because this enzyme plays a central role in

amino acid catabolism and its downregulation would have

resulted in increased intracellular amino acid concentra-

tions under these conditions, which was not observed.

Another, plausible, possibility is that AMPK was activated.

However, AMPK was inhibited, instead (Wauson et al.

2012). A third possibility, i.e., that leucyl-tRNA synthetase

was affected by T1R1/T1R3 receptor knockdown, was not

explored.

Amino acid sensing and the concentration of cytosolic

acetyl CoA

A very recent development has been the finding that the

acetyltransferase EP300, responsible for the inhibitory

acetylation of several ATG proteins, because of its low

affinity (high Km) for acetyl CoA, acts as a sensor of

cytosolic acetyl CoA which translates increases in cyto-

solic acetyl CoA into inhibition of autophagy (Mariño et al.

2014b). Thus, several experimental manipulations designed

to alter cytosolic acetyl CoA, both in cultured cells and

in vivo in mice, resulted in predicted changes in autophagic

flux. Because the level of cytosolic acetyl CoA also

strongly correlated with the activity of MTORC1 the pos-

sibility that the acetylation-dependent control of autophagy

was indirect and mediated by MTORC1 could not be

excluded (Mariño et al. 2014b).

In view of these fascinating observations, it is possible

that amino acid catabolism may actually result in increased

cytosolic acetyl CoA and in this way inhibits autophagy

and stimulates MTORC1 signaling. This, then, would yet

be another mechanism by which amino acids affect these

pathways. Although this remains to be demonstrated, glu-

tamate dehydrogenase, by stimulating synthesis of citrate

followed by exit of citrate from the mitochondria and its

cleavage by ATP-citrate lyase in the cytosol, can be

expected to play an important role here, too.

Amino acid signaling and autophagy: summary

In summary, on the basis of current literature, it is clear

that there is not one unique mechanism of amino acid

sensing. Rather, several mechanisms of amino acid sens-

ing, leading to activation of MTOR, can operate. Whether

these mechanisms are context- and/or cell type-dependent,

or act in parallel, is currently not known.

Although amino acids can inhibit autophagy by activa-

tion of MTOR, they can also do so in an MTOR-inde-

pendent manner. Thus, as we have seen, amino acids can

decrease Beclin1-associated PIK3C3 activity because they

promote the association between Beclin 1 and Bcl-2

through inhibition of JNK1-mediated phosphorylation of

Bcl-2. In addition, amino acids may decrease AMPK

activity which results in dephosphorylation, and inhibition,

of Beclin1 and ULK1. This may explain why the inhibition

of autophagy by amino acids is not always fully reversed

by rapamycin. The inhibition of autophagy by insulin

through protein kinase B-induced phosphorylation of Be-

clin1 and the transcription factor FoxO3 and through the

direct inhibitory effects of PI(3,4)P2 and PI(3,4,5)P3 is also

MTORC1 independent, and thus rapamycin insensitive.

Conclusions

Our original discoveries of amino acid-stimulated, MTOR-

mediated, signaling and its role in the control of autophagy,

the regulation of these two pathways by the energy sensor

AMPK and the role of phosphatidylinositol 3-phosphate in

autophagy have opened new perspectives in the under-

standing of the regulation of cell metabolism. Given the

enormous impact of autophagy on cell function, and its

regulation by amino acid signaling, it is not surprising that

research in these fields has expanded exponentially over

the last two decades (Klionsky 2007; Ohsumi 2014).

Proper in vivo manipulation of autophagy, either pharma-

cologically or by dietary restriction, under many patho-

logical conditions may be used to the benefit of patients

(Hermans et al. 2013). The safest way is dietary restriction.

Although it is known for a very long time to be beneficial

for health, e.g., in obesity, type 2 diabetes and aging, the

underlying mechanisms are still not clear. A simple

explanation is that dietary restriction acts as a two-sided

sword. On the one hand, it reduces the redox pressure on

the mitochondrial respiratory chain, and thus diminishes

overproduction of potentially harmful ROS. On the other
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hand, dietary restriction also stimulates autophagy and

thereby contributes to the improvement of cell function

(Cavallini et al. 2008; Blagosklonny 2010; Gelino and

Hansen 2012; Eisenberg et al. 2014).
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D, Ruckenstuhl C, Ring J, Reichelt W, Schimmel K, Leeb T,

Moser C, Schatz S, Kamolz LP, Magnes C, Sinner F, Sedej S,
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Häussinger D, Reinehr R, Schliess F (2006) The hepatocyte integrin

system and cell volume sensing. Acta Physiol (Oxf) 187:249–255

Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest

by the immunosuppressant rapamycin in yeast. Science

253:905–909

Hermans G, Casaer MP, Clerckx B, Güiza F, Vanhullebusch T, Derde
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DM, Begley TJ, Behl C, Behrends C, Bekri S, Bellaire B,

Bendall LJ, Benetti L, Berliocchi L, Bernardi H, Bernassola F,

Besteiro S, Bhatia-Kissova I, Bi X, Biard-Piechaczyk M, Blum

JS, Boise LH, Bonaldo P, Boone DL, Bornhauser BC, Bortoluci

KR, Bossis I, Bost F, Bourquin JP, Boya P, Boyer-Guittaut M,

Bozhkov PV, Brady NR, Brancolini C, Brech A, Brenman JE,

Brennand A, Bresnick EH, Brest P, Bridges D, Bristol ML,

Brookes PS, Brown EJ, Brumell JH, Brunetti-Pierri N, Brunk

UT, Bulman DE, Bultman SJ, Bultynck G, Burbulla LF, Bursch

W, Butchar JP, Buzgariu W, Bydlowski SP, Cadwell K, Cahová
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Farkas T, Farré JC, Faure M, Fechheimer M, Feng CG, Feng J,
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