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Abstract Here we review the strategies for the solid-

phase synthesis of peptides starting from the side chain

of the C-terminal amino acid. Furthermore, we provide

experimental data to support that C-terminal and side-chain

syntheses give similar results in terms of purity. However,

the stability of the two bonds that anchor the peptide to the

polymer may determine the overall yield and this should be

considered for the large-scale production of peptides. In

addition, resins/linkers which do not subject to side reac-

tions can be preferred for some peptides.

Keywords Solid-phase peptide synthesis � Stepwise

elongation � Side-chain anchoring � C-terminal acid peptide

The importance of peptides in modern science has grown

exponentially in recent years. In addition to that, peptides are

considered a firm alternative to small molecules for the treat-

ment of a large number of human and animal diseases

(Albericio and Kruger 2012; Kaspar and Reichert 2013;

Scognamiglio et al. 2013; Gongora-Benitez et al. 2014). The

cosmetic and nutraceutical industries are also introducing

peptides into their products (Mentel et al. 2012; Udenigwe and

Howard 2013). Furthermore, peptides are also used in the

development of drug delivery systems and diagnostic kits (Li

et al. 2012; Vasconcelos et al. 2013). Finally, new biomaterials

for a broad range of applications are currently prepared from

peptides (Nune et al. 2013; Menzel 2013). The introduction of

these biomolecules into our everyday lives (Zompra et al.

2009; Chandrudu et al. 2013) has unquestionably been fuelled

by the development and optimization of the solid-phase syn-

thetic strategy, first described by Merrifield (Merrifield 1963).

In brief, the solid-phase peptide synthesis (SPPS) is

based on the concourse of a supported protecting group—a

polymeric support—that facilitates the stepwise elongation

of this biopolymer through sequential steps of coupling and

deprotection of protected amino acids, thus allowing the

use of large excess of reagents. At the end of the synthetic

process, a chemical treatment is usually applied to remove

the protecting groups and detach the peptide from the resin

(Albericio et al. 2011; Gongora-Benitez et al. 2013).

All peptides have the following four types of functional

groups which can in principle be used for attachment to the

polymeric support: (1) C-terminal function (C to N strategy);

(2) N-terminal function (N to C strategy); (3) backbone; and

(4) side chain (if a trifunctional amino acid is present) (Fig. 1).
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SPPS through the C-terminal function is the most pre-

dominant strategy for the preparation of peptides because the

formation of the peptide bond usually requires the activation

of the carboxylic acid component. This is the key component

of the reaction, which is the one added in solution and can be

used in large excess driving the reaction to completion

(Lloyd-Williams et al. 1997; Kates and Albericio 2000).

Furthermore, the amino function of the activated amino acid

component is commonly protected as a carbamate, whose

slight electron-withdrawing effect does not facilitate oxa-

zolone formation—the cause of racemization and poor

yields—and does not overly enhance the acidity of the a-

proton, thus minimizing the racemization through the enol

mechanism (El-Faham and Albericio 2011).

Several attempts of SPPS through N-anchoring have

been made (Thieriet et al. 2000). However, the need to

activate acid terminal in this strategy jeopardizes its broad

use, because potential racemization through oxazolone

formation can occur at each step [route (a) in Fig. 2].

Furthermore, diketopiperazine can also form in each step

[route (b) in Fig. 2].

Backbone anchoring is normally used when manipulation

of the C-terminal function is required and the C-terminal

amino acid is not trifunctional (Jensen et al. 1998, 1999). For

trifunctional amino acids, except for Arg, side-chain

anchoring is preferred due the simplicity of the strategy. The

backbone amide linker (BAL) is very useful for the synthesis

of C-terminal-modified peptides, such as peptide aldehyde

(Kappel and Barany 2005; Boas et al. 2009).

SPPS through side-chain anchoring is used for the fol-

lowing cases:

1. Synthetic comfort It is now widely accepted that the

synthesis of peptide amides is more convenient than

for their counterpart acids. The formation of the initial

amide bond (side chain of Gln and Asn) is generally

achieved with better yields and less racemization when

compared with ester formation in Wang-type resins.

Furthermore, the amide bond is on the whole more

stable than the ester bond and, therefore, peptide

amides are synthesized with better yields (Albericio

et al. 1990; Breipohl et al. 1990).

2. Minimization of side reaction formation The synthesis

of C-terminal Cys-containing peptide acids is accom-

panied by high level of Cys racemization and N-

piperidyl-Ala through the formation of didehydro-Ala

residue followed by a piperidine Michael addition. In

this regard, Barany and co-workers demonstrated that

the side anchoring of Fmoc-Cys-OtBu to the solid

support through a xanthenyl handle allows minimiza-

tion of the above-mentioned side reactions in peptide

synthesis (Barany et al. 2003; Han and Barany 1997).

Alkoxybenzyl resins and linkers, such as Wang-type,

PAL, Rink, BAL, are cleaved by different points

during the TFA treatment, thus leading to several

carbocations, which can be reattached to the peptide

with the consequent formation of side products (Yraola

et al. 2004; Cironi et al. 2004). These resins are used

for the preparation of both acid and amide peptides. In

this regard, the use of chloro-trityl chloride (CTC),

developed by Barlos and co-workers, does not show

this abnormal cleavage and therefore the synthesis, for

instance, of Ser/Thr-NH2 C-terminal peptides through

the side-chain anchoring of Fmoc-Ser/Thr-NH2 to

CTC resins is advantageous for this kind of peptide

(Ziovas et al. 2012; Barlos 2013a, b).

3. On-resin cyclization Cyclic peptides can be prepared

on solid-phase by the side- chain anchoring while the

C-terminal acid bears an orthogonal protecting group.

The protecting group is then removed after the

elongation of the sequence to be further activated for

rendering the macrolactamization with a free amino

function (N-terminal or side-chain amino function)

(Kates et al. 1994; Rovero 2000).

4. Manipulation of the C-terminal function A similar

strategy to that used for on- resin cyclization can be

used to prepare modified peptides such as the C-ter-

minal thioesters required for chemical ligation, after

Fig. 1 Schematic representation of a peptide showing the anchoring

sites to the polymeric support

Fig. 2 Main side reactions during the N to C elongation
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reaction of the activated C-terminal carboxylic acid

with the corresponding thiol (Diaz-Rodriguez et al.

2012; Ajish et al. 2009; Ficht et al. 2008; Tulla-Puche

et al. 2004; Alsin et al. 2000). In the case of other

modified peptides, such as the C-terminal p-nitroani-

lide, where the precursor is a poor nucleophile, the

synthesis starts at the residue n-1 and at the end the

C-terminal amino acid is incorporated in form of the p-

nitroanilide, which is prepared in solution after cleav-

age of the peptide from the resin.

The following table describes the resins and/or linkers

used for side-chain anchoring, with representative refer-

ences (Table 1).

In addition to the four cases described above regarding the

use of side-chain vs. C-terminal SPPS, there is the question

as to whether side-chain anchoring has some additional

(dis)advantages over the C-terminal strategy with respect to

the peptide skeleton arrangement in relation to the polymer.

Thus, in the 90 s, Larsen and Holm described a new concept,

sequence-assisted peptide synthesis (SAPS) (Larsen and

Holm 1996). This approach is based on the introduction of

certain C-terminus-positioned short sequences (Lys)n, which

induce a structure in a subsequent peptide chain that can

lead to improved synthesis of difficult sequences. This

concept was demonstrated for the synthesis of several

(Ala)n and (Thr-Val)n peptides, as well as other natural

sequences corresponding to acyl carrier protein and insulin

(Larsen and Holm 1998a). This concept was further rein-

forced when they showed that the use of 4-methoxyman-

delic acid as a Wang-type handle, which binds the polymer

to the peptide through a three-atom moiety, renders better

results than when a typical Wang linker, such as the

4-hydroxymethylphenoxypropionic acid, is used (Larsen

and Holm 1998b). If the SAPS concept is correct, side-

chain anchoring could impair bonding between the polymer

and the peptide chain.

Although we demonstrated that the synthesis of Thymosin

a1 via side-chain anchoring of the C-terminal Asn/Asp

through the b-carboxylic acid of Asp to a Rink resin performs

better than through the a-carboxylic acid of Asn to a CTC

resin, this result does not validate the hypothesis that side-

chain anchoring is more favorable than that of C-terminal

synthesis, because more than one parameter was changed

(linker and resin) (Garcia-Ramos et al. 2009).

Fig. 3 Sequence of HIV-1 Rev

(91–105)

Fig. 4 HPLC and HPLC–MS of HIV-1 Rev (91–105); a from C-terminal anchoring; b from side-chain anchoring
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Bearing all these factors in mind, we designed a simple

experiment to determine whether there are any differences

between C-terminal and side-chain anchoring. For this

purpose, we synthesized a Glu C-terminal peptide. Glu or

Asp is the most neutral amino acids for this experiment,

because the same resin and the same protection for the

remaining carboxylic acid can be used for both syntheses.

As a model, the 15 amino acid peptide HIV-1 Rev

(91–105) was chosen (Fig. 3).

Syntheses were performed by applying methods exten-

sively used in our laboratories (Pelay-Gimeno et al. 2013).

For this purpose, we anchored Fmoc-Glu(OtBu)-OH and

Fmoc-Glu-OtBu (0.6 equiv.) to CTC resin (1.6 mmol/g) to

render the starting resins [Fmoc-Glu(OtBu)-O-CTC-resin,

202 mg, 0.77 mmol/g and Fmoc-Glu(O-CTC-resin)-OtBu,

204 mg, 0.79 mmol/g]. Elongation of the peptide chain was

carried out consecutively with Fmoc-Val-OH (3 equiv.),

Fmoc-Leu-OH (3 equiv.), Fmoc-Ile-OH (3 equiv.), Fmoc-

Gln(Trt)-OH (3 equiv.), Fmoc-Pro-OH (3 equiv.),

Fmoc-Ser(tBu)-OH (3 equiv.), Fmoc-Gly-OH (3 equiv.),

Fmoc-Val-OH (3 equiv.), Fmoc-Gly-OH (3 equiv.), Fmoc-

Gln(Trt)-OH (3 equiv.), Fmoc-Thr(tBu)-OH (3 equiv.),

Fmoc-Gly-OH (3 equiv.), Fmoc-Ser(tBu)-OH (3 equiv.),

Fmoc-Thr(tBu)-OH (3 equiv.), using COMU (3 equiv.),

OxymaPure (3 equiv.) and DIEA (6 equiv.) for 1 h in DMF.

No recouplings were done. At the end of the syntheses, the

global deprotection and cleavage of the peptide were carried

out with TFA–H2O–TIS (95:2.5:25) for 1 h. After precipi-

tation of the peptide in cold ether and further washing with

ether, it was dissolved in AcOH–H2O (9:1) and lyophilized

to give 180 mg (76 % overall yield) for C-terminal anchor-

ing and 206 mg (87 % yield) for side-chain anchoring.

HPLC revealed that the crude peptides showed (Fig. 4)

virtually identical purity (97.3 % for C-terminal anchoring

and 97.5 % for side-chain anchoring), the main impurity

being the same for both syntheses. Furthermore, the EI-MS

showed a similar profile for both peptides.

We conclude that, in terms of purity, there are no major

advantages of performing peptide synthesis through C-ter-

minal vs./and side-chain anchoring. This conclusion is sup-

ported by the purity of the final products achieved. However,

the better yield obtained (by approx. 10 %), which can be

attributed to the better stability of the ester bond anchoring

through the b-carboxylic (less acid and therefore worse

leaving group) vs. the a-acid group, makes side-chain

anchoring highly suitable for large-scale peptide synthesis.

This improved stability can be translated into the preparation

of longer peptides. In addition, this strategy is very convenient

for the synthesis of cyclic and C-terminal-modified peptides.

Finally, side-chain anchoring could allow the use of resins/

linkers that do not subject to side reactions, which will make

this strategy preferred in front of the C-terminal anchoring.
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