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Abstract Various strategies have been explored in the

last 20 years to modify the functional properties of proteins

and, among these, protein/polymer conjugation resulted

one of the most successful approaches. Thus, the surface

modification of polypeptides of potential industrial interest

by covalent attachment of different macromolecules is

nowadays regarded as an extremely valuable technique to

manipulate protein activities. Protein derivatives with a

number of either natural or synthetic polymers, like dif-

ferent polysaccharides or polyethylene glycol, have been

obtained by both chemical and enzymatic treatments, and

in this context, the crosslinking enzyme transglutaminase is

attracting an increasing attention as a simple and safe

means for protein processing in vitro. In this short review,

we summarized the most significant experimental findings

demonstrating that a microbial form of the enzyme is an

effective tool to obtain several biopolymer-based conju-

gates potentially useful for both food and pharmaceutical

applications.
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Introduction

Protein hydrophilic/phobic balance and net charge can be

significantly modified by covalent or non-covalent binding

of different macromolecules that change protein confor-

mation and functional characteristics, including thermo-

stability, solubility, interfacial properties, degree of

hydration and propension to gelation. In particular, protein

complexes with different biopolymers, like polysaccha-

rides, perform many noteworthy functions inside the cells

but they could play also extremely relevant roles in dif-

ferent biotechnological applications. One of these is to

contribute to the structural and textural properties of foods

through their aggregation and gelation behavior (Dickinson

2003). By their linking, in fact, proteins and polysaccha-

rides may combine their individual traits and produce food

ingredients with a wider range of structural and functional

properties. In addition, hydrogels have significant appli-

cations in tissue engineering and drug delivery, since single

materials are often unable to fully satisfy the medical

requirements. Consequently, novel composite hydrogels

are always gaining increasing interest (Doumeche et al.

2007; Picard et al. 2009). Furthermore, several proteins

obtained in large amounts by recombinant DNA techniques

have become effective new drugs (Pavlou and Reichert

2004) but, despite these significant advances, protein drugs

often present shortcomings limiting their use, such as low

solubility, high susceptibility to proteolysis, marked

capacity to generate antibodies, short circulating half-life

in vivo and rapid kidney clearance (Harris and Chess 2003;

Malik et al. 2007). Therefore, among the various strategies

explored to overcome these problems, the conjugation of

protein drugs with different natural or synthetic polymers is

nowadays considered as a valuable methodology (Harris

and Chess 2003; Greenwald et al. 2003; Pasut et al. 2004).
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Finally, several protein/polysaccharide complexes have

been also synthesized to improve the stability properties

and to influence kinetics of different purified enzymes of

practical interest, as well as to immobilize them, or to

prepare biodegradable edible films with desirable

mechanical and/or barrier properties to water vapor, CO2

and O2 (Villalonga et al. 2003a, b, 2006a; Valdivia et al.

2006; Di Pierro et al. 2010; Mariniello et al. 2010).

Protein/polysaccharide binding may occur by physical

interactions and/or by covalent crosslinking. Complexation

pH (pHc) is a significant factor influencing the non-cova-

lent binding between proteins and other macromolecules.

During the titration of a polyanion/polycation mixture from

high pH, as the charge on the polycation is reduced there is

a transition at a specific pH value, called pHc, where a

soluble complex is formed (Hattori et al. 2001; Weinbreck

and De Kruif 2003). Then, the complex may be further

stabilized through other intermolecular forces like hydro-

phobic ones and/or hydrogen bonds (Hallberg and Dubin

1998; Girard et al. 2002). Attractive interactions between

positively (or negatively) charged proteins and anionic (or

cationic) biopolymers can lead to gelation, coacervation, or

multilayer formation (MacDougall et al. 2001; Turgeon

et al. 2003). Consequently, the overall stability and texture

of colloidal systems depend not only on the properties of

the individual biopolymers, but also on the nature and

strength of their interactions. In fact, highly structured

protein/polysaccharide complexes may exhibit better

functionality—as interfacial, adsorption and hydration

properties—than that of the protein or the polysaccharide

alone (Ye 2008).

Conversely, polysaccharide covalent binding to proteins

may be derived from either chemical or enzyme-catalyzed

reactions. In this context, the Maillard reaction is of

growing scientific interest mainly to improve solubility

and/or emulsifying, gel forming and antioxidant properties

of food proteins (Miller and Gerrard 2005). However, this

chemical reaction is known to produce some mutagenic

compounds (Brands et al. 2000) and undesired browning

products (Guerra-Hernandez et al. 2002) and, conse-

quently, may affect sensory attributes of the modified

proteins, potentially giving rise also to safety problems.

Another example of chemical protein conjugation is the

covalent attachment of polyethylene glycol (PEG), a non-

charged and highly hydrophilic polymer used to increase

the half-life of polypeptide drugs circulating in blood and

to decrease their immunogenicity (Veronese and Mero

2008; Jain and Jain 2008). The most widely employed

method for protein PEGylation involves the covalent

binding of activated monomethoxy-PEG at level of the e-

amino group of Lys residues using different monomethoxy-

PEG derivatives. However, this chemical strategy has

strong limitations due to potential multiple sites of

conjugation inside the proteins and to the consequent het-

erogeneity of PEGylated products. Thus, the purification of

the proteins modified by this way is often complicated and

this drawback decreases the predictability of their activity

and the reproducibility of the procedure needed for the

required regulatory approval. To reach site-specific

PEGylation, different chemical approaches were devel-

oped, such as the selective PEGylation either at the level of

endoprotein Cys or at their N-terminal amino groups (Za-

lipsky 1995; Kinstler et al. 2002).

A milder approach to produce protein/polymer conju-

gates is certainly desirable due to possible toxic side

reactions and adverse public opinion on the use of chem-

icals mainly in food production as well as in medical

applications. Accordingly, different enzymatic procedures

have been proposed and tested as alternative to the chem-

ical coupling. There are several motivations for employing

enzymes for macromolecular processing, the most impor-

tant of which are enzymes that allow selectivity for the

precise coupling of macromolecules and catalyze reactions

under biological conditions (Cheng and Gross 2005). Two

major enzymatic methods have been used for the conju-

gation of proteins with other biomacromolecules including

polypeptides. The first enzymatic method was focused on

tyrosinases, copper-containing phenol oxidases typically

responsible for both synthesis of melanin pigments and

food browning (Yoruk and Marshall 2003; Mayer 2006).

Tyrosinases are known to be able to react with substrates

by oxidizing solvent-accessible phenolic residues of en-

doprotein Tyr, thus activating macromolecular substrates

as a means to graft peptides (Aberg et al. 2004; Anghileri

et al. 2007), polypeptides (Kang et al. 2004; Freddi et al.

2006) and even synthetic polymers (Shao et al. 1999) to

polysaccharides. One of the main limitations of protein

tyrosinase-mediated oxidation is that the phenolic residue

must be easily accessible. Therefore, the tyrosinase-medi-

ated grafting of globular proteins, having highly compact

structures, to other macromolecules generally requires a

prior introduction of accessible phenolic substituents (Le-

wandowski et al. 2008). The second more promising bio-

catalytic methodology for the conjugation of proteins with

a variety of other synthetic and natural polymers exploits

the crosslinking activity of the enzyme transglutaminase

(EC 2.3.2.13; TGase). TGase, through its ability to produce

either isopeptide bonds between endoprotein Gln and Lys

residues or c-glutamyl derivatives with compounds con-

taining primary amino groups has been shown to modify

functional properties of both peptides (Esposito et al. 1995)

and proteins from different origin (Faergemand et al. 1998;

Mariniello et al. 2007a; Ramezani et al. 2008; Sorrentino

et al. 2012; Giosafatto et al. 2012; Porta et al. 2013).

Multiple molecular forms of TGase are known to play

different biological roles inside and outside the cells
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(Lorand and Graham 2003), representing a large family of

enzymes occurring not only in many tissues and body

fluids of mammals but also in invertebrates and plants. The

most studied molecular form of the enzyme in eukaryotes

is the so-called ‘‘tissue’’ TGase or TGase2, a 75-kDa

monomeric globular protein expressed in the majority of

cells and tissues (Fesus and Piacentini 2002). Although it

was shown that all TGases recognize a wide variety of

primary amines as acyl acceptor substrate, their specificity

for protein bound Gln residues as acyl donor substrates is

quite stringent. A number of experiments have been per-

formed, using peptides and proteins, to clarify the pattern

of amino acid sequences needed to make reactive a Gln

residue. The results of these studies indicated that both

primary structure and local conformation around Gln

involved in the TGase-catalyzed reaction contribute to

determine the enzyme specificity (Coussons et al. 1992)

and that in globular proteins, the reactive Gln must be

located in protein segments characterized by enhanced

chain flexibility (Fontana et al. 2008).

In the late 1980, TGase activity has been detected also

in bacteria and some of the genes encoding the enzyme

have been successfully cloned (Ando et al. 1989; Washizu

et al. 1994). The microbial TGase (mTGase) derived from

a variant of Streptomyces mobaraense is constituted by a

single polypeptide chain of 331 amino acids with a mol.

wt. of 37.9 kDa. Its overall structure consists of a compact

domain and Cys-64, the residue essential for the catalytic

activity, located at the bottom of a deep cleft (Kashiwagi

et al. 2002). Moreover, mTGase exhibits no significant

sequence identity with mammalian enzymes, has a broader

substrate range and is calcium-independent (Shimba et al.

2002; Yokohama et al. 2004). These features, together

with that of a higher reaction rate, are extremely favorable

for the exploitation of such molecular form of TGase as a

versatile reagent for protein modification in vitro and,

consequently, as a biotechnological tool especially for

industrial applications. mTGase does not require activated

substituents or additional reagents and, therefore, it pro-

vides a simple and safe method for coupling small or high

molecular weight molecules to protein substrates. In fact,

crosslinking reaction catalyzed by mTGase takes place at

the enzyme active site offering greater selectivity com-

pared with the one involving tyrosinase, which generates a

reactive intermediate that undergoes a non-enzymatic

coupling reaction. In addition, mTGase may more easily

allow protein conjugation with either fluorescent or

radioactive probes without the loss of protein activity,

often observed when unspecific labeling or over labeling

occurs. As well as it offers the possibility to covalently

link carrier proteins to Lys- or Gln-containing substrates

of some pharmaceutical interest for specific therapeutic

treatments.

Therefore, even though mTGase has been extensively

used so far mostly to improve the physical and textural

properties of several protein-rich foods (Zhu et al. 1995),

this enzyme is now receiving increasingly considerable

attention as a tool to couple macromolecules, generating

crosslinked networks, and to graft substituents to proteins,

tailoring specific activities or conferring hybrid properties

(Sato et al. 2001, 2004a, b; Yang et al. 2009). In this

review, we summarize the main results obtained so far by

using mTGase to site-selectively modify proteins by

crosslinking other polymers, often suitably derivatized to

serve as enzyme acyl acceptor substrates.

Transglutaminase-catalyzed protein PEGylation

Polymer/drug conjugates are extremely promising candi-

dates for the delivery of a variety of therapeutic agents.

Among the synthetic macromolecules so far investigated,

PEG is a highly hydrophilic and non-charged polymer

demonstrated to be non-toxic when its molecular mass is

lower than 1,000 Da and, thus, its use has been allowed by

the US FDA (Harris and Chess 2003). The control of drug

circulating lifetimes and tissue distribution is one of the

main fields to develop new drug delivery systems. In this

respect, PEGylation of different pharmaceuticals has been

shown to be an effective strategy because PEG conjugates

may increase water solubility and stability of the agents

and improve their pharmaceutical profile, thereby reducing

the possibility of undesirable side effects. Therefore,

derivatization by PEG chains is a useful methodology for

drug development and is widely exploited to conjugate

oligonucleotides, peptides and proteins (Jain and Jain 2008;

Veronese and Mero 2008). Various strategies have been

investigated to improve the clinical properties of various

proteins, by both protein engineering and producing chi-

meric protein drugs fused to albumin. Among the different

approaches, the surface modification of proteins by cova-

lent attachment of PEG is nowadays regarded as an

extremely effective technique. In particular, PEGylation is

employed to enhance the circulating half-life of therapeutic

proteins in blood, to increase the resistance to proteolytic

inactivation, and to reduce their antigenicity, immunoge-

nicity and renal clearance (Roberts et al. 2002; Wattendorf

and Merkle 2008). Thus, a number of protein/PEG conju-

gates, such as adenosine deaminase/PEG, asparaginase/

PEG, interferon/PEG and PEG-uricase are currently

available in the market and found their application in the

treatment of severe combined immune deficiency syn-

drome, acute lymphocytic leukemia, hepatitis C and gout

disease, respectively (Duncan and Vicent 2013).

Protein/PEG conjugates are usually prepared by tech-

niques of random derivatization of the endoprotein Lys
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residues, but this procedure leads to both heterogeneity and

decreased bioactivity of the obtained products. Therefore,

the development of new methodologies aimed to site-spe-

cific protein PEGylation is fundamental to synthesize

homogeneous and pharmacologically effective conjugated

products for clinical use. Sato et al. (1996) have first

conceived an enzymatic method for the site-specific

incorporation of PEG-alkylamine derivatives using genetic

engineering techniques and TGase2 from guinea pig liver.

This methodology appeared more effective than the pre-

viously used ones because of both mild reaction conditions

and limitation of PEG incorporation to Gln residues, acting

as acyl donor substrates of the enzyme. The same authors

developed few years later a novel methodology using

mTGase as catalyst and recombinant human interleukin 2

(rhIL-2) as target protein together with two model acyl

acceptor substrates of the enzyme. The first was a 12-kDa

PEG derivative (PEG12), a synthetic polymer endowed

with a linear alkylamine chain at one end useful for pro-

longing protein circulating lifetimes in vivo, whereas the

second one was a galactose-terminated triantennary gly-

coside, (Gal)3, with a linear alkylamine chain at one end

(Sato et al. 2000, 2001). (Gal)3 is an artificial ligand for the

hepatic asialoglycoprotein receptor, able to recognize

exposed and branched galactose residues on serum glyco-

proteins and utilized as an hepatic targeting device. The

derivative peptide mapping, performed by liquid chroma-

tography-electrospray ionization mass spectrometry,

showed that only one Gln of the six Gln residues occurring

in rhIL-2 was site-specifically modified, thus indicating

that only Gln-74 was a reactive acyl donor substrate for

mTGase. Moreover, tests of biological activity of PEG12-

and (Gal)3-modified rhIL-2 showed that the two conjugates

had the same activity of the unmodified protein. In addi-

tion, pharmacokinetic studies indicated that PEG12 deriv-

ative was eliminated more slowly from the circulation,

whereas (Gal)3 derivative accumulated in the liver (Sato

et al. 2001). These results, hence, strongly encouraged

further investigations for the preparation of other protein/

PEG conjugates for clinical use using mTGase. More

recently, the mTGase-catalyzed synthesis of the PEG-NH2

derivatives of both apomyoglobin and human growth hor-

mone (hGH) has been reported (Fontana et al. 2008; Mero

et al. 2009). Despite there being up to 6 Gln residues in the

apomyoglobin molecule, a homogeneous mono-PEGylated

protein conjugate was isolated at high yield by chroma-

tography. Fingerprinting techniques combined with mass

spectrometric analyses revealed that the enzyme selectively

linked PEG-NH2 to a specific Gln residue (Gln-91) of the

153-residue long apomyoglobin chain. A still more inter-

esting result was obtained by the same authors following

the derivatization experiments carried out with the hGH in

an attempt to synthesize a possible conjugate having a

longer functional half-life in vivo to avoid frequent injec-

tions of the hormone. As it is well known, hGH is a single

polypeptide chain of 191 amino acids with effects not only

on the growth but also on glucose metabolism, lactation,

and macrophage activation, and its deficiency is generally

treated by daily subcutaneous administrations of the hor-

mone. It was demonstrated that, even though hGH contains

13 Gln residues, major conjugated products specifically

PEGylated at Gln-40 and/or Gln-141 were obtained in the

presence of PEG-NH2 and mTGase. Moreover, enzymatic

digestion experiments carried out with both PEGylated

apomyoglobin and hGH showed a close correlation

between the protein sites recognized by TGase and the ones

target of several proteases.

Finally, Maullu et al. (2009) successfully mTGase-

PEGylated the granulocyte colony-stimulating factor

(GCSF) with the aim to obtain GCSF derivative(s) with

longer circulation times in vivo. GCSF, a protein consti-

tuted by 174 amino acids and containing 17 Gln residues as

potential acyl donor sites for the enzyme, is known to play

a physiological role in hematopoiesis by controlling the

granulocyte production, differentiation and function, and is

also widely used as an effective drug to treat neutropenia.

However, since the native protein is rapidly removed from

the body by a combination of renal and neutrophil clear-

ance processes, repeated injections or continuous infusion

of GCSF are needed to generate sufficiently elevated levels

of neutrophils and mobilized progenitor/stem cells in

peripheral blood. For these reasons, GCSF-PEGylation

might represent an effective strategy to obtain new and

more useful therapeutic derivatives. Modified GCSF,

homogeneously mono-PEGylated by mTGase at level of

Gln-134, seems, thus, of potential clinical interest being

expected to have a longer circulating half-life than the

wild-type protein. In fact, preliminary pharmacological

studies by subcutaneous administration in normal and

neutropenic rats showed that enzyme-PEGylated GCSF has

the same biological activity of the unmodified protein and

better pharmacokinetic parameters (Maullu et al. 2009).

Transglutaminase-catalyzed protein glycosylation

Positive results achieved using TGase to PEGylate proteins

suggested the use of the enzyme to selectively couple other

polymers with various polypeptide targets, including

enzymes, through the functionalization of different bio-

logical macromolecules of polysaccharide nature with

primary amino groups that act as acyl acceptor substrates

for the enzyme. Although Ohtsuka et al. (2000) found that

the amino group should be linked to an alkyl chain con-

taining more than four carbon atoms to be an effective

mTGase substrate, other experimental routes included the
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functionalization with N-terminal Gly and Lys- or Gln-

containing tags (Tanaka et al. 2005; Tominaga et al. 2007).

Industrial application of enzymes is often limited by

their low stability properties under common technological

conditions. In this regard, the covalent attachment of ionic

and non-ionic polysaccharides such as chitosan, pectin

(PEC), dextran (DEX), carboxymethylcellulose (CMC),

mannan, alginate (ALG) and cyclodextrin (CD)-grafted

polysaccharides has been reported as a useful tool for

increasing the stability of various enzymes. In recent dec-

ades, a great number of investigations have been devoted to

improve functional stability and functionality of the pro-

teolytic enzymes by water-soluble polymer attachment.

Since chemical modification has often been reported to

provoke significant losses of catalytic activity, the devel-

opment of new methods for stabilizing proteases, preserv-

ing their catalytic properties, received considerable

attention. Therefore, we used mTGase as catalyst for the

incorporation into the polypeptide structure of pancreatic

trypsin of mono-6-amino-6-deoxy derivatives of a-, b- and

c-CD, mono-6-ethylenediamino-, mono-6-propylenedia-

mino-, mono-6-butylenediamino- and mono-6-hex-

ylenediamino-6-deoxy-b-CD, as well as of the aminated

derivatives of DEX, CMC and Ficoll (FIC), in an attempt

to change the functional properties of the protease (Villa-

longa et al. 2003a, b, 2006). CDs are capable of forming

inclusion complexes with many hydrophobic compounds,

and this property has gained favor with wide use in dif-

ferent biomedical and industrial applications. The TGase-

synthesized trypsin/CD conjugates, containing about 3 mol

of oligosaccharide per mole of protein, exhibited signifi-

cantly improved specific esterolytic activities and kinetic

constants as well as more resistance to both autolytic

degradation at alkaline pH and to heat inactivation. DEX

(linear and neutral polymer with a mol. wt. of 7.2 9 104),

CMC (linear and negatively charged polymer of mol. wt. of

2.5 9 104) and FIC (highly branched and neutral polymer

of mol. wt. of 6.9 9 104) were all derivatized with 1,4-

diaminobutane prior to be covalently attached to trypsin

through mTGase. The TGase-synthesized trypsin/polysac-

charide conjugates contained an average of 0.7–1.8 mol of

polymers per mol of protein, retained about 61–82 % of the

esterolytic activity of the unmodified protease and exhib-

ited an increased stability against both heat treatment and

several denaturing conditions. According to these findings,

the TGase-mediated covalent derivatization of trypsin

aminated either with oligo- or polysaccharides revealed to

be a useful strategy for increasing the functional stability of

such protease that is widely used in food manufacturing

and processing industry.

TGase-catalyzed coupling with aminated-DEX was also

utilized to modify liver catalase, an antioxidant enzyme

with potential applications in the therapy of several

diseases mediated by reactive oxygen species. The bene-

ficial effect of chemical modification of catalase with

biocompatible polymers was previously demonstrated by

testing a catalase/PEG derivative in rat models of both

nephrotic syndrome and lung injury due to asbestosis. The

ability of catalase to act as acyl donor substrate of mTGase

was preliminarily demonstrated by testing the reactivity of

its Gln residue(s) towards monodansylcadaverine, a well-

known low mol. wt. amino donor TGase substrate. Then, a

catalase/aminated-DEX conjugate, with high purity and

well-defined polymer content and mol. wt., was obtained

(Valdivia et al. 2006). In contrast to other catalase/polymer

conjugates previously synthesized by chemical methods,

the adduct prepared by TGase-mediated reaction showed

an increased catalase activity in comparison with the

unmodified enzyme. In addition, crosslinking of catalase

with aminated-DEX significantly enhanced its resistance

against both thermal inactivation and tryptic degradation,

while on the other hand, improved its pharmacokinetics

performance contributing to its higher half-life time and

lower clearance in comparison with the unmodified coun-

terpart. However, it should be noted that the observed

prolongation of the serum half-life period was lower than

that detected with the catalase adduct prepared by chemical

conjugation with PEG. This could be a consequence of the

low amount of DEX molecules covalently bound to each

molecule of catalase, due to the limited number of reactive

Gln residue(s) occurring in the catalase polypeptide chain.

By contrast, DEX biodegradability and its lower toxicity,

the higher catalytic activity exhibited by the prepared

conjugate, as well as the benefits derived from the use of an

enzyme-catalyzed coupling reaction, all constitute impor-

tant advantages of the described catalase/aminated-DEX

glycoconjugate. Therefore, these findings strongly support

the notion that mTGase-catalyzed incorporation of end-

group aminated-DEX to reactive endoprotein Gln residues

might be a useful tool for preparing protein/polysaccharide

prodrugs with specific pharmacological applications.

Also aminated-PEC and aminated-ALG were demon-

strated to be effective acyl acceptor substrates of mTGase

and, hence, potentially used to synthesize further protein/

polysaccharide conjugates. In fact, we recently linked 1,4-

diaminobutane (putrescine, PT) both to ALG and low-

methoxyl PEC to synthesize new aminated polysaccharides

and demonstrated that both PT-PEC and PT-ALG are

effective amino donors for the enzyme in vitro using

dimethylated casein and soy flour proteins as acyl donor

TGase substrates (Di Pierro et al. 2010). Thus, we cova-

lently coupled the two PT-polysaccharides to soy flour

proteins by means of the enzyme and prepared edible films.

Characterization of the crosslinked films showed a signif-

icantly decreased water vapor permeability, as well as

improved mechanical properties such as high extensibility,
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with respect to the control films where protein and poly-

saccharide molecules were not covalently bound to each

other. These results open, in our opinion, a new chapter in

the biodegradable/edible polymer field finalized to obtain

hydrocolloid films with marked extensibility and high-

moisture barrier capacity for potential applications not only

in food industrial sector but also in pharmaceutical and

agricultural ones.

Finally, hydroxyethyl starch (HES), a semisynthetic

biodegradable polymer widely used as a blood plasma

volume expander, has also attracted the attention as a

promising PEG substitute. HES exhibits high water solu-

bility and low hypersensitivity, as well as allows the pos-

sibility to tailor its molar mass and biodegradation rate.

Besheer et al. (2009) reported the modification of HES with

both hexamethylene diamine and N-carbobenzylox-

yglutaminyl-glycine (Z-Gln-Gly) to render HES a reactive

acyl acceptor and donor substrate, respectively, for a highly

purified recombinant mTGase with 6 His residues at the

C-terminus (Marx et al. 2008). This enzymatic procedure

was demonstrated to be a further feasible and promising

strategy for the development of methods alternative to the

well-established protein PEGylation, a simple and mild

approach for the possible conjugation of polypeptides to

fully biodegradable and water-soluble polymers with the

aim to alter pharmacokinetics and biological fate of protein

drugs.

Figure 1 schematically shows all the demonstrated

crosslinked conjugates synthesized in vitro in the presence

of TGase.

Non-covalent transglutaminase-crosslinked protein/

polysaccharide complexes

Non-covalent protein/polysaccharide complexes, poten-

tially useful for both food and pharmaceutical applications,

were also obtained by mTGase-catalyzed protein/protein

crosslinking. Therefore, the manipulation of the attractive

interactions between charged proteins and polysaccharides

interactions (Dickinson 2008) can represent an important

tool to modify the microstructure and the shelf-life of the

composite systems mostly in the edible films, since the

formation of a continuous network strictly depends on the

biopolymer behavior in the film-forming solution. A

promising exploitation of mTGase in this field is related to

the production of the so-called ‘‘bioplastics’’. In fact,

although most of the biodegradable and/or edible plastics

produced so far include polymers of mineral origins, such

as polyesters and polyvinyl alcohols, those of natural origin

contain polysaccharides, proteins, lipids and polyesters

synthesized by several microorganisms (Bourtoom 2008).

Films prepared with polysaccharides are quite resistant but

exhibit poor water vapor barrier features, owing to their

hydrophilic nature, whereas protein-based films show

superior oxygen barrier characteristics. Therefore, a great

interest was devoted to investigate the possibility to

introduce crosslinks into the film network ‘‘enzymatically’’

and, thus, mTGase is stimulating an increased deal of

interest as potential tool in reticulating proteins of hydro-

colloid multi-component edible films to obtain bioplastics

with desired mechanical and gas barrier properties (Porta

et al. 2011a). In particular, we produced films of either

PEC or chitosan in the presence of different plant and milk

proteins that act as mTGase substrates, and we demon-

strated that the enzyme-catalyzed formation of protein

crosslinks into the film network generally determines a

decreased solubility of the bioplastics and increases its

capacity to stretch (Porta et al. 2011b). Specifically con-

cerning the PEC-based materials, the effect of mTGase was

shown both to significantly increase film barrier properties

to both O2 and CO2 and to confer a moderate film per-

meability to water vapor. These modifications of bioplas-

tics characteristics suggest their possible use in a variety of

situations, one of which could be the edible wrapping of

high-moisture food to prevent their quality changes. In fact,

in a recent study, we prepared whey protein/PEC films,

crosslinked or not by mTGase, to obtain possible hydro-

colloid food coatings with appropriate features (Di Pierro

et al. 2013). Our findings indicated that the enzyme had a

considerable influence on whey protein/PEC complex for-

mation and, as a consequence, on the mechanical and

barrier properties of the obtained edible films. In particular,

we demonstrated the formation at pH 5.1 (pHc) of mTG-

ase-catalyzed crosslinks among soluble ionic whey protein/

PEC complexes, which could be responsible for the

Fig. 1 Crosslinked conjugates

synthesized in vitro in the

presence of TGase
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observed increase of both tensile strength (2-fold) and

elongation to break (10-fold) of films obtained in the

presence of the enzyme. Furthermore, the protein cross-

linking catalyzed by mTGase at pHc was also shown to

significantly reduce film permeability, this effect being

probably due to the marked decrease of the porosity of

whey protein/PEC films observed by both atomic force and

scanning electron microscopy. A schematic representation

of non-covalent protein/polysaccharide complexes

obtained by mTGase-catalyzed protein/protein crosslinking

at pHc is shown in Fig. 2.

As far as the possible application outcomes, we dem-

onstrated that food coating with an edible whey protein/

PEC film prepared in the presence of the enzyme proved to

be an effective way to significantly decrease oil content in

widely consumed deep-fat fried foods (doughnuts and

French fries) and to prevent water absorption from baked

foods, like ‘‘Taralli’’, over time (Rossi Marquez et al.

2013). In this respect, it is well known that minimizing

water desorption/absorption in both fried and baked foods

is of wide interest because moisture plays a crucial role in

determining their quality and shelf-life. The reported

methodology thus suggested producing healthier fried

foods and avoiding the baked ones that quickly become

soggy and soft by losing their hardness and crispness.

A possible application in the agricultural field of PEC-

based bioplastics is represented by that produced with

fennel waste and containing in its matrix mTGase-cross-

linked phaseolin, a seed storage protein of the common

bean. The latter material was suggested as a promising

candidate for the production of an environmentally friendly

sheet mulching (Mariniello et al. 2007b). In addition, a

significant improvement in the mechanical resistance of

TGase-crosslinked bioplastics was observed using chitosan

in the presence of ovalbumin and whey proteins (Di Pierro

et al. 2006, 2007). In fact, protein crosslinking inside the

Fig. 2 Non-covalent protein/

polysaccharide complexes

obtained following TGase-

catalyzed protein/protein

crosslinking at pHc
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chitosan network seems to reduce the intermolecular chain

mobility of the polysaccharide matrix, thus increasing the

tensile strength and reducing the extensibility of the pro-

duced bioplastics. The reported marked decrease in chito-

san-based film permeability to O2 and CO2, as well as the

lower water vapor permeability, are probably associated

with the resulting more compact structure of such bioma-

terial and with the changes in its hydrophilic properties.

However, sustained multidisciplinary researches are nec-

essary both to exploit the hitherto produced crosslinked

bioplastics for specific industrial applications and to

develop new eco-friendly materials to widen their potential

use. Thus, the possibility to obtain ‘‘tailored’’ molecular

networks conferring desired features to specific bioplastics

with the aid of TGase remains an attractive perspective in

this field of investigations.

Finally, a casein/konjac glucomannan (KGM) hydrogel

was recently obtained in the presence of mTGase and

reported as a non-toxic and biodegradable protein/poly-

saccharide conjugate with potential biomedical applica-

tions (Yin et al. 2012). Biocompatible hydrogels, being

able to absorb water several times their own weight, are

another attractive new materials to be used as drug vectors.

Generally, single-material hydrogels do not fully satisfy the

requirements of efficient drug delivery systems and, con-

sequently, novel composite hydrogels are gaining increased

interest. Therefore, KGM, a high mol. wt., water-soluble

and water-absorbent natural polysaccharide, was proposed

as a stabilizer of mTGase-crosslinked casein hydrogels.

Since KGM is selectively degraded by b-mannanase in the

colon, its use was suggested in colon-specific drug delivery

systems. In this respect, successful preliminary experi-

ments were carried out by oral administration of hydrogel-

incorporated docetaxel, a hydrophobic antineoplastic agent

known to have undesirable side effects when administered

alone by injection.
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