
ORIGINAL ARTICLE

WRF-TMH: predicting transmembrane helix by fusing
composition index and physicochemical properties of amino acids

Maqsood Hayat • Asifullah Khan

Received: 10 October 2012 / Accepted: 23 January 2013 / Published online: 14 March 2013

� Springer-Verlag Wien 2013

Abstract Membrane protein is the prime constituent of a

cell, which performs a role of mediator between intra and

extracellular processes. The prediction of transmembrane

(TM) helix and its topology provides essential information

regarding the function and structure of membrane proteins.

However, prediction of TM helix and its topology is a

challenging issue in bioinformatics and computational

biology due to experimental complexities and lack of its

established structures. Therefore, the location and orienta-

tion of TM helix segments are predicted from topogenic

sequences. In this regard, we propose WRF-TMH model

for effectively predicting TM helix segments. In this

model, information is extracted from membrane protein

sequences using compositional index and physicochemical

properties. The redundant and irrelevant features are

eliminated through singular value decomposition. The

selected features provided by these feature extraction

strategies are then fused to develop a hybrid model.

Weighted random forest is adopted as a classification

approach. We have used two benchmark datasets including

low and high-resolution datasets. tenfold cross validation is

employed to assess the performance of WRF-TMH model

at different levels including per protein, per segment, and

per residue. The success rates of WRF-TMH model are

quite promising and are the best reported so far on the same

datasets. It is observed that WRF-TMH model might play a

substantial role, and will provide essential information for

further structural and functional studies on membrane

proteins. The accompanied web predictor is accessible at

http://111.68.99.218/WRF-TMH/.

Keywords Transmembrane helix � Physicochemical

properties � Compositional index �Weighted random forest �
Structures of membrane proteins

Introduction

A biological membrane is an anchoring membrane that

works as a barrier within or around a cell. It plays a central

role in cellular processes ranging from basic molecule

transport to sophisticated signaling pathways. Currently, in

market, more than half of all drugs are directly targeted

against the membrane proteins (Klabunde and Hessler

2002). However, it is complex and difficult to get high-

resolution three-dimensional (3D) structures of membrane

proteins. Only a few percent of membrane protein struc-

tures are available in protein Data Banks (Berman et al.

2000). Membrane protein contains one or more trans-

membrane (TM) helices, which define the orientation or

topology of a membrane protein corresponding to the lipid

bilayer. Alpha helical is a prime category of TM proteins,

and it performs most of the important biological processes

of a cell such as cell signaling, cell-to-cell interaction, cell

recognition, and adhesion. Information about TM helix

provides some useful clue in determining the function of

membrane proteins. Since the determination of the crystal

structure of membrane proteins by X-ray or nuclear mag-

netic resonance (NMR) is extremely difficult, computa-

tional methods are considered as valuable tools for

correctly identifying locations of TM helix segments and

topology of TM helix proteins.

M. Hayat

Abdul Wali Khan University, Mardan, Pakistan

M. Hayat � A. Khan (&)

Pattern Recognition Lab, Department of Computer and

Information Sciences, Pakistan Institute of Engineering and

Applied Sciences, Nilore, 45650 Islamabad, Pakistan

e-mail: asif@pieas.edu.pk

123

Amino Acids (2013) 44:1317–1328

DOI 10.1007/s00726-013-1466-4

http://111.68.99.218/WRF-TMH/


In the past few decades, a series of efforts have been

carried out for predicting the topology of TM helix pro-

teins. In the early studies, the analysis was mostly based on

the physicochemical properties of amino acids, namely,

hydrophobicity (Argos et al. 1982; Cserzo et al. 1997;

Eisenberg et al. 1982; Juretic et al. 2002; Kyte and Doo-

little 1982; Nakai and Kanehisa 1992; Von Heijne 1992),

charge (Claros and Von Heijne 1994; Hirokawa et al. 1998;

Juretic et al. 2002), nonpolar phase helicity (Deber et al.

2001), and multiple sequence alignment (Persson and

Argos 1996; Rost et al. 1995). DAS-TMfilter (Cserzo et al.

2004), TOP-Pred (Claros and Von Heijne 1994), and

SOSUI (Hirokawa et al. 1998) are the most reliable models

that give descriptive information about TM helices.

Although these methods have efficiently identified TM

helix segments, they did not achieve promising results in

topology prediction of TM helix proteins. Researchers have

used various statistical models such as Hidden Markov

Models (HMM) as well as neural networks and support

vector machine (SVM) for predicting TM helix. In this

regard, several user-friendly web predictors have also been

developed for the benefit of academics and researchers. A

few of them include TopPred (Claros and Von Heijne

1994), MEMSAT (Jones 2007), PHD (Rost et al. 1996),

HMMTOP (Tusnady and Simon 1998, 2001), TMHMM

(Krogh et al. 2001; Sonnhammer et al. 1998), PRO-

DIV_TMHMM (Viklund and Elofsson 2004), TMMOD

(Kahsay et al. 2005), Phobius (Kall et al. 2007), ENSEM-

BLE (Martelli et al. 2003), PONGO (Amico et al. 2006),

HMM-TM (Bagos et al. 2006), MemBrain (Shen and Chou

2008), MEMSAT-SVM (Nugent and Jones 2009a), MEM-

PACK (Nugent and Jones 2009b), and SVMtop (Lo et al.

2008). The main problem regarding HMM-based methods

is that they are computationally expensive. In addition,

they use multiple sequence alignments. Additionally, the

HMM-based methods fail if TM helix segments are shorter

than 16 residues or longer than 35 residues (Shen and Chou

2008). Some researchers have used accuracy along with

sensitivity and specificity for evaluation of their proposed

methods (Hosseini et al. 2008; Pylouster et al. 2010; Shen

and Chou 2008; Zaki et al. 2011a). In addition, several

studies have concentrated only on sensitivity and reliabil-

ities of different methods rather than accuracy (Chen et al.

2002; Cuthbertson et al. 2005; Kall and Sonnhammer 2002;

Melen et al. 2003; Moller et al. 2001).

In this study, we focus on developing a more effective

and accurate TM helix segment prediction system, denoted

as WRF-TMH. The proposed approach is based on two

kinds of information. The first information is related to the

compositional index, whereas the second information is

related to the physicochemical properties of amino acids.

Compositional index profile is generated by calculating the

compositional index of each amino acid in TM helix and

non-TM helix segments. The probability of each amino

acid is then calculated in both segments. The physico-

chemical properties of amino acids such as charge, polar-

ity, aromaticity, size, and electronic are used for exploring

the behavior of amino acid sequences. The extraneous

information is eliminated through singular value decom-

position (SVD) whereby it tries to find such a matrix that

has least possible information with strong patterns and

trends. Then, highly discriminative features of both the

features spaces are combined to form a Hybrid feature

space. Weighted random forest (RF) is utilized as a clas-

sifier in our proposed system. Weighted RF is an ensemble

classifier, where the prediction is made on majority voting;

hence, the probability of error becomes less. Further, TM

helix segments are less in strength compared with non-TM

helix segments. In case of imbalanced data, the classifier

will usually be biased towards the majority class. In order

to control the bias, each class is assigned different weight,

where majority class is assigned low weight and minority

class is assigned high weight (Bush et al. 2008). Two

standard datasets and tenfold cross validation are used to

assess the performance of the proposed WRF-TMH model.

The advantage of our proposed approach is that it uses an

overlap of 11 residues, while the existing techniques

mostly use an overlap of 9. The remaining paper is orga-

nized as follows: first, a description of ‘‘Materials and

methods’’; next, a explanation of ‘‘the proposed system’’;

next, a presentation of ‘‘performance measures’’; and

results and discussion and finally a conclusion is drawn.

Materials and methods

Datasets

In order to develop a high quality and reliable prediction

model, one needs to construct or select a benchmark

dataset according to the problem. Due to the availability of

a standard dataset, the learning capability of the model is

boosted and thus, the predictions are generally in accor-

dance with the desired output. For this purpose, the dataset

must have unbiased homology and less redundancy.

Therefore, we used two benchmark datasets. DT1 is a low-

resolution membrane protein dataset, which was developed

by Moller et al. (2000). It is annotated from SWISS-PROT

release 49.0 (Bairoch and Apweiler 1997). Initially, it

contained 145 protein sequences, but later two protein

sequences were discarded, which had no annotation with

membrane proteins. Finally, DT1 consists of 143 protein

sequences, which include 687 TMH segments.

DT2 is a high-resolution membrane protein dataset. In

this dataset, 101 protein sequences of 3-D structure helix

are selected from MPtopo database (Jayasinghe et al.
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2001a), while 231 protein sequences are obtained from

TMPDB database (Ikeda et al. 2002). After merging both

the datasets, 30 % CD-hit has been applied to reduce the

redundancy. After this screening, DT2 contains 258 single

and multispanning TM protein sequences, which consist of

1,232 TMH segments.

Feature extraction techniques

In this study, we have considered two protein sequence

representation methods for extracting pertinent and useful

information from the TM protein sequences.

Physicochemical properties

A protein sequence is composed of amino acids. Each

amino acid has varying side chain. Amino acids are cate-

gorized into different groups according to their nature.

Physicochemical properties play vital role in recognizing

the behavior of amino acids. In order to extract informative

features from protein sequences, we have used some

important physicochemical properties of amino acids

including charge, polarity, aromaticity, size, and electronic.

Each physicochemical property has further sub-types,

which differentiate amino acids from each other as shown

in Table 1. Physicochemical properties of amino acids

perform a significant role in formatting and folding of

proteins structure and are largely based on propensity of a

side chain of amino acids. Each property of amino acid has

its specific characteristics, which are typically defined by

the type of the side chain the amino acids possess. For

instance, polar and charged amino acids cover the surface

of molecules and are in contact with solvents due to their

ability to form hydrogen bonds. Mostly, they interact with

each other, for example, positively and negatively charged

amino acids form salt bridges, whereas polar amino acid

side chains form hydrogen bonds. These interactions are

often useful for the stabilization of protein’s 3D structures.

Polar amino acids are hydrophilic, whereas non-polar

amino acids are hydrophobic, which are used to twist

protein into useful shapes (Hayat and Khan 2012). In this

study, the TM protein sequences are replicated into five

sequences and then each amino acid is replaced with its

corresponding property. For example, residue ri at position

i can be represented as

ri ¼ CiPiAiSiEið Þ ð1Þ

where Ci, Pi, Ai, Si, and Ei represent charge, polarity,

aromaticity, size, and electronic, respectively. Each amino

acid is replaced with its corresponding value, for example,

in case of charge the amino acid sequence is replaced by

three values: positive, negative, and neutral. Thus, by

applying the sliding window, three features are calculated

against each position (one residue at a time) and then the

window moves to the next position. This process is

repeated up to the last residue of a protein sequence. The

same procedure is applied for each property of amino

acids. Consequently, 16 features are extracted against each

position. The feature vector can be expressed as

Ri ¼ Cij

� �
1� 16

ð2Þ

where Cij is the occurrence frequency of property j in

window i. Finally, the obtained feature matrix is

P ¼ RT
1 RT

2 . . .RT
L�lþ1

� �
16�L�lþ1

ð3Þ

where T represents transpose, L is the size of protein

sequence, and l is the window size.

Compositional index

Compositional index shows the occurrence frequency of

amino acids in protein sequences. High frequency indicates

the more existence of that amino acid in protein sequences.

To compute compositional indices of amino acids, first, we

separated TM and non-TM helix segments from each TM

protein sequence. TM helix segments are represented by T1

and non-TM helix segments by T2. Then, the occurrence

frequency of each amino acid in T1 and T2, respectively, is

computed. The compositional index pi for each amino acid

is calculated as.

Table 1 Physicochemical properties of amino acids

Attributes Amino acids

Charge Positive H, K, R

Negative D, E

Neutral A, C, F, G, I, L, M, N, P, Q, S, T, V,

W

Polarity Polar Y

Nonpolar C, D, E, H, K, N, Q, R, S, T, Y

Aromaticity Aliphatic A, F, G, I, L, M, P, V, W

Aromatic I, L, V

Neutral F, H, W, Y

Size Small A, C, D, E, G, K, M, N, P, Q, R, S, T

Medium A, G, P, S

Large D, N, T

Electronic Strong C, E, F, H, I, K, L, M, Q, R, V, W, Y

Donor A, D, E, P

Weak donor I, L, V

Neutral C, G, H, S, W

Strong

acceptor

F, M, Q, T, Y

Weak

acceptor

K, N, R
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pi ¼ � ln
f non�TM
i � f TM

i

f TM
i

� �
ð4Þ

where f non�TM
i and f TM

i indicate occurrence frequencies of

amino acid i in T1 and T2 datasets, respectively.

Subsequently, each amino acid in the sequence is

substituted by the corresponding index value. Recently,

Compositional index was effectively exploited for TM

helix prediction (Zaki et al. 2011a, b). Zaki et al. improved

the concept of DomCut method (Suyama and Ohara 2003)

by incorporating the amino acid composition knowledge.

The compositional index for a TM protein sequence p, with

window size w can be computed as

mw
j ¼

Pjþ w�1ð Þ=2

i¼1
pi

jþ w�1ð Þ=2
1� j� w� 1ð Þ=2

Pjþ w�1ð Þ=2

i¼j� w�1ð Þ=2
pi

w w� 1ð Þ=2 \j� L� w� 1ð Þ=2PL

i¼j� w�1ð Þ=2
pi

L�jþ1þ w�1ð Þ=2
L� w� 1ð Þ=2 \j� L

8
>>>>><

>>>>>:

ð5Þ

We choose window size w = 7–25, considering odd size

only. The extracted feature vector is thus of size 10-D.

Singular value decomposition

Singular value decomposition (SVD) is a dimensionality

reduction technique that plays a vital role in many multi-

variate data analyses. Using SVD, one can find a reduced

dimensional matrix, which has strong correlation with no

noise effect. SVD recreates the best possible matrix, which

has minimum possible information and emphases, strong

patterns, and trends. SVD first transforms correlated vari-

ables into uncorrelated variables, which exposes the rela-

tionship between the original data and then identifies and

orders the dimensions along with exhibition of the most

variation in data points. Once highest variation is identi-

fied, then it is possible to find the best approximation of

original data points in the form of fewer dimensions.

Usually, feature space contains redundant, irrelevant,

and mutually dependent information. Therefore, it is nee-

ded to transform the feature vector into an orthogonal

dimensional space. SVD exposes the matrix or linear

transformation in minimum number of dimensions. For

instance, if a feature space is of N-dimension laying in a

K-dimensional supspace, where K \ N, then each

N-dimensional vector has only K degree of freedom and

can be uniquely represented by K number of dimensions.

SVD divides the matrix A of size M 9 N into three

matrices U, W, and V as A = UWVT when M [ N. U is an

M 9 M orthogonal matrix (UUT = I) that indicates the left

singular vector of A, V is an N 9 N orthogonal matrix

(VVT = I) that represents the right singular vector of A,

and W is an M 9 N diagonal matrix having the singular

values of A. If we assume that M \ N, then linear trans-

formation can be represented by SVD as follows:

a11 a12 . . . a1N

: : . . . :

: : . . . :

: : . . . :

aM1 aM2 . . . aMN

0

BBBBBBB@

1

CCCCCCCA

¼

u11 u12 . . . u1M

: : . . . :

: : . . . :

: : . . . :

uM1 uM2 . . . uMM

0

BBBBBBB@

1

CCCCCCCA

r11 r12 . . . r1N

: : . . . :

: : . . . :

: : . . . :

rM1 rM2 . . . rMN

0

BBBBBBB@

1

CCCCCCCA

�

v11 v12 . . . v1N

: : . . . :

: : . . . :

: : . . . :

vN1 vN2 . . . vNN

0

BBBBBBB@

1

CCCCCCCA

ð6Þ

Subsequently, the value of ri, j is zero when j [ M. So,

the product WVT will produce zero value for rows M ? 1

through N.

a11 a12 . . . a1N

: : . . . :

: : . . . :

: : . . . :

aM1 aM2 . . . aMN

0

BBBBBBB@

1

CCCCCCCA

¼

u11 u12 . . . u1M

: : . . . :

: : . . . :

: : . . . :

uM1 uM2 . . . uMM

0

BBBBBBB@

1

CCCCCCCA

r1 0 . . . 0

: : . . . :

: : . . . :

: : . . . :

0 0 . . . rM

0

BBBBBBB@

1

CCCCCCCA

�

v11 v12 . . . v1N

: : . . . :

: : . . . :

: : . . . :

vM1 vM2 . . . vMN

0

BBBBBBB@

1

CCCCCCCA

ð7Þ

This indicates that a column A.i of A can be expressed as

a linear combination of M vectors in U(u.1, u.2…u. M) using

the singular values in W(r1,r2… rM) and ith column Vi
T in

VT. The diagonal nonnegative values of W can be ordered

such that r1 C r2 C … C rM. If some entries on the

diagonal of W are zero, then for some K,

r1 C r2 C … C rK C rK?1 = … = rM = 0. So, the

number of columns in U and the number of rows in VT

can be reduced to K dimensions. However, both the

number of rows and columns of W can be reduced to

K dimensions.

The rank shows non-zero singular values of matrix

A. The required matrix is obtained by multiplying the first

K columns of U matrix by first K singular values from

W matrix and first K rows of VT matrix as shown in Fig. 1.
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a11 a12 . . . a1N

: : . . . :

: : . . . :
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aM1 aM2 . . . aMN

0

BBBBBB@

1

CCCCCCA
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CCCCCCA
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0

BBBBBB@

1

CCCCCCA

ð8Þ

Consequently, Matrix A of size M 9 N can be equally

represented by K 9 N matrix WVT where K \ M.

Non-zero singular values, which are close to zero are

eliminated from the matrix because rK?1 … C rM show

distance from the subspace spanned by U1, …, UK. A very

small distance may not affect the operation that will be

performed on the reduced data. In this study, we have

picked the first five top dimensions, where 83 % variance is

found among these dimensions.

Proposed prediction system for TM helices (WRF-

TMH)

In this study, we propose an affective model WRF-TMH

for the prediction of TM helices. The proposed model is

based on two informative protein sequence representation

methods: physicochemical properties and compositional

index. In physicochemical properties based feature

extraction, each residue in a protein sequence is first

substituted according to the behavior of amino acid by the

corresponding value of physicochemical property. After

that, the frequency of each value is computed in the

specified peptide. The process is repeated to the last residue

of a protein sequence. Consequently, 16 features are

extracted against each position in a protein sequence.

On the other hand, using compositional index, first we

have calculated the occurrence frequency of each amino

acid in TM and non-TM helix segments. Next, the com-

positional index against each amino acid is computed.

Then, each amino acid in a protein sequence is substituted

by its corresponding compositional index. Finally, taking

window size of odd number from 7 to 25, as a result, 10

features are extracted against each position. In order to

eradicate the redundancy and irrelevant features, we have

employed SVD on each feature space separately. Five

features with high variations are selected from each feature

space and then combined with the selected features of

both the feature spaces, to enhance the discriminative

power of the feature space. In addition, Weighted RF is

used as a learner, which is the collection of tree hypoth-

eses whereby each tree grows with respect to a different

bootstrap sample with the same distribution (Afridi et al.

2012; Hayat et al. 2012). The output of final prediction is

made on using majority voting; hence, the chances of

error are minimized. Recently, RF has been successfully

utilized to a wide range of classification problems, espe-

cially for predicting protein–protein binding sites (Bord-

ner 2009), residue–residue contact, and helix–helix

interaction (Wang et al. 2011) as well as solvent acces-

sible surface area of TM helix residues (Wang et al. 2012)

in membrane proteins.

In this study, the number of TM helix segments is less

than the number of non-TM helix segments. Usually, it is

perceived that in such situation the prediction of learner is

often biased towards the majority class, whereas the pur-

pose of our proposed approach is to predict TM helix

segments more accurately. For this purpose, weight is

assigned to each class, whereby high weight is assigned to

minority class and low weight is assigned to majority class

(Bush et al. 2008). The framework of the proposed

approach is illustrated in Fig. 2.

User-friendly web predictor

In order to provide an easy way to access and utilize the

developed resource for the prediction of TM helix, we have

lunched a user-friendly web predictor ‘‘WRF-TMH pre-

dictor’’. This predictor uses a simple format of text and

displays the start and end location of each helix along with

coloring the residue of each helix in sequence. The main

page of WRT-TMH predictor is shown in Fig. 3a, whereas

the predicted page is shown in Fig. 3b.

Performance measures

Various measures including accuracy, recall, precision, and

MCC are used to evaluate the performance of WRT-TMH

model at different levels such as per protein based, per

segment based, and per residue based.

Fig. 1 Graphical representation of SVD
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Q%obsd
htm ¼ numberof correctlypredicted TMindataset

Totalnumberof TMindataset
� 100

ð9Þ

where Q%obsd
htm indicates the recall of TM helix segments.

Q
%prd
htm ¼ number of correctly predicted TM indataset

number of TM predicted in dataset
� 100

ð10Þ

where Q%prd
htm represents the precision of TM helix

segments.

Qok ¼
PNProt

i di

NProt

� 100 di

¼ 1; if Q%obsd
htm ^ Q%prd

htm ¼ 100 for protein i

0; otherwise

(

ð11Þ

where Qok indicates the number of protein sequences in

which all its TM helix segments are correctly predicted.

Q2 ¼

PNProt

i
number of residues predicted correctly in protein i

number of residues in poriten i

NProt

� 100

ð12Þ

where Q2 shows the percentage of correctly predicted

residues in both the TM helix and non-TM helix segments.

Q%obsd
2T ¼ number of residues correctly predicted in TM helices

number of residues observed in TM helices
� 100

ð13Þ

where Q%obsd
2T measures how many residues are correctly

predicted in the observed residues.

Q%prd
2T ¼ number of residues correctly predicted in TM helices

number of residues predicted in TM helices
� 100

ð14Þ

where Q%prd
2T measures how many residues are correctly

predicted in the predicted residues.

MCC ¼ TP� TN � FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TN þ FPð Þ TN þ FNð Þ

p

ð15Þ

MCC is a Mathew correlation coefficient, where the

value of MCC is in the range of -1 and 1. In Eq.15, TP is

the number of correctly predicted TM helix residues; FP is

the number of incorrectly predicted TM helix residues, TN

is the number of correctly predicted non-TM helix residues,

Fig. 2 Framework of the

proposed approach

1322 M. Hayat, A. Khan

123



Fig. 3 a Illustrates the Main

page of WRF-TMH Predictor

b Shows the output of predictor
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and FN is the number of incorrectly predicted non-TM

helix residues.

Results and discussion

Generally, three cross-validation tests including self-

consistency, jackknife, and independent dataset are used for

evaluating the performance of prediction model. Among

these three cross-validation tests, investigators have exten-

sively applied jackknife test due to its special attributes

(Khan et al. 2010; Naveed and Khan 2012); however, it is

computationally expensive. In order to reduce the compu-

tational cost along with considering the important charac-

teristics of jackknife test, we have adopted tenfold cross

validation. Jackknife test splits the training dataset into

n-fold, while tenfold cross validation randomly partitioned

the training dataset into ten approximately equal mutually

exclusive folds. In both tests, one fold is used for testing and

the remaining folds are used for training. The whole process

is repeated ten times where each fold takes place exactly

once as testing fold. Finally, the prediction of each fold is

averaged to find out the final output. Two benchmark

datasets, low-resolution and high-resolution, are used,

whereas the performance is assessed on three different

levels (per protein, per segment, and per residue).

Performance analysis between selected feature space

and full feature space

After identifying patterns and extracting the information

from protein sequences, it is possible that sometimes the

information contains redundancy and noise, which

becomes the cause that disgraces the performance of

classification algorithms. In this study, we have performed

comparative analysis of selected feature space and full

feature space. The full and selected feature spaces are

shown in Fig. 4, where black color shows full feature space

and red color illustrates the selected feature space.

Performance of weighted RF using full feature space

In this work, first, we have examined the performance of

weighted RF in conjunction with full space of individual

and hybrid features. Success rates of weighted RF are

reported in Table 2. Weighted RF in conjunction with

physicochemical properties obtained 66.4 % accuracy at

per protein level for low resolution dataset. At per segment

level, weighted RF achieved 93.7 % precision and 92.9 %

recall. Whereas, in term of per residue, the predicted results

of weighted RF are 86.2 % accuracy, 85.1 % precision,

77.6 % recall, and 0.75 MCC. The performance of

weighted RF using compositional index is better than

physicochemical properties at per protein level; however, it

is almost similar at per-segment and per-residue levels. In

case of hybrid feature space, weighted RF obtained

enhanced results compared to individual feature spaces.

Success rates of weighted RF using hybrid space are,

72.7 % accuracy at per protein level, 94.2 % precision, and

94.1 % recall at per segment level, and 88.4 % accuracy,

87.0 % precision, 80.0 % recall, and 0.77 MCC at per

residue level. Using high-resolution dataset, the predicted

outcome of weighted RF is 69.0 % accuracy in case of per

protein level. It achieved 90.3 % precision and 94.0 %

recall at segment level while 89.7 % accuracy, 85.4 %

precision, 90.6 % recall, and 0.81 MCC at per residue

level. In contrast, the performance of weighted RF using

compositional index-based features is not so good com-

pared with using physiochemical properties. On utilizing

the hybrid feature space the performance of weighted RF is

better than that of individual feature spaces. It obtained

71.7 % accuracy at per protein level, whereas 91.2 %

precision and 93.9 % recall at per segment level, and

90.3 % accuracy, 88.1 % precision, 91.8 % recall, and 0.83

MCC at per residue level.

Performance of weighted RF using selected feature

space

After applying SVD the performance of weighted RF is

boosted on each feature space for both the datasets as

reported in Table 3. In case of low-resolution dataset, the

performance of weighted RF using individual feature

spaces is comparable at each level. In contrast, the per-

formance of weighted RF is enhanced using hybrid feature

space, which is 76.9 % accuracy in terms of protein level,

whereas it is 96.1 % precision and 95.1 % recall at per

Fig. 4 Full feature space and selected feature space using SVD
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segment level and 90.8 % accuracy, 87.8 % precision,

81.1 % recall, and 0.78 MCC at per residue level.

In case of high-resolution dataset, the performance of

weighted RF is better using physicochemical-based feature

space than that of compositional index-based feature space.

At per protein level, weighted RF obtained 71.1 % accu-

racy using physicochemical properties, while 69.7 %

accuracy using compositional index. Likewise, low-reso-

lution dataset, the performance of weighted RF is further

improved using hybrid feature space compared with indi-

vidual feature spaces. The proposed model achieved

74.0 % accuracy at protein level, 93.3 % precision and

95.5 % recall at segment level and 92.1 % accuracy,

89.3 % precision, 93.3 % recall, and 0.84 MCC at per

residue level.

Empirical results revealed that the performance of

weighted RF in conjunction with hybrid feature space is

promising in case of both the datasets. Hybrid feature space

is the fusion of two feature spaces, which compensates the

weaknesses of each other. In addition, feature selection

technique SVD further improved the performance of

weighted RF because it has selected only the high variated

features from the feature space.

Performance comparison with existing approaches

Performance comparison of the proposed approach WRF-

TMH model with existing approaches at different levels is

listed below.

Performance analysis at protein level

The predicted outcomes of WRF-TMH model at per pro-

tein level along with already published methods are listed

in Table 4. WRF-TMH model has achieved 76.92 %

accuracy using low-resolution dataset. In the existing

approaches, Arai et al.’s model has obtained the highest

accuracy 74.83 % (Arai et al. 2004), whereas Lo et al.’s

(2008) developed model SVMtop has obtained the accuracy

of 73.29 %. In addition, the performance of WRF-TMH

model is also compared with the other published methods

including HMMTOP2, TMHMM2, MEMSAT3, Phobius,

PHDhtm v.1.96, Top-Pred2, SOSUI 1.1, and SPLIT4. The

performance of WRF-TMH model is 3.63 and 2.09 %

higher than SVMtop and ConPred-II, respectively. On the

other hand, using high-resolution dataset, WRF-TMH

model has yielded 74 % accuracy. In current state-of-the-

Table 2 Success rates of WRF-TMH at different levels using individual and Hybrid feature space

Methods Per protein (%) Per segment (%) Per residue (%)

Qok Qobsd Qprd Q2 Qobsd Qprd MCC

Low resolution

Physicochemical properties 66.4 93.7 92.9 86.2 85.1 77.6 0.75

Compositional index 67.8 92.3 93.1 85.6 84.7 78.4 0.75

Hybrid features 72.7 94.2 94.1 88.4 87.0 80.0 0.77

High resolution

Physicochemical properties 69.0 90.3 94.0 89.7 85.4 90.6 0.81

Compositional index 67.8 89.9 93.4 88.1 86.4 90.2 0.80

Hybrid features 71.7 91.2 93.9 90.3 88.1 91.8 0.83

Table 3 Successes rates of WRF-TMH at different levels after applying SVD using individual and Hybrid feature space

Methods Per protein (%) Per segment (%) Per residue (%)

Qok Qobsd Qprd Q2 Qobsd Qprd MCC

Low resolution

Physicochemical properties 70.6 94.1 93.3 87.5 85.9 79.2 0.76

Compositional index 71.3 94.8 93.8 87.1 86.3 79.0 0.76

Hybrid features 76.9 96.1 95.1 90.8 87.8 81.1 0.78

High-resolution

Physicochemical properties 70.1 91.1 94.9 90.4 86.9 91.1 0.82

Compositional index 69.7 90.6 94.5 91.1 86.7 90.9 0.81

Hybrid features 74.0 93.3 95.5 92.1 89.3 93.3 0.84
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art methods, SVMtop has obtained the highest accuracy of

72.09 % (Lo et al. 2008), while ConPred-II has obtained

69.14 % of accuracy (Arai et al. 2004). The success rate of

WRF-TMH model is 1.91 and 4.86 % higher than that of

SVMtop and ConPred-II, and is more advanced than other

existing methods.

Performance analysis at segment level

At per segment level, the performance of WRF-TMH

model is measured as recall and precision of the TM helix

segments. The recall and precision of WRF-TMH model

and other existing methods are shown in column 3–4 of

Table 4. The performance of WRF-TMH model is also

substantially good at per segment level compared with the

already published methods. In case of low-resolution

dataset, WRF-TMH model has obtained 96.06 % of recall

and 95.10 % of precision. On the other hand, SVMtop has

achieved 94.76 % recall and 93.94 % precision (Lo et al.

2008). In other existing methods, several methods have

yielded comparable recall but worse precision and vice

versa. Besides, the recall and precision of ConPred-II are

relatively better compared with other state-of-the-art

methods (Arai et al. 2004). Whereas WRF-TMH model has

achieved 1.84 and 1.16 % higher results than that

of SVMtop and 1.84 and 2.89 % higher than that of

ConPred-II, using high-resolution dataset, our proposed

approach has achieved 93.26 % recall and 95.45 % preci-

sion. In contrast, SVMtop has yielded 92.78 % recall and

94.46 % precision.

Performance analysis at residue level

The performance of WRF-TMH model is also analyzed at

per residue level. In per protein and per segment levels

only TM helix segments are considered; however, in per

residue level both TM and non-TM helix segments are

measured. At per residue level, the performance of the

WRF-TMH model is assessed using four measures such as

accuracy, recall, precision, and MCC. The predicted

Table 4 Performance comparison with existing approaches

Per protein (%) Per segment (%) Per residue (%)

Qok QTM Qobsd Qprd Q2 Qobsd Qprd MCC

Low resolution

WRF-TMH 76.92 72.00 96.06 95.10 90.84 87.81 81.11 0.78

SVMtop 73.29 69.23 94.76 93.94 89.23 87.50 80.35 0.77

TMHMM2 68.53 58.74 90.39 93.52 89.23 82.82 83.03 0.76

HMMTOP2 64.34 55.94 89.96 93.78 87.89 79.36 84.37 0.75

PHDhtm v.1.96 39.86 29.37 76.27 85.76 85.35 81.71 76.59 0.71

MEMSAT3 70.63 67.83 91.56 90.24 87.91 84.54 77.63 0.73

TopPred2 57.34 42.66 86.75 91.13 88.00 76.85 82.9 0.72

SOSUI 1.1 63.64 – 88.36 91.55 87.00 80.41 78.66 0.71

SPLIT4 72.73 64.34 93.45 91.32 88.07 87.56 76.88 0.74

ConPred II 74.83 65.04 94.76 92.21 90.07 84.37 84.13 0.78

Phobius 72.03 60.84 92.87 93.14 88.92 83.92 82.57 0.77

PolyPhobius 71.33 61.54 94.47 91.54 89.75 86.84 83.11 0.79

High-resolution

WRF-TMH 74.00 68.6 93.26 95.45 92.13 89.27 93.33 0.84

SVMtop 72.09 62.79 92.78 94.46 90.90 87.84 84.36 0.81

TMHMM2 59.30 46.12 86.93 93.78 87.70 78.59 83.55 0.74

HMMTOP2 65.89 52.71 90.34 89.98 87.68 78.30 82.30 0.73

PHDhtm v.1.96 38.37 25.58 74.43 84.59 84.55 78.28 78.03 0.70

MEMSAT3 64.84 56.64 87.67 91.09 87.16 79.64 78.84 0.71

TopPred2 50.39 37.21 84.50 90.05 86.96 74.06 82.47 0.71

SOSUI 1.1 56.98 – 85.06 92.17 86.15 76.88 80.02 0.71

SPLIT4 65.12 54.65 89.77 91.56 87.12 83.84 78.00 0.73

ConPred II 69.14 55.43 90.94 91.31 88.63 79.99 84.17 0.75

Phobius 67.05 54.65 88.72 93.58 87.81 79.42 83.76 0.75

PolyPhobius 67.44 55.81 90.91 91.28 88.79 82.66 83.34 0.77
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outcomes of the WRF-TMH model are 90.84, 87.81, 81.11,

and 0.78 accuracy, recall, precision, and MCC, respec-

tively, using low-resolution dataset. In existing literature,

SVMtop provides 89.23, 87.50, 80.35, and 0.77 accuracy,

recall, precision, and MCC, (Lo et al. 2008). In addition,

Krogh et al.’s (2001) proposed method TMHMM2 has

achieved 89.23 % accuracy, 82.82 % recall, 83.03 %

precision, and 0.76 MCC. Arai et al.’s (2004) proposed

model ConPred-II has obtained 90.07, 84.37, 84.13, and

0.78 %, accuracy, recall, precision, and MCC, respec-

tively. On the other hand, using high-resolution dataset,

the predicted outcomes of WRF-TMH model are 92.13,

89.27, 93.33, and 0.84 % accuracy, recall, precision, and

MCC, respectively, whereas, in existing methods the

highest success rates have been achieved by SVMtop,

which are 90.90, 87.84, 84.36, and 0.81 % accuracy,

recall, precision, and MCC, respectively. Likewise,

PolyPhobius has yielded 88.79 % accuracy and 0.77

MCC, whereas SPLIT4 has obtained 83.84 % recall and

ConPred II has 84.17 % precision. However, in former

methods, three residue long helix segments were con-

sidered (Jayasinghe et al. 2001a), but later, it was

increased to nine residue long helix segment (Jayasinghe

et al. 2001b). Likewise, Moller et al. (2000) also con-

sidered nine residues long segment in his proposed

model, but our proposed model has considered 11 resi-

due-long segment.

Finally, we have concluded that our proposed method

has obtained remarkable outcomes at all the three levels.

The significance of our proposed approach over existing

methods is that it has not only obtained the highest accu-

racy but also increased the length of overlap segments.

These attainments have been conceivable due to merging

of two informative protein sequence representation meth-

ods and ensemble classifier, i.e. weighted RF.

Conclusion

Owing to the dynamic role of TM helix in living organ-

isms, it is indispensable to develop an accurate, effective,

and high-quality prediction model for predicting TM helix.

For this purpose, we propose a prediction model WRF-

TMH, which has shown superior performance compared

with the existing approaches. The proposed model is based

on two different types of feature extraction schemes:

compositional index and physicochemical properties. In

order to avoid training of the model from unnecessary and

irrelevant features, SVD is applied. Weighted RF is utilized

to handle the problem of bias by assigning different

weights to different classes. The performance of the clas-

sifier is evaluated through tenfold cross validation using

two benchmark datasets. The predicted results of the WRF-

TMH model are higher than that of existing methods at

each level, so far. So, it is anticipated that our proposed

method might play a significant role and provide vital

information for further structural and functional studies on

membrane proteins.

Acknowledgments This work was supported by the Higher Edu-

cation Commission of Pakistan under the indigenous PhD scholarship

program 17-5-3 (Eg3-045)/HEC/Sch/2006).

References

Afridi TH, Khan A, Lee YS (2012) Mito-GSAAC: mitochondria

prediction using genetic ensemble classifier and split amino acid

composition. Amino Acids 42:1443–1453

Amico M, Finelli M, Rossi I (2006) PONGO: a web server for

multiple predictions of all-alpha transmembrane proteins.

Nucleic Acids Res 34:W169–W172

Arai M, Mitsuke H, Ikeda M, Xia JX, Kikuchi T, Satake M, Shimizu

T (2004) Con Pred II: a consensus prediction method for

obtaining transmembrane topology models with high reliability.

Nucleic Acids Res 32:W390–W393

Argos P, Rao J, Hargrave P (1982) Structural prediction of membrane

bound proteins. Eur J Biochem 128:565–575

Bagos P, Liakopoulos T, Hamodrakas S (2006) Algorithms for

incorporating prior topological information in HMMs: applica-

tion to transmembrane proteins. BMC Bioinform 7:189

Bairoch A, Apweiler R (1997) The SWISS-PROT protein sequence

database: its relevance to human molecular medical research.

J Mol Med 5:312–316

Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T (2000) Nucleic

Acids Res 28:235–242

Bordner A (2009) Predicting protein–protein binding sites in mem-

brane proteins. BMC Bioinform 24(10):312

Bush WS, Edwards TS, Dudek SM, Mckinney BA, Ritchie MD

(2008) Alternative contingency table measures improve the

power and detection of multifactor dimensionality reduction.

BMC Bioinform 9:238–254

Chen CP, Kernytsky A, Rost B (2002) Transmembrane helix

predictions revisited. Protein Sci 11:2774–2791

Claros MG, Von Heijne G (1994) TopPred II: an improved software

for membrane protein structure predictions. Comput Appl Biosci

10:685–686

Cserzo M, Wallin E, Simon I, Von Heijne G, Elofsson A (1997)

Prediction of transmembrane alpha-helices in prokaryotic mem-

brane proteins: the dense alignment surface method. Protein Eng

Des Sel 10:673–676

Cserzo M, Eisenhaber F, Eisenhaber B, Simon I (2004) TM or not

TM: transmembrane protein prediction with low false positive

rate using DASTMfilter. Bioinformatics 20:136–137

Cuthbertson JM, Doyle DA, Sansom MS (2005) Transmembrane

helix prediction: a comparative evaluation and analysis. Protein

Eng Des Sel 18:295–308

Deber C, Wang C, Liu L, Prior A, Agrawal S, Muskat B, Cuticchia A

(2001) TM finder: a prediction program for transmembrane

protein segments using a combination of hydrophobicity and

nonpolar phase helicity scales. Protein Sci 10:212–219

Eisenberg D, Weiss RM, Terwilliger TC (1982) The helical

hydrophobic moment: a measure of the amphipathicity of a

helix. Nature 299:371–374

Hayat M, Khan A (2012) Mem-PHybrid: hybrid features based

prediction system for classifying membrane protein types. Anal

Biochem 424:35–44

WRF-TMH: predicting transmembrane helix by fusing composition index 1327

123



Hayat M, Khan A, Yeasin M (2012) Prediction of membrane proteins

using split amino acid composition and ensemble classification.

Amino Acids 42:2447–2460

Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification

and secondary structure prediction system for membrane

proteins. Bioinformatics 14:378–379

Hosseini SR, Sadeghi M, Pezeshk H, Eslahchi C, Habibi M (2008)

Prosign: a method for protein secondary structure assignment

based on three-dimensional coordinates of consecutive c(alpha)

atoms. Comput Biol Chem 32(6):406–411

Ikeda M, Arai M, Lao DM, Shimizu T (2002) Transmembrane

topology prediction methods: a re-assessment and improvement

by a consensus method using a dataset of experimentally-

characterized transmembrane topologies. In Silico Biol 2:19–33

Jayasinghe S, Hristova K, White SH (2001a) MPtopo: a database of

membrane protein topology. Protein Sci 10:455–458

Jayasinghe S, Hristova K, White SH (2001b) Energetics, stability, and

prediction of transmembrane helices. J Mol Biol 312:927–934

Jones DT (2007) Improving the accuracy of transmembrane protein

topology prediction using evolutionary information. Bioinfor-

matics 23:538–544

Juretic D, Zoranic L, Zucic D (2002) Basic charge clusters and

predictions of membrane protein topology. J Chem Inf Comput

Sci 42:620–632

Kahsay R, Gao G, Liao L (2005) An improved hidden Markov model

for transmembrane protein detection and topology prediction and

its applications to complete genomes. Bioinformatics 21:1853–

1858

Kall L, Sonnhammer E (2002) Reliability of transmembrane predic-

tions in whole-genome data. FEBS Lett 532:415–418

Kall L, Krogh A, Sonnhammer E (2007) Advantages of combined

transmembrane topology and signal peptide prediction—the

Phobius web server. Nucleic Acids Res 35:W429–W432

Khan A, Majid A, Choi TS, Acids A (2010) Predicting protein

subcellular location: exploiting amino acid based sequence of

feature spaces and fusion of diverse classifiers. Amino Acids

38:347–350

Klabunde T, Hessler G (2002) Chem Bio Chem 3:928–944

Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001)

Predicting transmembrane protein topology with a hidden

Markov model: application to complete genomes. J Mol Biol

305:567–580

Kyte J, Doolittle R (1982) A simple method for displaying the

hydropathic character of a protein. J Mol Biol 157:105–132

Lo A, Chiu HS, Sung TY, Lyu PC, Hsu WL (2008) Enhanced

membrane protein topology prediction using a hierarchical

classification method and a new scoring function. J Proteome

Res 7:487–496

Martelli P, Fariselli P, Casadio R (2003) An ENSEMBLE machine

learning approach for the prediction of all-alpha membrane

proteins. Bioinformatics 19:i205–i211

Melen K, Krogh A, von-Heijne G (2003) Reliability measures for

membrane protein topology prediction algorithms. J Mol Biol

327:735–744

Moller S, Kriventseva EV, Apweiler R (2000) A collection of well

characterized integral membrane proteins. Bioinformatics

16:1159–1160

Moller S, Croning MD, Apweiler R (2001) Evaluation of methods for

the prediction of membrane spanning regions. Bioinformatics

646–653:17

Nakai K, Kanehisa M (1992) A knowledge base for predicting protein

localization sites in eukaryotic cells. Genomics 14:897–911

Naveed M, Khan A (2012) GPCR-MPredictor: multi-level prediction

of G protein-coupled receptors using genetic ensemble. Amino

Acids 42:1809–1823

Nugent T, Jones D (2009a) Transmembrane protein topology

prediction using support vector machines. BMC Bioinformatics

10:159

Nugent T, Jones D (2009b) Predicting transmembrane helix packing

arrangements using residue contacts and a force-directed algo-

rithm. PLoS Comput Biol 6:e1000714

Persson B, Argos P (1996) Topology prediction of membrane

proteins. Protein Sci 5:363–371

Pylouster J, Bornot A, Etchebest C, Brevern AGD (2010) Influence of

assignment on the prediction of transmembrane helices in

protein structures. Amino Acids 39(5):1241–1254

Rost B, Casadio R, Fariselli P, Sander C (1995) Transmembrane

helices predicted at 95% accuracy. Protein Sci 4:521–533

Rost B, Fariselli P, Casadio R (1996) Topology prediction for helical

transmembrane proteins at 86% accuracy. Protein Sci

5:1704–1718

Shen H, Chou JJ (2008) MemBrain: improving the accuracy of

predicting transmembrane helices. PLoS ONE 3:e2399

Sonnhammer EL, Von Heijne G, Krogh A (1998) A hidden Markov

model for predicting transmembrane helices in protein

sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

Suyama M, Ohara O (2003) Domcut: prediction of inter-domain

linker regions in amino acid sequences. Bioinformatics

19:673–674

Tusnady GE, Simon I (1998) Principles governing amino acid

composition of integral membrane proteins: application to

topology prediction. J Mol Biol 283:489–506

Tusnady GE, Simon I (2001) The HMMTOP transmembrane

topology prediction server. Bioinformatics 17:849–850

Viklund H, Elofsson A (2004) Best alpha-helical transmembrane

protein topology predictions are achieved using hidden Markov

models and evolutionary information. Protein Sci 13:1908–1917

Von Heijne G (1992) Membrane protein structure prediction.

Hydrophobicity analysis and the positive-inside rule. J Mol Biol

225:487–494

Wang XF, Chen Z, Wang C, Yan RX, Zhang Z, Song J (2011)

Predicting residue–residue contacts and helix–helix interactions

in transmembrane proteins using an integrative feature-based

random forest approach. PLoS ONE 6:e26767

Wang C, Xi L, Li S, Liu H, Yao X (2012) A sequence-based

computational model for the prediction of the solvent accessible

surface area for \alpha[ -helix and \beta[ -barrel transmem-

brane residues. J Comput Chem 33:11–17

Zaki N, Bouktif S, Sanja LM (2011a) A combination of composi-

tional index and genetic algorithm for predicting transmembrane

helical segments. PLoSONE 6(7):e21821

Zaki N, Bouktif S, Sanja LM (2011b) A genetic algorithm to enhance

transmembrane helices topology prediction using compositional

index, ACM GECCO’11, Dublin

1328 M. Hayat, A. Khan

123


	WRF-TMH: predicting transmembrane helix by fusing composition index and physicochemical properties of amino acids
	Abstract
	Introduction
	Materials and methods
	Datasets
	Feature extraction techniques
	Physicochemical properties
	Compositional index

	Singular value decomposition
	Proposed prediction system for TM helices (WRF-TMH)
	User-friendly web predictor
	Performance measures

	Results and discussion
	Performance analysis between selected feature space and full feature space
	Performance of weighted RF using full feature space
	Performance of weighted RF using selected feature space
	Performance comparison with existing approaches
	Performance analysis at protein level
	Performance analysis at segment level
	Performance analysis at residue level


	Conclusion
	Acknowledgments
	References


