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Abstract The application of carnosine in medicine has

been discussed since several years, but many claims of

therapeutic effects have not been substantiated by rigorous

experimental examination. In the present perspective, a

possible use of carnosine as an anti-neoplastic therapeutic,

especially for the treatment of malignant brain tumours

such as glioblastoma is discussed. Possible mechanisms by

which carnosine may perform its anti-tumourigenic effects

are outlined and its expected bioavailability and possible

negative and positive side effects are considered. Finally,

alternative strategies are examined such as treatment with

other dipeptides or b-alanine.

Introduction

Since its discovery in 1900 (Gulewitsch and Amiradzibi

1900), the dipeptide carnosine (b-alanyl-L-histidine) has

been investigated in various laboratories. However,

despite many efforts, its precise physiological func-

tion(s) remain uncertain up to the present day [for

reviews see (Quinn et al. 1992; Hipkiss 2009a, b)]. Anti-

neoplastic effects of carnosine were first described by

Nagai and Suda (1986). These authors subcutaneously

implanted Sarcoma-180 tumour cells into ddY mice. The

day after implantation, carnosine was administered sub-

cutaneously 2 cm from the implantation site. Treatment

with carnosine (50 mg/kg/day) was continued every

second day. When compared to treatment with saline, it

became obvious that carnosine significantly inhibited

tumour growth and also reduced mortality. Unfortu-

nately, the experiments of Nagai and Suda did not

receive their deserved attention, probably because the

original manuscript was not published in English.

Inspired by the work of Holliday and McFarland (1996)

who found that carnosine selectively inhibited the growth

of transformed and neoplastic cells, but over 20 years

after the Nagai and Suda paper, Renner et al. (2008)

showed that carnosine inhibited the growth of cultured

tumour cells isolated from human glioblastoma. The

effects of carnosine were also studied in nude mice

following subcutaneous implantation of cells expressing

the human epidermal growth factor receptor 2 (Her2/neu)

(Renner et al. 2010b). The animals received a daily

intraperitoneal injection of either 500 ll carnosine solu-

tion (1 M) or saline as controls. These experiments

demonstrated that aggressive tumour growth was signif-

icantly delayed by carnosine and that tumour size was

also reduced. In addition, tumour cells of animals treated

with carnosine were less pleomorphic and exhibited a

reduced number of mitotic figures. Consequently, these

experiments, the inhibitory effects of carnosine on vari-

ous neoplastic cell lines (human and rodent) (Holliday

and McFarland 1996) and on HCT116 colon cancer cells

(Iovine et al. 2012), plus the experiments originally

described by Nagai and Suda (1986) raise the hope that

carnosine may also be effective for the treatment of

other types of tumours.
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The enigma of carnosine’s cellular effects

Carnosine has been described as an enigmatic peptide

(Bauer 2005). This conclusion is exemplified by carno-

sine’s contrasting effects on tumour cells and differentiated

fibroblasts (Hipkiss 2009a), whilst carnosine extends the

proliferative potential of cultured human fibroblasts,

lengthens their lifespan and suppresses the appearance of

the senescent phenotype (McFarland and Holliday 1994),

the dipeptide strongly inhibits the growth of cultured

tumour cells, as outlined above. It is possible, however, to

reconcile this apparent paradox when one considers the

metabolic differences between these two cell types, i.e. the

Warburg effect. Indeed, it has been suggested that specif-

ically targeting cancer cell metabolism may reveal thera-

peutic opportunities (Vander Heiden 2011). Most tumour

cells are predominantly glycolytic for ATP supply and

provision in metabolic precursors for macromolecule bio-

synthesis, whereas in terminally differentiated fibroblasts,

where biosynthetic demands are lower, ATP synthesis is

predominantly mitochondrial in origin, as outlined by

Warburg so many years ago. The observation suggesting

that carnosine may in some ways interfere with glycolysis

(Renner et al. 2010a) is entirely consistent with these

metabolic differences. It is also interesting to note that

carnosine concentration in skeletal muscle of healthy

children is reported to increase from 30 to 40 mg% at

5 years of age to 120–140 mg% at 14 years of age (Grinio

and Stvolinsky 2011).

Collectively, these observations seem to suggest that

high concentrations of carnosine may not be entirely

compatible with rapid tissue growth, i.e. where glycolysis

predominates, but the dipeptide may assist cell survival of

post-mitotic tissue. This speculation is reinforced by some

preliminary experiments in yeast; the presence of the

dipeptide in the culture medium was partially inhibitory

during logarithmic growth, but enhanced cell survival

when growth ceased (Cartwright, Hipkiss and Bill,

unpublished observations). Thus, carnosine’s differential

effects towards mammalian cells seem to be reflected in its

actions towards cultured yeast cells, and further supports

the idea that carnosine may exert some inhibitory effects on

glycolysis. Indeed, McFarland and Holliday (1994, 1999)

in their 1994 and 1999 papers do comment that the pres-

ence of carnosine in the culture medium did result in a

slight decrease in fibroblast growth rate. It may also be

relevant to note that loss of the E2F-1 transcription factor

not only promotes a more oxidative (less glycolytic) phe-

notype (Blanchet et al. 2011), but also reduces tumouri-

genesis and extends the lifespan of Rb1(?/-) mice

(Yamasaki et al. 1998). These observations are consistent

with the view that carnosine’s therapeutic potential could

be effected via the inhibition of glycolytic metabolism.

Possible mechanisms

The physiological and biochemical mechanisms responsi-

ble for the anti-neoplastic activity of carnosine are not

known. We will present a more detailed discussion and

new hypotheses elsewhere; nevertheless, we would like to

raise some topics which we think should be discussed.

Carnosine’s inhibitory effects towards cancer cell growth

have been attributed to interference with tumour glycolysis

(Holliday and McFarland 1996; Renner et al. 2010a),

although the exact mechanisms explaining how carnosine

exerts its action are not known. Some data indicate an

influence of carnosine on chaperone activity and hypoxia

inducible factor alpha (HIFa) signalling (Asperger et al.

2011); indeed, upregulated hypoxic response activity is a

frequent characteristic of tumour cells. A further interesting

observation that may hint at a possible mechanism is the

finding that some advanced glycation end products (AGEs)

inhibit tumour growth (Bartling et al. 2011). In fact, car-

nosine’s ability to react with AGEs and many AGE-

inducing agents is one of its likely biological functions [for

a recent review see (Hipkiss 2009a)]. Another aspect may

be hidden behind carnosine’s ability to scavenge reactive

oxygen species (ROS) (Gorbunov and Erin 1991) [for

review see (Guiotto et al. 2005; Boldyrev et al. 2007;

Boldyrev 1993)]. For normal cells, protection from ROS

and their products is an advantage, whereas for fast-

growing tumour cells it may be deleterious; extracellular

signal-regulated kinase (ERK) can be activated by ROS

(Guyton et al. 1996a, b). ERK is a member of the mitogen

activated protein kinases (MAPK) with at least 180 sub-

strates identified to date [for a review see (Niault and

Baccarini 2010)]. Accordingly, ERK signalling regulates

many functions including cell survival (Xia et al. 1995) and

proliferation in a broad range of human tumours [for

review see (Maurer et al. 2011)]. Scavenging of radicals by

carnosine may, therefore, reduce ERK signalling in tumour

cells followed by impaired survival and proliferation.

Evidence supporting the idea of carnosine compromises

signalling has been obtained (Jia et al. 2009); carnosine

was shown to inhibit mesangial cell proliferation in

response to high glucose levels, the cell-cycle being

arrested at the transition from G1 to S phase, which was

accompanied by decreased phosphorylation of ERK 1/2

and p38 MAP kinase. Evidence that carnosine inhibits

phosphorylation of ERK 1/2 and p38 MAP kinase was also

obtained by Son et al. (2008) using intestinal epithelial

cells. These workers also suggested that carnosine inter-

feres with messenger RNA translation initiation factor

eIF4E, perhaps by inhibiting phosphorylation of Akt. It is

interesting that rapamycin, an anti-cancer agent, which

extends lifespan and suppresses much age-related dys-

function, also inhibits translation initiation via effects on
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eIF4E function (Sheaffer et al. 2008). This leads to the

speculation that carnosine may be a rapamycin mimic.

Bioavailability

Mode of administration

For carnosine to be considered as a potential anti-neo-

plastic drug for the treatment of cancer patients, questions

about its bioavailability should be addressed. One impor-

tant aspect for bioavailability is that in several tissues

transport of carnosine is mediated by the high affinity,

energy-dependent dipeptide transporter, PepT2 (Kamal

et al. 2009).

Intestinal transport

When Gardner et al. investigated the intestinal absorption

of carnosine in man they recognized that carnosine crosses

the intestine to a huge extent. Up to 14 % of ingested

carnosine was recovered in the urine over 5 h after inges-

tion (Gardner et al. 1991), but rapid post-absorptive

hydrolysis was a severe obstacle for the quantification of

intact peptide absorption (Gardner et al. 1991). Since car-

nosine is detectable in urine up to 4 h after ingestion, one

may consider administrating carnosine in several daily

doses. This was done in a study with 31 autistic children

where carnosine was administered in two daily doses of

400 mg carnosine (Chez et al. 2002). Significant changes

and behavioural improvements in children given carnosine

were reported. This suggests that carnosine can exert

neurological effects when ingested orally. Unfortunately,

plasma or urine levels of carnosine were not determined

and it has been suggested that the improvements in

behaviour, etc. could have been due to maturation and

educational interventions, as well as other potential con-

founds that were not addressed in the study design (Levy

and Hyman 2005).

Plasma levels of carnosine

Initial attempts to measure plasma levels of carnosine in

human probands have not yielded reliable data (Asatoor

et al. 1970); it was shown that ex vivo hydrolysis during

blood collection resulted in an apparent half-life of car-

nosine of the order of 1 min (Gardner et al. 1991).

Although this does not reflect carnosine’s biological half-

life in serum, the fact that urinary recovery of carnosine is

possible by the fourth hour after ingestion poses a question

to the fate of absorbed carnosine before excretion. Whether

carnosine is sequestered in serum is uncertain, although

given its avidity towards reactive aldehydes and carbonyls

one might anticipate permanent or temporary attachment of

the dipeptide to serum proteins or lipids, although as far as

the authors are aware there have been few studies in this

area.

Carnosinase activity

A problem for bioavailability after ingestion may be the

presence of serum carnosinase (CN1, EC 3.4.13.20)

activity in plasma (Lenney et al. 1982). Gardner et al.

(1991) found a highly significant negative correlation

between serum carnosinase activity and urinary recovery of

intact carnosine after ingestion by human probands. In

addition to serum carnosinase activity, hydrolysis of car-

nosine in liver, kidney and other tissues may also play a

role in limiting carnosine bioavailability. Since serum

carnosinase has been modelled, it may be possible to

design specific drugs to inhibit the enzyme (Vistoli et al.

2006). However, it is uncertain how patients would respond

to the inhibition of serum carnosinase. At this point, it

should also be noted that it is difficult to extrapolate from

animal experiments on carnosine efficacy to humans, since

many non-primate mammals (e.g. rat, mouse, rabbit and

guinea pig) appear to possess little or no serum carnosinase

activity (Jackson et al. 1991). In addition to serum car-

nosinase, the cytosolic isoform of carnosinase (CN2, EC

3.4.13.3) should not be underestimated with regard to final

bioavailability of carnosine in the tissue that is targeted [for

a review see (Pegova et al. 2000)]. Since the cytosolic form

of carnosinase can be inhibited by bestatin (Peppers and

Lenney 1988), adjuvant treatment with this peptidase

inhibitor may be considered. Fortunately, there is already

information from clinical trials with bestatin available from

the literature (Ota and Uzuka 1992).

To our knowledge, it is not known whether a continu-

ously high intake of carnosine induces serum carnosinase

activity. Therefore, it is suggested that in the course of a

clinical trial, plasma carnosinase activity should be regu-

larly monitored. This will be helpful in order to determine a

proper treatment regimen.

That carnosine appears to exert growth-inhibitory

effects towards glioblastoma-derived cells immediately

suggests that the dipeptide should be explored as a poten-

tial therapeutic against intractable glioblastomas, espe-

cially as it would be possible to avoid the problem of serum

carnosinase by choosing an intranasal administrative route.

The blood–brain barrier

An argument that carnosine may target neuronal tissue

comes from the observation that PepT2 mRNA is present

in rat brain (Wang et al. 1998) and in astroglia-rich primary

cultures (Dringen et al. 1998). More importantly, PepT2 is
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expressed and functionally active in epithelial cells in the

choroid plexus (Teuscher et al. 2000; Shu et al. 2002),

where it appears to be the only transporter responsible for

the uptake of carnosine (Teuscher et al. 2004). Since the

choroid plexus acts as a barrier between blood and cere-

brospinal fluid (CSF), the transporter may facilitate the

transport of carnosine between CSF and blood. In fact,

dipeptide uptake in the choroid plexus is considerably

impaired in PepT2-deficient mice (Shen et al. 2003). It has

been suggested, however, that PepT2 on the apical mem-

brane surface of the choroidal epithelial cells may act as an

efflux pump in the removal of peptides from the CSF

(Bauer 2005). This leaves some uncertainty as to whether

orally administered carnosine may enter the brain through

the blood–brain barrier. Since the blood–brain barrier is

usually not intact in patients suffering from glioblastoma,

the penetration of carnosine into the large, often necrotic,

glioma cavities is likely as it is the case for other drugs

applied to treat this disease (Rieger et al. 1999).

PepT2 may also transport homocarnosine (c-aminobu-

tyryl-L-histidine) and although carnosine is absent from

human CSF, homocarnosine is present; furthermore, CSF

levels of homocarnosine have been reported to decline with

age in humans by a factor of 7 or more (Huang et al. 2005;

Jansen et al. 2006). However, the significance of these

observations is uncertain.

Side effects

Negative side effects

When Gardner et al. (1991) performed their experiments to

determine intestinal uptake of carnosine, the participants of

the study ingested a single dose of 4 g of carnosine. As

Gardner et al. reported, no adverse effects were observed

aside from a mild and transient digital paraesthesia that

some subjects experienced within the first hour. Paraes-

thesia occurring from about 15–45 min after the ingestion

of *2.5 g of carnosine (0.286 mmol/kg body weight) was

also reported by Asatoor et al. (1970).

Positive side effects

As outlined above, it is anticipated that carnosine would

not have severe negative side effects, and that beneficial

effects for patients treated for certain types of cancers are

likely. One example is carnosine-mediated protection from

lung injury caused by radiation (Guney et al. 2006). In

general, ionizing radiation is still a highly effective thera-

peutic tool for different types of cancer and is, therefore,

frequently employed. Since formation of ROS is one of the

major reasons for cellular injury after radiation (Riley

1994), carnosine may protect healthy tissue from damage

and inflammation due to its antioxidant (Babizhayev et al.

1994; Chan et al. 1994) or anti-inflammatory properties

[for a review see (Nagai 1980)]. The hypothesis of Guney

et al. (2006) has not been tested in humans, but 20 years

ago Severin et al. (1990) reported that carnosine adminis-

tered per os (50–200 mg/kg/day) during a period of

20 days prior to irradiation increased survival rates in

albino mice subjected to whole-body X-irradiation

(5.0 Gy). Comparable experiments were performed by

Kurella et al. (1991) with an intake of a single dose of

carnosine (50–100 mg/kg body weight). These authors

hypothesize that the protective effect was due to an

immunomodulating effect of carnosine. Later, Naumova

et al. (1992) reported that carnosine, given per os 1 day

before irradiation with 7 Gy, considerably decreased the

generation of LPO products 1 h after irradiation and fully

normalized the decrease in P-450 activity on the fifth day

after irradiation (Kudriashov et al. 1999). Strong protection

from radiation in mice was recently confirmed by Zainal

et al. (2007) who demonstrated that subcutaneous admin-

istration of carnosine (2,300 mg/kg) 24 h prior to whole-

body irradiation (8.75 Gy, 0.6 Gy/min) resulted in 88 %

survival compared with 25 % for the vehicle control ani-

mals. To our knowledge, carnosine has been rarely used in

clinical trials associated with radiotherapy. However, it is

important to note that the goal of radiotherapy is the

destruction of tumour cells and protection by carnosine

which could, in some cases, reduce therapeutic efficacy. It

has, however, been shown that the presence of polaprezinc

(a carnosine–zinc complex) suppresses the development of

oral mucositis following radiotherapy for head and neck

cancer, and no negative effects on the tumour response to

radiotherapy were detected (Watanabe et al. 2010).

Another protective effect of carnosine in cancer treatment

is the observation that carnosine has a nephroprotective

effect in mice treated with cisplatin (Fouad et al. 2008).

Cisplatin is a highly effective anti-neoplastic drug used for

the treatment of a wide variety of tumours, a major adverse

effect of which is nephrotoxicity.

In general, the positive effects of carnosine are mani-

fold; there is a substantial literature on its protective effects

(Quinn et al. 1992; Hipkiss 2009b), including astroglial cell

protection by NO-trapping (Nicoletti et al. 2007) and

protection against hypoxia–ischaemia brain damage

(Zhang et al. 2011). It has been reported that carnosine

reduces the development of inflammation and tissue injury

associated with spinal cord trauma (Di Paola et al. 2011); it

also protects lung tissue against bleomycin-induced injury

(Cuzzocrea et al. 2007) and prevents vascular damage in

experimental diabetic retinopathy (Pfister et al. 2011).
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Alternative compounds

As an alternative to carnosine administration, treatment of

patients with other dipeptides, such as anserine (b-alanyl-L-

methylhistidine), D-carnosine (b-alanyl-D-histidine) or

homocarnosine (c-amino-butyryl-L-histidine) may be con-

sidered. Other possibilities include administering b-alanine

and the development of new derivatives. In the following

section, we will briefly discuss some of these possibilities.

Dipeptides

In early experiments performed by Holliday and McFar-

land (1996), anserine appeared to inhibit the growth of

HeLa cells but neither D-carnosine nor homocarnosine

were effective. D-Carnosine is not very efficiently absorbed

in the intestine, provided it is not chemically modified

(Orioli et al. 2011).

b-Alanine

High tissue levels of carnosine can be obtained after the

ingestion of b-alanine (Harris et al. 2006). This effect

has been intensively investigated in muscle [for a review

see (Sale et al. 2010)]. Of course, synthesis of carnosine

from b-alanine will be restricted to tissues expressing

carnosine synthase [L-histidine:beta-alanine ligase (ADP-

forming) (6.3.2.11), formerly also designated ‘carnosine

synthetase’]. At least amongst the tumours originating in

the brain, carnosine synthase may exist, as it has been

demonstrated that C6 glioma cells (Bauer et al. 1979)

and astrocyte-enriched cultures (Bauer et al. 1982) are

able to synthesize carnosine. Later, it was demonstrated

that only oligodendrocytes produce carnosine, whereas

astrocytes possess an efficient carnosine uptake mecha-

nism (Hoffmann et al. 1996) [for a review see (Bak-

ardjiev and Bauer 2000)]. Since normal oligodendrocytes

are able to release a significant amount of synthesized

carnosine (Bauer et al. 1982; Hoffmann et al. 1996), the

possibility that administration of b-alanine may enhance

the brain carnosine concentrations should be evaluated.

However, it should also be noted that ingestion of high

doses of b-alanine can induce quite profound paresthesia

(Artioli et al. 2010).

Whether a tumour cell itself is able to express carnosine

synthase may be dependent on its origin. Previous experi-

ments by Holliday and McFarland (1996) with HeLa cells

and recent experiments with primary cultured human

glioblastoma cells did not exhibit an anti-neoplastic

response to b-alanine (Gaunitz et al., unpublished results),

but it has to be noted that carnosine synthesis, at least in

astrocyte-enriched cultures, is highly dependent on media

composition (Schulz et al. 1989).

Novel derivatives of carnosine

As outlined above, bioavailability of carnosine is limited

by the two isoforms of carnosinase. Therefore, stable

derivatives have been described as alternatives to carnosine

(Bertinaria et al. 2011; Lanza et al. 2011). First experi-

ments with carnosine amides demonstrate that some are

comparable to carnosine with regard to protection against

LDL oxidation catalysed by Cu2? ions, and at least one

derivative appears to be able to penetrate the blood–brain

barrier (Bertinaria et al. 2011). It will be interesting to

determine whether these compounds also possess anti-

neoplastic activity.

It has been proposed by Babizhayev et al. (1996) that N-

acetylcarnosine, which is resistant to carnosinase, could be

employed as a prodrug as deacetylation probably readily

occurs intracellularly, thereby releasing the active dipep-

tide; such a formulation has been employed topically (in

eye drops for treatment of cataracts) but it is uncertain

whether this approach has been extensively employed

systemically.

Conclusions

The application of carnosine in medicine has been dis-

cussed and reviewed in 1992 by Boldyrev (1992). How-

ever, as pointed out by Quinn et al. (1992), in the same year

many claims of therapeutic effects were not substantiated

by rigorous experimental examination nor have they been

subjected to double blind clinical trials. During the last

20 years, little has changed and we agree when Quinn et al.

(1992) state that ‘‘where the evidence is more convincing

there is encouragement to undertake further studies to test

such claims’’. We think that the only way to find out

whether carnosine will be a useful drug is to test it in

rigorous clinical studies with sufficiently large patient

numbers. When administered orally, careful monitoring of

carnosine’s side effects should be monitored along with the

physiological markers such as carnosinase activity or

serum carnosine concentration. In our opinion, patients

with glioblastoma would be the best group to treat since

there is currently no cure possible, and even under the best

treatment median survival is just 14.6 months (Stupp et al.

2005). Moreover, as noted above, in order to circumvent

the serum carnosinase problem, administration of the

dipeptide could be carried via the nose (as drops); it is

interesting that the olfactory lobe is in fact enriched in

carnosine and the loss of a sense of smell is reported to be

an early symptom of neurodegenerative disease.
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