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Abstract An LC/MS method was used to evaluate

2-fluoropropionyl (FP) and 4-fluorobenzoyl (FB) modified

bombsin peptides: GRPR agonist [Aca-QWAVGHLM-

NH2] and antagonist [fQWAVGHL-NHEt], and their

hydrophilic linker modified counterparts with the attach-

ment of GGGRDN sequence. This study developed strat-

egies to evaluate the in vitro receptor mediated cell uptake

and metabolic profile of the various GRPR agonists and

antagonists. We identified the metabolites produced by rat

hepatocytes and quantitatively analyzed the uptake and

internalization of the ligands in PC-3 human prostate

cancer cells. The major metabolites of both GRPR agonists

and antagonists were the result of peptide bond hydrolysis

between WA and AV. The agonists also formed a unique

metabolite resulting from hydrolysis of the C-terminal

amide. The antagonists showed significantly higher sta-

bility against metabolism compared to the agonists in rat

hepatocytes. The directly modified agonists (FP-BBN and

FB-BBN) had higher internalization with similar cell

binding compared to the unmodified agonist (BBN),

whereas the hydrophilic linker modified agonists (G-BBN

and FG-BBN) had much lower total cell uptake. The

labeled antagonists (FP-NBBN, FB-NBBN, G-NBBN and

FP-G-NBBN) displayed lower internalization. The optimal

imaging agent will depend on the interplay of ligand

metabolism, cellular uptake, and internalization in vivo.

Keywords LC/MS � Gastrin releasing peptide receptor

(GRPR) � Bombesin (BBN) � Agonist � Antagonist � PET

Introduction

The gastrin-releasing peptide receptor (GRPR) is an

important target for cancer imaging and therapy since over-

expression of GRPR is related to proliferation and growth

of human cancers from a variety of origins, including

breast, lung, pancreatic, and prostate (Fleischmann et al.

2005; Fleischmann et al. 2007; Markwalder and Reubi

1999; Reubi et al. 2004; Sun et al. 2000). Both GRPR

agonists and antagonists have been developed as thera-

peutic agents (Abd-Elgaliel et al. 2008; Abiraj et al. 2010;

Ananias et al. 2011; Cescato et al. 2008; Mansi et al. 2009;

Reubi et al. 2004; Schroeder et al. 2009; Smith et al. 2005).

Molecular imaging of GRPR has also been explored to

determine the presence, concentration, and therapeutic

efficacy in various tumor types (Cornelio et al. 2007a;

Cornelio et al. 2007b; Gugger and Reubi 1999; Markwal-

der and Reubi 1999; Smith et al. 2005). An optimal radi-

otracer for GRPR should meet several criteria. Firstly, the

ligand must display high affinity for GRPR and demon-

strate specific tumor uptake. Secondly, it must exhibit ideal
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pharmacokinetic properties and high enough metabolic

stability so that images provide high target to background

ratios and contain quantitative information (Yan et al.

2010; Yang et al. 2011). Using LC/MS, the pharmacoki-

netics and metabolic properties of potential imaging probes

can be evaluated without the need to conduct radiolabeling

(Gu et al. 2011; Ma et al. 2009). In addition, LC/MS could

provide the structural information of metabolism as well.

We and others have evaluated a number of radiolabeled

BBN peptide derivatives for positron emission tomography

(PET) imaging of GRPR expressing tumors (Chen et al.

2004b; Linder et al. 2009; Liu et al. 2009a; Liu et al.

2009c; Nock et al. 2003; Shi et al. 2008; Yan et al. 2010;

Yang et al. 2011; Yang et al. 2006; Zhang et al. 2006).

However, imaging with BBN analogs always suffered with

low signal to noise ratios, which may result from the poor

metabolic stability of the peptides. Indeed, it has been

found that BBN derivatives, especially agonists, were sta-

ble over time in human plasma, but degraded rapidly in

kidney and liver homogenates (Linder et al. 2009; Shipp

et al. 1991; Zhang et al. 2004).

BBN analogs displayed either agonist properties or

antagonist properties and efficient internalization was pre-

dominantly observed for the agonists (Wagner 1979).

However, high-affinity receptor antagonists, which showed

poor internalization into tumor cells, performed equally or

even better in terms of in vivo uptake in animal tumor models

than the corresponding agonists (Abd-Elgaliel et al. 2008;

Abiraj et al. 2010; Cescato et al. 2008; Mansi et al. 2009;

Schroeder et al. 2009). Thus, a comprehensive evaluation of

BBN analogs requires determination of several aspects

including cellular uptake, internalization, and metabolism.

We had applied LC/MS to evaluate the in vitro receptor

mediated cell uptake and metabolic profile of a potent BBN

agonist (Aca-QWAVGHLM-NH2, denoted as BBN), a

comparably potent BBN antagonist (fQWAVGHL-NHEt,

denoted as NBBN) (Gu et al. 2011). The goal of this study

was to apply the LC/MS method to evaluate variously

modified BBN agonists and antagonists (Fig. 1), including

those that have been modified with fluorine-containing

prosthetic groups, in rat hepatocytes and PC-3 human

prostate cancer cells. These results could provide guidance

to develop GRPR imaging agents with improved tumor

targeting and metabolic stability and to screen candidate

radiotracers without the need for radiolabeled compounds.

Methods

Chemicals, reagents, and solutions

Acetonitrile (CH3CN, HPLC grade) was purchased from

Fisher Scientific (Pittsburgh, PA). All other reagents for

synthesis and analysis were purchased from Sigma-Aldrich

(St. Louis, MO), unless otherwise indicated. Aca-

QWAVGHLM-NH2 (BBN) and fQWAVGHL-NHEt

(NBBN) were prepared according to the published proce-

dure (Yang et al. 2011). GGGRDN-QWAVGHLM-NH2 and

GGGRDN-fQWAVGHL-NHEt were synthesised in our

laboratory using solid-phase Fmoc chemistry and purified by

semipreparative reversed-phase HPLC. Identity and purity

were established by LC/MS: Aca-QWAVGHLM-NH2 (m/z

1053.6 [M ? H]?, 95% purity), fQWAVGHL-NHEt (m/z

984.6 [M ? H]?, 97% purity), GGGRDN-QWAVGHLM-

NH2 (m/z 1497.1 [M ? H]?, 93% purity), and GGGRDN-

fQWAVGHL-NHEthyl(m/z 1541.1 [M ? H]?, 90%

purity). 2-Fluoropropionate (FP) and 4-fluorobenzoate (FB)

analogs of the four peptides were prepared using the stan-

dard methods (Chen et al. 2004b; Liu et al. 2009a) (Yan

et al. 2010) and purified by semipreparative reversed-phase

a

b

BBN R = Aca-
FP-BBN R = FP-Aca-
FB-BBN R = FB-Aca-
G-BBN R = GGGRDN-
FP-G-BBN R = FP-GGGRDN-

NBBN R=H-
FP-NBBN    R=FP-
FB-NBBN    R=FB-
G-NBBN R=GGGRDN-
FP-G-NBBN   R=FP-GGGRDN-

N
H

NH2O

O

H
N

O

N
H

O

H
N

NH

N
H

O
H
N

O

N
H

O
H
N

O

NH2

O

N

N
H

S

R

N
H

NH2O

O

H
N

O

N
H

O

H
N

HN

N
H

O
H
N

O
N
H

O
H
N

O
N

N
H

OH
NR

M2 M3 M1:-OH

M2 M3

Fig. 1 Structures of GRPR

agonists [R-QWAVGHLM-

NH2] (a) and antagonists

[R-fQWAVGHL-NHEt]

(b) peptides. FP
2-fluoropropionate, FB
4-fluorobenzoate, Aca 5-amino

caproic acid
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HPLC. Identity and purity were established by LC/MS: FP-

Aca-QWAVGHLM-NH2 (m/z 1127.7 [M ? H]?, 97% pur-

ity), FP-fQWAVGHL-NHEthyl (m/z 1058.7 [M ? H]?, 95%

purity), FB-aca-QWAVGHLM-NH2 (m/z 1175.6 [M ? H]?,

93% purity), FB-fQWAVGHL-NHEthyl (m/z 1106.6

[M ? H]?, 95% purity), FP-GGGRDN-QWAVGHLM-NH2

(m/z 1571.1[M ? H]?, 94% purity), and FP-GGGRDN-

fQWAVGHL-NHEt (m/z 1615.2 [M ? H]?, 94% purity).

Stock solutions of the peptides were prepared in water at a

concentration of 1 mg/mL.

Qualitative LC/MS

Waters LC–MS system (Waters, Milford, MA) was

employed with an Acquity UPLC system coupled to the

Waters Q-Tof Premier high-resolution mass spectrometer.

An Acquity BEH Shield RP18 column (150 9 2.1 mm)

was used for chromatography. Elution was achieved with a

mixture of two components: solution A was composed of

2 mM ammonium formate, 0.1% formic acid, and 5%

CH3CN; solution B was composed of 2 mM ammonium

formate and 0.1% formic acid in CH3CN. The elution

profile at 0.2 mL/min is: 100% (v:v) A and 0% B at initial;

gradient 0–40% B over 15 min; isocratic elution at 40% B

for an additional 3 min; 40–80% B over 2 min; re-equili-

brated with A for an additional 4 min. The retention time

for each compounds is listed in Table 1. The injection

volume was 10 lL. The entire column elute was introduced

into the Q-Tof mass spectrometer. Ion detection was

achieved in ESI mode using a source capillary voltage of

3.5 kV, source temperature of 100�C, desolvation tem-

perature of 200�C, cone gas flow of 50 L/h (N2), and

desolvation gas flow of 700 L/h (N2).

Quantitative LC/MS

For quantitative analysis of peptides for cell internalization

studies, the LC/MS system consisted of an Agilent 1200

autosampler, Agilent 1200 LC pump, and an AB/MDS

Sciex 4000 Q TRAP (Life Technologies Corporation,

Carlsbad, California). Separation was achieved on an Ag-

ilent RP18 column (1.8 lm, 100 9 4.6 mm) with gradient

system at flow rate of 1.0 mL/min with the same solvent

system described in the qualitative section. A gradient of

0% B for 3 min ramped to 50% B was utilized and isocratic

elution at 50% B for an additional 4 min, 80% B for 2 min,

and re-equilibrated with A for additional 1 min. Different

combinations of multiple-reaction monitoring (MRM) and

Table 1 Proposed structures of the metabolites formed by rat hepatocytes and the molecular weight peaks (m/z) observed in positive ESI mass

spectrometry

Name/

rentention

time (min)

Structure Metabolite 1 Metabolite 2 Metabolite 3

BBN/10.47 Aca-QWAVGHLM-NH2

[M ? H] 1053.6

Aca-QWAVGHLM-OH

[M ? H] 1054.1

Aca-QW-OH [M ? H] 446.5

AVGHLM-NH2 [M ? H] 626.5

Aca-QWA-OH[M ? H] 517.3

VGHLM-NH2 [M ? H] 555.4

NBBN/11.47 fQWAVGHL-NHEt

[M ? H] 984.4

fQW-OH [M ? H] 480.3 fQWA-OH [M ? H] 551.4

VGHL-NHEt [M ? H] 452.4

FP-BBN/

14.81

FP-aca-QWAVGHLM-

NH2 [M ? H] 1127.8

FP-aca-QWAVGHLM-

OH [M ? H] 1128.8

FP-aca-QW-OH [M ? H] 520.3

AVGHLM-NH2 [M ? H] 626.5

FP-aca-QWA-OH [M ? H]

591.4 VGHLM-NH2 [M ? H]

555.4

FP-NBBN/

17.56

FP-fQWAVGHL-NHEt

[M ? H] 1058.7

FP-fQW-OH [M ? H] 554.4 FP-fQWA-OH [M ? H] 625.4

FB-BBN/

17.52

FB-aca-QWAVGHLM-

NH2 [M-H] 1173.9

FB-aca-QWAVGHLM-

OH [M-H] 1174.9

FB-aca-QW-OH [M-H] 566.5 FB-aca-QWA-OH [M-H] 637.5

FB-NBBN/

18.71

FB-fQWAVGHL-NHEt FB-fQW-OH [M ? H] 600.5 FB-fQWA-OH [M ? H] 671.5

G-BBN/

10.45

GGGRDN-

QWAVGHLM-NH2

[M ? H] 1497.1

GGGRDN-

QWAVGHLM-OH

[M ? H] 1498.1

AVGHLM-NH2 [M ? H] 626.5 VGHLM-NH2 [M ? H] 555.4

G-NBBN/

11.85

GGGRDN-fQWAVGHL-

NHEt [M ? H] 1541.1

WAVGHL-NHEthy [M ? H] 523.5 VGHL-NHEt [M ? H] 452.4

FP-G-BBN/

11.66

FP-GGGRDN-

QWAVGHLM-NH2

[M ? H] 1571.1

FP-GGGRDN-

QWAVGHLM-OH

[M ? H] 1572.1

FP-GGGRDN-QW-OH [M ? H]

963.6 AVGHLM-NH2 [M ? H]

626.5

FP-GGGRDN-QWA-OH

[M ? H] 1034.7

FP-G-NBBN/

13.11

FP-GGGRDN-

fQWAVGHL-NHEt

[M ? H] 1615.2

FP-GGGRDN-fQW-OH [M ? H]

1110.8

FP-GGGRDN-fQWA-OH

[M ? H] 1181.8
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full scan MS/MS experiments were performed. Standards

were prepared for each peptide covering the concentration

range from 0.001 to 10 lM in 1:1 CH3CN-water. Three

replicate injections (10 lL) were made for each concen-

tration level. The specific comparisons made for quantitation

used a single MRM transition per analyte. [Aca-QWA

VGHLM-NH2 (527.3/110.1), fQWAVGHL-NHEt (551.3/

120.1), GGGRDN-QWAVGHLM-NH2 (749.1/110.1),

GGGRDN-fQWAVGHL-NHEt (771.1/110.1), FP-Aca-QW

AVGHLM-NH2 (1128.6/110.1), FP-fQWAVGHL-NHEt

(1059.5/110.1), FB-Aca-QWAVGHLM-NH2 (1175.6/110.1),

FB-fQWAVGHL-NHEt (1106.6/110.1), FP-GGGRDN-

QWAVGHLM-NH2 (786.0/110.1), and FP-GGGRDN-fQW

AVGHL-NHEt (808.1/110.1)].

Incubation with hepatocytes to determine metabolic

profile

Cryopreserved hepatocytes from male Sprague–Dawley

rats (Celsis In Vitro Technologies, Inc., Baltimore, MD)

were used for the in vitro metabolism studies. The cells,

which were stored in liquid nitrogen (12–24 months), were

thawed rapidly at 37�C in a water bath and gradually

diluted with cell culture medium (Celsis In Vitro Tech-

nologies, Inc.). After washing the cells with the medium

and adjusting the viable cell concentration to 1.0 9

106 cells per mL, the resulting cell suspension was incu-

bated at 37�C for 15 min prior to the introduction of the

test compound. The peptides were added to a 1.0 mL

suspension of cells so as to achieve a final concentration of

test compound of 10 lM. The suspension was maintained

at 37�C. At various time points (10, 30, 60, 120, and

240 min), an aliquot (100 lL) of cell suspension was

removed and added to 100 lL acetonitrile. This treatment

resulted in cell lysis so that the metabolites analyzed could

be either bound onto cell surface or internalized into the

cells. Each aliquot was centrifuged at 5,000 rpm for 5 min.

The supernatants (10 lL) were analyzed by LC–MS.

Internalization studies in PC-3 cell line

The PC-3 human prostate carcinoma cell line was purchased

from American type culture collection (ATCC, Manassas,

VA). PC-3 cells were grown in DMEM (Mediatech Inc.,

Manassas, VA) supplemented with 10% (v/v) fetal bovine

serum (FBS) (Mediatech), 100 IU/mL penicillin, and

100 lg/mL streptomycin (Invitrogen, Carlsbad, CA), at

37�C in a humidified atmosphere containing 5% CO2.

For the uptake assay, PC-3 cells were seeded into 6-well

plates at a density of 1 9 106 cells per well and incubated

for 24 h. Cells were rinsed three times with phosphate-

buffered saline (PBS), followed by the addition of tested

peptides to the cultured wells in triplicate (1 nmol/well).

After incubation at 37�C for 15, 30, 60, and 120 min, the

samples were processed in two different manners at each

time point. For the first set, the media was collected for

quantitative analysis of the unbound ligand. After washing

twice with 1 mL saline, the cells were lysed by addition of

500 lL 0.1 N NaOH and then neutralized with 500 lL

0.1 N HCl. The final solution was collected for analysis of

total cellular binding. In another set of plates, after the

medium was separated, the cells were washed twice

(0.5 mL) with 50 mM glycine and 0.1 M NaCl (pH 2.8).

The acid washing buffer was collected since it contained

the cell surface binding component. The cells were then

lysed by adding 0.1 N NaOH and 0.1 N HCl and the

resulting mixture was analyzed for internalized ligand. In

total, four fractions were collected and analyzed by LC/

MS, including unbound ligand, total bound ligand, cell

surface binding ligand, and internalized ligand.

Results

Metabolism in rat hepatocytes

All agonist and antagonist peptides were incubated with the

rat hepatocytes for metabolite analyses. All of the metab-

olites, whether intracellular or extracellular, were sampled

by treating the aliquot of the cell suspension with CH3CN

to lyse the cells. The metabolites were analyzed by LC/MS

and their structures were proposed based on the sequence

of the individual peptide (Table 1). Both GRPR agonist

(R-QWAVGHLM-NH2) and antagonist (R-fQWAVGHL-

NHEt) contain a homologous center of the sequence

(WAVGHL). Consequently, the most common metabolites

derived from all peptides resulted from peptide bond

hydrolysis between W and A, which produced N-terminal

sequences (R-QW-OH) for BBN (Fig. 2) and (R-fQW-OH)

for NBBN. The peptides were also hydrolyzed between A

and V, forming the amino terminal fragment R-QWA-OH

and the carboxy terminal VGHLM-NH2 (m/z 555) for the

BBN peptides and R-fQWA-OH and VGHL-NHEt (m/z

452) for NBBN. The BBN peptides also derived a unique

metabolite from hydrolysis of the C-terminal amide. The

parent amide (R-QWAVGHLM-NH2) exhibited a molec-

ular ion [M ? 1] that was 1 amu lower than that of its acid

metabolite (R-QWAVGHLM-OH). The ability to conduct

high-resolution mass measurements was important to allow

the characterization of this metabolite.

The metabolic profile changed after addition of the

sequence GGGRDN to the amino terminus. The metabo-

lites of R-GGGRDN-fQWAVGHL-NHEt result from

peptide bond hydrolysis between either D and N to gen-

erate a carboxyl terminal sequence N-fQWAVGHL-NHEt

(m/z 1098.8) or between R and D to generate a carboxyl

1628 Y. Ma et al.
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terminal sequence (DN-fQWAVGHL-NHEt) (m/z 1213.9).

No hydrolysis of the ethylamide was observed.

The metabolic stability of the peptides was evaluated in

the same preparation of rat hepatocytes, based on the rate

of disappearance of the parent peptides. Within 2 h, the

BBN peptides were almost undetectable from the assay

solution, while the half-lives of parent peptides with rat

hepatocytes for BBN, FP-BBN, FB-BBN, G-BBN and FP-

G-BBN were estimated to be 4, 25, 3.8, 27 and 68 min,

respectively (Fig. 3a). The NBBN peptides were more

resistant to the hepatocytes. The half-life values of parent

for NBBN, FP-NBBN, FB-NBBN, G-NBBN and FP-G-

NBBN were estimated to be 32, 130, 37, 44, and 154 min,

respectively (Fig. 3b).

Cell uptake and internalization

The highly sensitive 4000 Qtrap MS system was used to

quantitate ligand binding and internalization with PC-3 cells.

Standard curves of the instrument were established with

various concentrations of the peptides in CH3CN:water

(1:1). A linear response was observed from 0.002–10.0 lM

(0.02–100 pmol on column). The detection limit (s/n [ 3)

for most ligands was approximately 1 nM or less.

The direct binding study was performed by incubating

the peptides with GRPR expressing PC-3 prostate cancer

cells (Markwalder and Reubi 1999). At specified time

points, aliquots were taken, processed as described in the

methods section, and the various extracts quantitatively

analyzed for parent peptide using LC/MS (Figs. 4, 5). We

found that all ligands were more stable during PC-3 cell

incubation compared with hepatocyte incubation. The

proportion of parent compound exceeded 55% in all

compartments (data not shown). Four components from

each incubation were analyzed including unbound ligand

from the media, surface bound ligand from the acidic wash

of the cells, internalized ligand from the lysed cells after

acid wash and total surface bound and internalized ligand

from lysed cells without acid wash. The cell uptake was

expressed as the percent of total ligand added. Agonists

(BBN, FP-BBN and FB-BBN) showed higher internaliza-

tion with concomitantly lower surface binding while

FP-aca-QWAVGHLM-NH2

[M+H] 1127.8

FP-aca-QWAVGHLM-OH
[M+H] 1128.8 FP-aca-QW-OH[M+H]520.3

FP-aca-QWA-OH [M+H] 591.4

VGHLM-NH 2 [M+H] 555.4 

AVGHLM-NH2 [M+H] 626.5 

X X X

Fig. 2 The total ion chromatography (TIC) of agonist [FP-BBN] metabolites after 30 min of incubation in rat hepatocytes. Peaks labeled

(X) were derived from the incubation media, which was confirmed by HPLC analysis of a blank
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antagonists (NBBN, FP-NBBN, FB-NBBN, G-NBBN and

FP-G-NBBN) showed very low internalization compared

with level of cell surface binding. The modified peptide

G-BBN and its FP-derivative, FP-G-BBN, showed much

lower total cell uptake compared with FP-BBN and

FB-BBN.

Discussion

LC/MS is an efficient and sensitive method for screening

radiotracer candidates for metabolic profile and tissue

uptake without the need for radiolabeling (Ma et al. 2003).

In this study, the LC/MS technique was used to evaluate
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metabolism and internalization of several BBN derived

ligands for GRPR. The method provides not only infor-

mation for structural identification of metabolites but also

highly selective, accurate quantitation of ligands in bio-

logical extracts.

BBN derived radiotracers are limited in their application

to in vivo tumor imaging due to the rapid metabolism and

poor stability. After incubation with rat hepatocytes, we

found that analogs of the agonist (BBN) are metabolized

more quickly than similar analogs of the antagonist (NBBN).

Interestingly, the metabolic stability was enhanced by cap-

ping the amino terminus with FP, but not with FB. Both

fluorine labeled BBN and NBBN were metabolized in a

similar pathway to what had previously been elucidated

(Linder et al. 2009). Metabolic proteolysis between the WA

and AV was expected for the BBN derived peptides and this

cleavage was observed for both agonist and antagonist

peptides. In addition, all of the labeled BBN peptides showed

hydrolysis of the C-terminal amide. The shorter half-life of

the labeled BBN peptides could be attributed to the relatively

rapid formation of the amide hydrolysis product, and the

difference in peptide sequence compared to the antagonist.

The differences in sequence between the two classes of

peptides, a C-terminal methionine in the agonist and an

N-terminal R-phenylalanine in the antagonist, could also

influence the enzymatic hydrolysis. FP-G-BBN was metab-

olized slower than other fluorine-labeled BBN, which may

result in better tumor imaging properties even though it

exhibited lower in vitro PC-3 cell uptake.

We also used LC/MS to directly determine binding and

internalization of various GRPR ligands to human prostate

derived PC-3 cells. The agonist ligands exhibited two- to

threefold higher total cell uptake than the antagonists. The

increased cell uptake was due to higher internalization of

agonists as the cell surface binding was very similar

between the two groups of peptides. The antagonists dis-

played almost no internalization. As GRPR agonists,

directly modified BBN (FP-BBN and FB-BBN) had similar

cell uptake as compared to the unmodified agonist (BBN).

However, FP-BBN was previously found to have better in

vivo tumor imaging than FB-BBN presumably, because it

was more polar and more slowly metabolized. It has been

well established that introduction of PEG, sugar moiety,

and oligo-glycine linkers could improve the in vivo

kinetics of various peptides (Lee et al. 2010). Previously,

we have also successfully used PEG and oligo-Glycine

linkers to improve the pharmacokinetics of RGD peptides

(Chen et al. 2004a; Liu et al. 2009b). The modified

BBN with hydrophilic linker (GGGRDN-BBN and

FP-GGGRDN-BBN) was found to have much lower PC-3

cell uptake in both surface and internalization. Meanwhile,

the NBBN analogs (FP-NBBN, FB-NBBN, G-NBBN,

FP-G-NBBN) were very similar with the unmodified

antagonist NBBN which showed more efficient cell surface

binding than internalization (Fig. 5).

Conclusion

The combination of LC and MS/MS can provide both

structural information for identification of metabolites and

accurate quantitation of ligands in cell binding experi-

ments. The metabolism profiles of BBN derived GRPR

agonist and antagonist peptides were identified by LC/MS.

The major metabolites resulted from peptide bond hydro-

lysis between W and A in rat hepatocyte incubation. The

antagonist peptides were more metabolically stable than

the agonist peptides. The agonist ligands (BBN, FP-BBN

and FB-BBN) had higher cell uptake in PC-3 cells due to

high internalization. The addition of the hydrophilic linker

reduced the cell uptake of the ligands G-BBN and FP-G-

BBN by interrupting internalization. The optimal imaging

agent will depend on the interplay of ligand metabolism,

cellular uptake, and internalization in vivo.
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