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Abstract Knowledge of the types of membrane protein

provides useful clues in deducing the functions of

uncharacterized membrane proteins. An automatic method

for efficiently identifying uncharacterized proteins is thus

highly desirable. In this work, we have developed a novel

method for predicting membrane protein types by

exploiting the discrimination capability of the difference in

amino acid composition at the N and C terminus through

split amino acid composition (SAAC). We also show that

the ensemble classification can better exploit this dis-

criminating capability of SAAC. In this study, membrane

protein types are classified using three feature extraction

and several classification strategies. An ensemble classifier

Mem-EnsSAAC is then developed using the best feature

extraction strategy. Pseudo amino acid (PseAA) composi-

tion, discrete wavelet analysis (DWT), SAAC, and a hybrid

model are employed for feature extraction. The nearest

neighbor, probabilistic neural network, support vector

machine, random forest, and Adaboost are used as indi-

vidual classifiers. The predicted results of the individual

learners are combined using genetic algorithm to form an

ensemble classifier, Mem-EnsSAAC yielding an accuracy

of 92.4 and 92.2% for the Jackknife and independent

dataset test, respectively. Performance measures such as

MCC, sensitivity, specificity, F-measure, and Q-statistics

show that SAAC-based prediction yields significantly

higher performance compared to PseAA- and DWT-based

systems, and is also the best reported so far. The proposed

Mem-EnsSAAC is able to predict the membrane protein

types with high accuracy and consequently, can be very

helpful in drug discovery. It can be accessed at http://

111.68.99.218/membrane.

Keywords Membrane protein types � Split amino acid �
Discrete wavelet transform � Pseudo amino acid

composition � Neural networks � Ensemble classifier �
Random forest

Introduction

Cell membrane proteins are important components of a

cell. They carry out many of the functions that are

imperative to the cell’s survival. Membrane proteins are

classified into transmembrane proteins, which span across

the cell membrane and anchored membrane proteins that

are attached only with one side of the cell membrane.

Membrane proteins are further classified into six types

(Chou and Cai 2005a): Type-I transmembrane, Type-II

transmembrane, multipass transmembrane protein, lipid

chain-anchored membrane, GPI-anchored membrane, and

peripheral membrane protein. Prediction of membrane

protein types is supportive in drug discovery, disease

diagnosis and so on. Generally, in case of protein classi-

fication, the first phase is to convert each protein sequence

into a feature-based representation. In the second phase, the

feature-based representation is provided to a classification

model that yields the predicted protein types. The crystal-

lization of membrane proteins is a difficult task and most of

M. Hayat � A. Khan (&)

DCIS, Pakistan Institute of Engineering

and Applied Sciences, Nilore, Islamabad, Pakistan

e-mail: asif@pieas.edu.pk

M. Hayat

e-mail: maqsood.hayat@pieas.edu.pk

M. Yeasin

Department of Electrical and Computer Engineering,

University of Memphis, Memphis, TN 38152, USA

e-mail: myeasin@memphis.edu

123

Amino Acids (2012) 42:2447–2460

DOI 10.1007/s00726-011-1053-5

http://111.68.99.218/membrane
http://111.68.99.218/membrane


them will not dissolve in normal solvents. Therefore, very

few membrane protein structures have been determined up

till now. Mostly, NMR is employed for determining the

three-dimensional structures of membrane proteins (Call

et al. 2010; Pielak and Chou 2010), but unfortunately, it is

both, time-consuming and costly. The number of templates

for membrane proteins is also very limited. Therefore, it is

highly desirable to develop a computational method, which

can predict the features of membrane proteins based on

their primary sequences alone. In this regards, ensemble

classification is rapidly emerging due to its superiority over

the individual classifiers to enhance the prediction perfor-

mance of a learning system (Zhang and Zhang 2008).

Recently, several interesting feature extraction strategies

based on amino acid sequences and ensemble classifica-

tions have been reported (Shen and Chou 2007; Nanni and

Lumini 2008a). A number of efforts have been carried out

to predict membrane protein types according to their

sequence information. Chou and Elrod (1999) have used

the covariant discriminant algorithm (CDA) to identify

membrane protein types based on their amino acid (AA)

composition. Using AAC some sequence information is

lost. To avoid losing many important information hidden in

protein sequences, the pseudo amino acid composition

(PseAAC) has been proposed (Chou 2001; Chou and Cai

2005a) to replace the simple amino acid composition

(AAC) for representing the sample of a protein review

(Chou and Shen 2009a). Chou (2001) has also proposed the

use of the CDA in conjunction with the PseAAC-based

feature extraction. Cai et al. (2004) have used AAC and

SVM for prediction of membrane protein types. Wang

et al. (2004) have utilized weighted SVM and PseAAC,

while Liu et al. (2005) have employed the Fourier spectrum

and SVM. Chou and Cai (2005a) have proposed amphi-

pathic PseAAC and CDA, the discrete wavelets transform

(DWT) and cascaded neural network (Rezaei et al. 2008).

Similarly, DWT and SVM Qiu et al. (2010) have also been

employed for the prediction of membrane protein types.

Other typical examples are (Chou and Cai 2005a; Chou and

Shen 2007a; Nanni et al. 2010). Quite a few important

features of proteins are hidden in their complicated

sequences. Consequently, sequence analysis is an inter-

esting approach for predicting protein attributes such as

structural class (Chou 1995) and subcellular locations

(Chou and Shen 2007b, c; 2010b). The present study is an

attempt for proposing a new method for predicting mem-

brane protein types based on the sequence information to

provide a useful tool for relevant areas.

In this study, we present Mem-EnsSAAC, a novel

method for predicting membrane protein types. It is based

on split amino acid composition (SAAC) based feature

extraction and majority voting based ensemble classifica-

tion. Our aim is to demonstrate that membrane protein

types can be effectively predicted by exploiting the dis-

crimination power of difference in amino acids at the N and

C terminus. Three feature extraction strategies, namely,

PseAA, DWT, SAAC and a hybrid version of these

methods are analyzed for membrane-protein type predic-

tion. K-nearest neighbor (KNN), probabilistic neural net-

work (PNN), support vector machine (SVM), random

forest (RF), and Adaboost are used as base learners for

classification. The results of these feature extraction strat-

egies are compared using the same classifiers. Our main

goal is to first find a reasonable feature extraction strategy

for membrane protein prediction. Second, we take an

advantage of the discriminative power of the best feature

extraction strategy and the classification capabilities of

PNN, KNN, SVM, RF, and Adaboost for developing an

effective and high throughput ensemble system for mem-

brane protein prediction. We have compared Mem-Ens-

SAAC against other high-tech membrane protein predictors

using an extensively used standard dataset (Chou and Cai

2005b). The results confirm that Mem-EnsSAAC outper-

forms the existing predictors. Especially, Mem-EnsSAAC

yields high prediction performance for the membrane

protein types for which the existing predictors yield aver-

age performance.

The next section describes materials and methods, fol-

lowed by performance measures and results and discussion.

Finally, the last section concludes the paper.

Materials and methods

Dataset

The two datasets; Dataset1 and Dataset2, used in this

paper are the same as used in (Chou and Cai 2005a), and

(Chou and Shen 2007a). Dataset1 has been developed

from the SWISS-PROT data bank. Dataset1 represents six

types of membrane protein. The dataset1 is passed from

various processes. First, only those sequences are inclu-

ded in the dataset whose descriptions are clear. Secondly,

only one protein sequence is included from those that are

having the same name, but are from different species.

Finally, sequences whose type is described by two or

more types are not included because of lack of unique-

ness. After the above screening procedures, the obtained

dataset contains only 2,628 protein sequences in the

training dataset and 3,160 sequences in the testing

dataset.

In Dataset1, the training set contains 2,628 proteins, of

which type-I transmembrane proteins are 372, type-II

transmembrane proteins are 151, multipass transmembrane

proteins are 1,903, lipid chain-anchored membrane pro-

teins are 104, GPI-anchored membrane proteins are 68, and
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peripheral membrane proteins are 30. The analysis of the

sequence identity, for each membrane protein types is

conducted. Assume one sequence is N1 residues long and

the other is N2 residues long (N1 [ N2), and the maximum

number of residues matched by sliding one sequence along

the other is M. The sequence identity percentage between

the two sequences is computed as (M/N1) 9 100%. The

average sequence identity percentages for type-I trans-

membrane proteins, type-II transmembrane proteins, mul-

tipass transmembrane proteins, lipid chain-anchored

membrane proteins, GPI-anchored membrane proteins, and

peripheral membrane proteins are 7.97, 7.94, 8.31, 7.94,

7.92, and 11.36%, respectively. These numbers have indi-

cated that the majority of pairs in each of these types have

very low sequence identity.

On the other hand, the independent dataset comprises

3,160 proteins, of which 462 are of type-I transmembrane

proteins, 144 of type-II transmembrane proteins, 2,402 of

multipass transmembrane proteins, 67 of lipid chain-

anchored membrane proteins, 83 of GPI-anchored mem-

brane proteins, and 2 of peripheral membrane proteins.

None of the protein sequences in the testing dataset occurs

in the training dataset. The resultant average sequence

identity percentages are 8.34, 9.53, 8.55, 10.22, 11.75, and

5.00%, respectively, indicating that the sequence identity

for majority of pairs in each of the six types in the inde-

pendent dataset is also very low. Dataset2 has been

downloaded from http://www.csbio.sjtu.edu.cn/bioinf/.

Eight types of membrane proteins are defined in this

dataset (Chou and Shen 2007a). First, those sequences

annotated with ‘‘fragment’’ were excluded. Second, those

sequences annotated with ambiguity were removed. The

original dataset contains 3,249 membrane protein sequen-

ces. The training dataset consists of 610 single-pass type-I,

312 single-pass type-II, 24 single-pass type-III, 44 single-

pass type-IV, 1,316 multipass, 151 lipid chain-anchored,

182 GPI anchored, and 610 peripheral membrane protein

sequences. Redundancy is removed using 30% CD-HIT

and only those sequences are included in the dataset that

have less than 30% sequence identity. Dataset2 also con-

tains some sequences whose length is less than 50.

Therefore, we have removed those sequences from the

dataset whose length is less than 50 amino acids. Further-

more, 25% similarity cutoff has also been applied to

remove homology between the sequences and have inclu-

ded only those sequences in the dataset that have less than

25% identity. Finally, the obtained dataset consists of 2,978

membrane protein sequences in which 576 are single-pass

type-I, 269 are single-pass type-II, 17 are single-pass type-

III, 34 are single-pass type-IV, 1,285 are multipass, 97 are

lipid chain-anchored, 154 are GPI anchored, and 546 are

peripheral membrane protein sequences.

Feature extraction strategies

Discrete wavelet analysis

To analyze the various components of a signal, wavelet

analysis is a useful tool because it is able to localize var-

iation both in space and scale domains.

Wavelet transform is defined as: ‘‘the signal f(t) is

multiplied by a scaled and shifted version of the wavelet

function W(t) and then summed’’. The transformed coeffi-

cients T(a, b) of the signal f(t) can be expressed as:

T a; bð Þ ¼ 1
ffiffiffi

a
p
Z

t

0

f ðtÞw t � b

a

� �

dt ð1Þ

where a is a scale and b is a translation parameter. Both

belong to the real numbers R(n), a [ 0, t is the length of the

sequence, and w t�b
a

� �

is the analyzing wavelet function.

The transformed coefficients T(a, b) are found for both

specific locations on the signal, t = b, and for specific

wavelet periods (which are a function of a). It is used to

plot T(a, b) against a and b in a surface plot known as a

scalogram, which is particularly suited to the detection of

singularities. DWT decomposes the amino acid sequences

into coefficients at different dilations and then removes the

noise component from the profiles, so it can provide us

local information of the sequences. With these properties,

DWT can more effectively reflect the sequence order

effects. In addition, the DWT is an economical way to

compute wavelet transform, because it is computed only on

a dyadic grid of points, where the sub-sampling is at a

different rate for different scales. In this work, the DWT

uses a0 = 2 and b0 = 1, so that the results can lead to a

binary dilation of 2-m and a dyadic translation of n2-m.

Therefore,

wm;nðtÞ ¼ 2�mwð2�mt � nÞ ð2Þ

here, m = 1, 2,… and n = 0, 1, 2,… The wavelet

coefficients of the signal f(t) are obtained by following

formula:

Tða; bÞ ¼ hf ðtÞ;wa;bðtÞi ¼ 2�m=2

Z

x

0

f ðtÞwð2�mt � nÞ ð3Þ

T(a, b) is divided into two parts, approximation coefficient

Aj(n), which is high scale and low frequency component

and detail coefficient Dj(n), which represent the low scale

and high frequency components of the signal f(t).

Approximation coefficient and detail coefficient for level

j can be expressed as:

A jðnÞ ¼
X

hk�2nAj�1ðkÞ ð4Þ
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D jðnÞ ¼
X

hk�2nDj�1ðkÞ ð5Þ

Additional detailed characteristics of the signal can be

observed when the level j of the decomposition is

increased. Since in the current work, we are dealing with

protein sequences where variation in the AAC is studied

with respect to position, the time variable t will be replaced

by position variable. In this paper, first the protein

sequence is converted into Hydrophobicity scale (Kyte

and Doolittle 1982), because it appears to be a good

consensus for the definition of the amino acids’

hydrophobic properties. The Kyte–Doolittle scale is

usually used for identifying hydrophobic regions in

proteins. Regions with a positive value are hydrophobic.

This scale can be used for detecting both surface-exposed

regions and transmembrane regions. It is then converted to

a digital signal to generate several groups of wavelet

coefficients. Digital wavelet signal is decomposed up to

levels 4, to obtain the approximation component cA4 and

detail components cD4, cD3, cD2, and cD1. Different

characteristics are exploited to evaluate and to analyze

each signal component, such as Shannon entropy, log

entropy, energy entropy, variance, min, max and mean. So,

total 35 features are extracted. These features are

normalized using the Euclidean normalization which

brings the values within a similar range.

Pseudo-amino acid composition

Amino acid composition of a protein is defined by 20

discrete values representing the normalize frequency of the

20 native amino acids in proteins. In AAC, proteins can

thus be expressed in 20D vector (Chou and Zhang 1993,

1994; Chou 1995; Nakashima and Nishikawa 1986):

p ¼ p1; p2; . . .; pn½ �T ð6Þ

where p1, p2, p3, … , p20 are the composition components

of 20 amino acids P and T denote transposition. However,

using the AAC for a protein representation will lose its

sequence order and sequence-length. To compensate this

problem, Chou (2001) and Nanni and Lumini (2008b)

proposed to represent a protein sample by its pseudo-amino

acid composition, which is defined in a (20 ? k)D space:

p ¼ p1; . . .; p20; p20þ1; . . .; p20þk½ �T ð7Þ

The first 20 components are the same as those in the

basic AAC; where as p20?1 p20?k are the correlation factors

of an amino acid sequence in the protein chain determined

on the bases of hydrophobicity and hydrophilicity (Chou

2001). In our study, k = 21 means taking first 21 ranks of

sequence-order correlations into consideration. Thus, a

protein sample is represented by a (20 ? k)D = 62D

vector.

Split amino acid composition

In SAAC-based method, the protein sequence is divided

into different parts and composition of each part is calcu-

lated separately (Chou and Shen 2006a, b). In our SAAC

model, we divide the membrane protein sequence into

three parts; (i) 25 amino acids of N termini, (ii) 25 amino

acids of C termini, and (iii) region between these two

terminus. The resultant feature vector is a 60D instead of

20D as in case of AAC.

Ensemble classifier

Recently, ensemble classification has achieved reasonable

attention due to their superiority over single classifier

based systems. The advantage of the ensemble classifica-

tion is that if individual classifiers are diverse, then they

can make different errors, and when these classifiers are

combined, the error can be reduced through averaging.

The framework of ensemble classifier system has been

developed by combining numerous basic learners together

to reduce the variance caused by the peculiarities of a

single training set and hence be able to learn a more

expressive concept in classification than a single classifier

(Shen and Chou 2007; Nanni and Lumini 2006, 2008a). In

this paper, we have used five different learning mecha-

nisms; SVM, PNN, KNN, Adaboost, and RF. SVM is a

machine learning technique based on the statistical learn-

ing theory (Chou and Cai 2002; Cai et al. 2003; Khan

et al. 2008a, b). KNN is a learning algorithm that is based

on the concept of proximity in the feature space (Khan

et al. 2008c). PNN is based on the Bayes theory. It esti-

mates the likelihood of a sample being part of a learned

category (Khan et al. 2010). The RF is a combination of

tree predictors. Each tree depends on the values of a

random vector sampled independently and with the same

distribution for all trees in the forest (Breiman 2001).

Adaboost on the other hand, tries to improve the predic-

tion results by combining weak predictors’ together

(Schapire et al. 1998). First, the individual classifiers are

trained and their predictions are noted down. The

ensemble classifier is then formed by fusing the predic-

tions of the individual classifiers;

EnsC ¼ PNN � KNN 8 � SVM � RF � Adaboost

where the symbol � denotes the fusing operator and EnsC

is the ensemble classifier as shown in Fig. 1.

The process of how the ensemble classifier EnsC works

by fusing the five base classifiers is as follows:

Suppose the predicted result of individual classifiers for

the protein query P are

C1;C2; . . .;C5f g 2 S1; S2; . . .; S6f g ð8Þ

2450 M. Hayat et al.

123



where C1, C2, …, C5 are individual classifiers and S1,

S2, …, S6 are membrane protein types.

Yj ¼
X

5

i¼1

dðCi; SjÞ; ðj ¼ 1; 2; . . .; 6Þ ð9Þ

where dðCi; SjÞ ¼
1; if Ci 2 Sj

0; otherwise

( )

ð10Þ

Finally, the output of the ensemble classifier combined

through majority voting using GA is obtained as:

CEnsC ¼ Max w1Y1;w2Y2; . . .;w5Y5f g ð11Þ

where CEnsC is the predicted result of the ensemble clas-

sifier, the Max represents choosing the maximum one and

w1, w2, …, w5 is the optimal weight of classifiers.

Performance measures

In the field of machine learning, several performance

measures are used to evaluate the performance of learning

algorithms. Performances of the classifiers are measured

from the confusion matrix, which records both the correctly

and incorrectly recognized examples for each class. We

have different performance measures as described below:

Accuracy.

Accuracy ¼ TPþ TN

TP + FP + FN + TN
� 100 ð12Þ

where TP, FN, TN, and FP are the number of true positive,

false negative, true negative and false positive protein

sequences, respectively.

Sensitivity/specificity.

Sensitivity ¼ TP

TP + FN
� 100 ð13Þ

Specificity ¼ TN

FP + TN
� 100 ð14Þ

Mathews correlation coefficient (MCC). MCC is a

discrete version of Pearson’s correlation coefficient that

takes values in the interval of [-1, 1]. A value of 1 means

the classifier never makes any mistakes and a value of -1

means the classifier always makes mistake.

MCC(i) ¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FP½ � TP + FN½ � TN + FP½ � TN + FN½ �
p

ð15Þ

F-measure. F-measure is used for evaluating statistical

tests. It depends on of precision p and recall r. P is the

number of correct predictions divided by the number of all

returned predictions, while r is the number of correct

predictions divided by the number of predictions. The F-

measure can be considered as a weighted average of the

precision and recall. The best value of F-measure is 1 and

worst is 0.

F-measure ¼ 2� Precision � Recall

Precision þ Recall
ð16Þ

Precision ¼ TP

TP + FP
ð17Þ

Recall ¼ TP

TP + FN
ð18Þ

In case of unbalanced datasets, the F-measure is better

suited when compared with the accuracy, because the

accuracy becomes biased towards an overrepresented

class. Thus, if all the predicted instances belong to this

class the accuracy will still be higher. The F-measure can

be easily generalized for multilabel classification

(Tsoumakas and Katakis 2007). Let S is a dataset with M

instances. Let U and V are the set of correct labels where

i [ S, respectively. Then the recall and precision for label k

are defined as:

RecallK ¼
X

iji2S^k2Uif g

jUi \ Vij
jUij

ð19Þ

Fig. 1 Framework of the proposed Mem-EnsSAAC classifier
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PrecisionK ¼
X

iji2S^k2Zif g

jUi \ Vij
jVij

ð20Þ

Q-Statistics. To measure the diversity in ensemble

classifiers the average value of Q-statistics (Nanni and

Lumini 2006) is used. The Q-statistic of any two base

classifiers Ci and Cj are defined as:

Qi;j ¼
ad � bc

ad þ bc
ð21Þ

where, a and d represent the number of correct and

incorrect prediction of both classifiers. However, b is the

correct prediction of classifier first and incorrect prediction

of classifier second and c is the correct prediction of

classifier second and incorrect of first. The value of Q

varies between -1 and 1. For statistically independent

classifiers, the value of Qi,j is zero. For ensemble classifier,

the average value of Q-statistics among all pairs of the L

base classifiers is calculated as:

Qavg ¼
2

LðL� 1Þ
X

L�1

i¼1

X

L

k¼iþ1

Qi;k ð22Þ

Results and discussion

To show that Mem-EnsSAAC is well suited for predicting

membrane protein types, we have compared it against the

other state of the art membrane protein predictors; employ-

ing CDA (Chou and Elrod 1999), PseAA (Chou 2001), AA

and SVM (Cai et al. 2004), Fourier spectrum (Liu et al.

2005), Amphipathic PseAA and CDA (Chou and Cai 2005a),

DWT and SVM (Rezaei et al. 2008; Qiu et al. 2010). The

predictors have been chosen because most of them are quite

recent and are available as online or as a stand-alone version.

Statistical tests are conducted to measure the prediction

performance of the predictors. Three test methods are used to

evaluate the quality of the proposed prediction model: self-

consistency, jackknife (leave-one out) and the independent

dataset test. In self-consistency test, the model is trained and

tested with the same dataset. However, the self-consistency

test is sometime considered as first basic test because any

algorithm whose self-consistency performance is poor may

not be conceived as a good one. In case of jackknifing, each

membrane protein in the dataset is in turn taken out and all

the rule parameters are calculated based on the remaining

proteins. During the process of jackknifing, both the training

and testing datasets are actually open and a protein will move

from one to the other in turn. While in independent dataset

test, the model is trained on one dataset and tested on another

dataset test. Among the three tests, the jackknife test is

considered the most objective one (Chou and Shen 2007a,

2010a), and has been increasingly used by investigators

(Zhang and Zhang 2008; Zhou et al. 2007). Therefore, in this

study, we have also used the jackknife test.

Prediction performance using Jackknife test

In Table 1, prediction results using three feature extraction

strategies: DWT, PseAA, and SAAC are shown. Column 2

shows the accuracy of individual and ensemble classifiers.

The prediction performance of all the classifiers using

DWT-based feature extraction is not at far with that of the

PseAA, and SAAC. RF has obtained the maximum accu-

racy of 80.7% using DWT, which is very low as compared

with that obtained through PseAA, and SAAC. It is

observed that the prediction performance of SVM, PNN,

KNN, RF, Adaboost, and Ensemble classifiers using DWT

is not comparable that obtained through PseAA and SAAC.

This might be because in the DWT-based approach, with

an increase of the decomposition level j, additional detailed

characteristics of the signal can be observed. However,

after a certain level of decomposition, there is no given

information, rather feature redundancy is observed due to

the short length of the protein signal. On the other hand,

decomposing a longer sequence with too low a decompo-

sition scale will heavily omit detailed information (Wens

et al. 2005). Therefore, one needs to choose an appropriate

decomposition level. In the case of PseAA, the prediction

performance of ensemble classifier is 14.6% higher than

that of the DWT. This is because in case of PseAA, when

the value of tiers increases, the performance of the classi-

fier also improves. Thus, PseAA better represents the

sequence-order information. However, in case of short

length sequences, increasing the tier value will have no

effects on performance. In case of SAAC-based model, the

accuracy of Mem-EnsSAAC is 17.3 and 2.7% higher than

that of the DWT and PseAA, while 0.1% less than hybrid,

respectively. In Table 2 shows the performance of classi-

fiers using hybrid features. Thus, hybrid feature-extraction

strategy performs the best among the feature extraction

strategies that we have used. The result demonstrates that

SAAC is effective and useful for the prediction of mem-

brane protein types because it uses the composition of three

different parts of protein independently. The fact is that the

independent analysis composition of different parts of a

protein provides more information than that of the com-

position of the whole sequence. The main advantage of

SAAC over other methods is that it assigns large weight to

proteins, which have a signal at either the N or C terminus.

Other performance measures such as sensitivity, specific-

ity, MCC, F-measure, and Q-Statistics of the individual

and ensemble classifiers are shown in columns 4–8 of

Table 1. Sensitivity, specificity, MCC, F-measure, and

Q-Statistics of the Mem-EnsSAAC are 91.0, 92.2, 0.75,

0.79, and 0.91%, respectively. In case of individual
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classifiers, SVM in combination with SAAC yields the best

performance of 90.8% accuracy.

Performance on Independent dataset test

In Table 1, column 8 shows the accuracy of individual and

ensemble classifiers using DWT, PseAA, and SAAC.

Ensemble classifier using PseAA yields an improvement in

accuracy of 7.5% as compared to that of when used in

conjunction with DWT. The performance of Mem-Ens-

SAAC is still 10.6% and 3.1% higher than that of the

DWT- and PseAA-based prediction. Sensitivity, specific-

ity, MCC, F-measure, and Q-Statistics of the Mem-Ens-

SAAC using independent dataset test are 88.4, 92.4, 0.74,

0.79, and 0.95%, respectively. RF using SAAC has

obtained 90.1% accuracy, which is the highest among the

individual classifiers.

Prediction performance using hybrid feature-extraction

strategies

The performance of individual and ensemble classifier

using hybrid features is shown in Table 2. In this study,

we have developed two versions of hybrid models,

hybrid1 and hybrid2. The first one is the combination of

SAAC and PseAA and the second is the combination of

SAAC, PseAA, and DWT-based features. In case of

hybrid1 model, SVM and PNN have achieved the highest

accuracy, which is 91.6% as compared to other classifiers

using jackknife test. But the MCC of the SVM is higher

than that of PNN. It has been observed that the perfor-

mance of SVM is better using hybrid1 features as com-

pared to all other individual classifiers. In contrast, the

performance of ensemble classifier is better than that of

all individual classifiers, which is 92.4%. In case of

independent dataset test, SVM has obtained the highest

result among all individual classifiers. But the perfor-

mance of ensemble classifiers is 0.1% higher than that of

SVM. On the other hand, using hybrid2 model, the per-

formances of the classifiers are affected due to DWT-

based features. Among the individual classifiers, SVM

yields the highest accuracy of 90.8% using jackknife test

compared not only to the classifiers trained on the hybrid

features but also to those trained on DWT, PseAA, and

SAAC features. In case of independent dataset test, SVM

again provides the highest accuracy of 89.7% among the

Table 1 Classification results for the Jackknife and Independent dataset tests using individual feature extraction strategies

Methods Jackknife test Independent dataset test

ACC Se Sp MCC F-measure Q-statistics ACC Se Sp MCC F-measure Q-statistics

Wavelet

Adaboost 74.4 66.2 75.3 0.34 0.48 0.89 74.1 70.4 74.5 0.37 0.49 0.80

RF 80.7 72.1 81.6 0.46 0.56 0.93 83.8 75.3 84.8 0.53 0.61 0.90

PNN 74.7 66.8 75.6 0.35 0.48 0.92 80.9 71.2 82.1 0.46 0.56 0.84

KNN 74.8 66.4 75.8 0.35 0.48 0.90 78.5 69.0 79.7 0.41 0.53 0.89

SVM 77.8 68.6 78.8 0.40 0.52 0.93 82.1 74.4 83.0 0.50 0.59 0.92

EnsC 74.9 67.0 75.8 0.36 0.48 0.91 81.4 73.7 82.3 0.48 0.58 0.88

EnsC_GA 81.1 72.3 82.0 0.47 0.57 0.93 84.0 74.9 85.1 0.53 0.61 0.89

PseAA

Adaboost 85.0 80.1 85.5 0.57 0.65 0.93 84.1 82.5 84.1 0.57 0.64 0.91

RF 85.4 80.6 85.3 0.58 0.65 0.93 87.9 81.0 88.7 0.63 0.69 0.91

PNN 88.6 87.6 88.6 0.67 0.73 0.95 88.1 81.7 88.9 0.64 0.70 0.92

KNN 87.8 89.3 87.5 0.66 0.72 0.94 86.3 81.8 86.8 0.60 0.67 0.90

SVM 88.9 87.1 89.0 0.67 0.73 0.95 87.3 80.6 88.2 0.62 0.68 0.93

EnsC 89.5 89.4 86.3 0.69 0.74 0.94 88.9 84.6 89.3 0.66 0.72 0.92

EnsC_GA 90.5 89.8 90.4 0.72 0.76 0.93 89.6 84.6 90.1 0.68 0.73 0.93

SAAC

Adaboost 88.1 85.5 88.2 0.65 0.71 0.89 86.5 82.8 86.8 0.61 0.68 0.94

RF 88.2 85.8 88.3 0.65 0.71 0.88 90.1 84.4 90.8 0.69 0.74 0.95

PNN 90.4 90.0 90.4 0.72 0.76 0.91 89.3 82.9 90.0 0.66 0.72 0.95

KNN 90.4 89.9 90.3 0.71 0.76 0.89 87.6 83.1 88.2 0.63 0.70 0.96

SVM 90.8 89.8 90.8 0.72 0.77 0.91 89.4 84.1 90.1 0.67 0.73 0.96

EnsC 92.2 91.0 92.2 0.75 0.79 0.91 92.0 88.4 92.4 0.74 0.79 0.95

EnsC_GA 92.4 91.1 92.5 0.76 0.80 0.92 92.2 88.2 92.6 0.73 0.79 0.94
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individual classifiers. The ensemble classifier in both

cases, i.e., using jackknife and independent test, has

obtained the highest accuracy of 92.3 and 91.3%,

respectively. The prediction performance of ensemble

classifier for jackknife test using hybrid2 features is

modestly better than that of using DWT, PseAA, and

SAAC individually. However, using hybrid1 features, the

performance of Mem-EnsSAAC is slightly better, round

about 0.2%. It means that DWT-based feature, when

added, has slightly degraded the overall performance of

classifiers. However, the computational cost has increased

due to the high dimensionality, 157D for hybrid2 versus

122D for hybrid1.

Neighborhood preserving embedding

for feature selection

In order to reduce feature vector dimensionality, we have

employed neighborhood preserving embedding (NPE) on

hybrid models. The predicted results of individual and

ensemble classifiers are shown in Table 2. NPE has per-

formed well compared to principal component analysis

(PCA), which aims at preserving the global Euclidean

structure while the NPE aims at preserving the local

neighborhood structure on the data manifold. Therefore,

NPE is less sensitive to outliers than PCA. The performance

of the classifiers is assessed using various dimensions of

Table 2 Classification results for the jackknife and independent dataset tests using hybrid and reduced features

Methods Jackknife test Independent dataset test

ACC Se Sp MCC F-measure Q-statistics ACC Se Sp MCC F-measure Q-statistics

Hybrid1 (Split ? PseAA)

Adaboost 88.0 85.8 88.1 0.65 0.71 0.90 85.8 82.1 86.0 0.59 0.66 0.78

RF 88.7 86.6 88.8 0.67 0.72 0.92 89.0 82.7 89.5 0.65 0.71 0.88

PNN 91.6 91.3 91.5 0.75 0.79 0.93 88.7 82.4 89.3 0.65 0.71 0.83

KNN 91.5 91.2 91.3 0.74 0.78 0.91 87.2 82.9 87.5 0.62 0.69 0.86

SVM 91.6 91.2 92.0 0.76 0.80 0.94 89.8 85.7 90.0 0.68 0.74 0.90

EnsC 92.4 92.4 91.8 0.77 0.81 0.93 89.9 85.5 90.3 0.69 0.74 0.86

EnsC_GA 92.6 92.7 92.4 0.77 0.81 0.93 91.3 86.7 91.8 0.72 0.77 0.88

Hybrid1 (NPE)

Adaboost 86.8 85.0 86.9 0.63 0.69 0.88 83.2 83.1 83.8 0.55 0.62 0.89

RF 88.3 89.1 88.0 0.67 0.73 0.91 85.3 83.2 86.4 0.62 0.67 0.89

PNN 89.4 88.7 89.4 0.69 0.74 0.90 87.8 84.6 88.2 0.63 0.69 0.91

KNN 89.5 88.6 89.4 0.69 0.74 0.93 85.9 82.8 86.1 0.59 0.66 0.88

SVM 90.1 89.2 90.1 0.71 0.75 0.93 86.7 83.3 87.8 0.62 0.66 0.92

EnsC 90.5 89.8 90.9 0.72 0.76 0.92 87.2 83.1 90.1 0.65 0.71 0.90

EnsC_GA 91.8 91.2 91.3 0.73 0.78 0.94 88.5 84.1 89.3 0.67 0.73 0.91

Hybrid2 (Split ? PseAA ? Wavelet)

Adaboost 87.8 86.3 87.9 0.64 0.70 0.87 85.0 84.0 84.9 0.59 0.66 0.94

RF 88.2 86.0 88.3 0.65 0.71 0.91 89.4 83.8 90.0 0.67 0.73 0.95

PNN 90.4 90.1 90.3 0.72 0.76 0.89 88.2 83.5 88.7 0.64 0.71 0.95

KNN 90.5 90.1 90.5 0.72 0.77 0.91 87.2 82.9 87.7 0.62 0.69 0.96

SVM 90.8 90.4 90.7 0.73 0.77 0.87 89.7 85.6 90.1 0.68 0.74 0.96

EnsC 92.3 92.5 91.1 0.75 0.79 0.88 91.3 87.2 90.5 0.70 0.75 0.95

EnsC_GA 92.4 91.8 92.5 0.76 0.80 0.89 91.5 88.4 91.9 0.72 0.77 0.94

Hybrid2 (NPE)

Adaboost 87.0 84.9 87.1 0.63 0.69 0.85 84.3 83.6 85.1 0.57 0.65 0.89

RF 88.1 88.9 87.8 0.67 0.72 0.89 88.2 82.1 89.0 0.65 0.71 0.89

PNN 89.7 88.5 89.7 0.70 0.75 0.91 86.9 82.7 87.3 0.63 0.70 0.93

KNN 89.6 88.5 89.6 0.69 0.74 0.90 86.7 80.4 87.2 0.61 0.70 0.91

SVM 89.9 88.2 90.1 0.70 0.75 0.89 88.5 83.9 90.5 0.67 0.72 0.92

EnsC 90.8 89.4 90.7 0.71 0.76 0.90 90.1 86.6 90.8 0.69 0.74 0.93

EnsC_GA 91.0 90.0 91.0 0.72 0.77 0.89 90.6 86.9 91.0 0.70 0.75 0.92
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hybrid models, which is reduced by NPE. The best result is

obtained on 100 dimensions. Here we have observed two

things; one is that the performance of the classifiers

decreases compared to using original hybrid models. But

the other fact is that the dimensionality of the feature vector

is reduced. Considerably in case of hybrid1 model and NPE,

the highest accuracy is obtained by SVM using jackknife

test and by PNN using independent dataset test. On the other

hand, the performance of the ensemble classifier is better in

both cases than that of all the individual classifiers. In case

of hybrid2 model and NPE, SVM and PNN have obtained

approximately equal accuracy using jackknife test, while in

case of independent dataset test, PNN has yielded the

highest success rates compared to other classifiers. Again

using hybrid2 model, the ensemble classifier has obtained

the highest results than that of all the individual classifiers.

After the feature reduction, the dimensionality of the both

hybrid models is 100D but still the performance of some

classifiers using hybrid1 model is slightly higher than that of

hybrid2 model. It is observed that the addition of DWT-

based features has a slight negative impact on the dis-

crimination capability of the PseAA and SAAC.

Ensemble through genetic algorithm

In order to improve the performance of the ensemble

classifier, we have combined the prediction of the indi-

vidual classifiers through optimization technique genetic

algorithm (GA). The highest improvement has been

reported using ensemble constructed through DWT-based

features only. The improvement is observed in both cases;

jackknife and independent dataset test and is 6.2 and 2.7%,

respectively, as shown in Fig. 2. Its mean that there exist

some diversity in the prediction of individual classifiers

using DWT-based features. In each of feature extraction

strategies, the performance of ensemble classifier through

GA is better compared to ensemble classifier through

simple majority voting. The highest accuracy 92.6% has

been achieved by ensemble classifier using hybrid1 model,

as shown in Fig. 3, while the success rate of ensemble

classifier using SAAC is 92.4%. There is only 0.2%

accuracy difference between using hybrid model1 and

SAAC. But SAAC is 60D while hybrid1 model is 122D. We

have thus observed that SAAC-based feature extraction

strategy has performed well in discriminating membrane

protein types as compared to rest of the individual feature

extraction strategies.

Prediction performance for each membrane protein type

and its biological significance

Prediction performances for each membrane protein type

using ensemble classifier are shown in Table 3. In Table 3,

columns 2–4 show DWT-based ensemble classifier

prediction for each membrane protein types. Type-II, lipid-

anchored, and GPI-anchored membrane proteins are

predicted with an accuracy of 26.5, 30.8 and 13.2%

respectively, while Type-I, multipass and peripheral

membrane protein are predicted with an accuracy of 59.3,

90.1, and 40.0%, respectively. It has been observed that the

overall accuracy of the DWT-based prediction is affected

due to Type-II, lipid-anchored and GPI-anchored mem-

brane prediction. In this study, wavelet signal is decom-

posed up to level 4, which may have introduced feature

redundancy due to the short length of the protein signal.

Because the average sequence length of Type-I, Type-II,

multipass, lipid-anchored, GPI anchored, and peripheral is
Fig. 2 The performance of Mem-EnsSAAC-GA using DWT for

Jackknife test

Fig. 3 The performance of Mem-EnsSAAC-GA using hybrid1

model for Jackknife test
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772, 366, 521, 271, 456, and 467, respectively, it is obvious

that length of Type-II and lipid-anchored is low as com-

pared to the other membrane protein types. The other

drawback is the unbalanced nature of dataset e.g., the

number of training samples for multipass are higher in

number as compared to other classes. Thus, the perfor-

mance of classifiers is affected. In Table 3, columns 5–7

show the PseAA-based prediction using ensemble classi-

fier. The ensemble classifier yields an accuracy of 91.9,

45.7, 97.4, 63.5, 25.0, and 20.0% for Type-I, Type-II,

multipass, lipid anchored, GPI anchored, and peripheral,

respectively. Almost, the same problem as with DWT

occurs with PseAA because when the tier value increases,

the performance of the short length sequence is affected.

On the other hand, if the tier value decreases, information

is lost in case of a lengthy sequence. Multipass class is

dominant in being predicted accurately due to its large

representation in training data.

In Table 3, columns 8–10 show the SAAC-based pre-

diction performance of Mem-EnsSAAC for each mem-

brane protein types. The accuracy for Type-I, Type-II,

multipass, lipid anchored, GPI anchored, and peripheral

membrane proteins are 93.8, 51.0, 98.0, 68.3, 36.7, and

36.6%, respectively. MCC and F-measure of each mem-

brane protein types are provided in Table 3 and shown in

Fig. 4. The performance of Hybrid-EnsC is shown in

Table 3, columns 11–13. The obtained accuracy for Type-

I, Type-II, multipass, lipid-anchored, GPI anchored, and

peripheral membrane proteins is 91.6, 53.6, 97.8, 70.2,

33.8, and 33.3%, respectively.

The performance of the Mem-EnsSAAC is high for

almost each type of membrane protein compared to that of

Table 3 Individual class (membrane protein types) prediction using Jackknife test

Jackknife test

Membrane types Wavelet-EnsC PseAA-EnsC Mem-EnsSAAC Hybrid-EnsC

ACC MCC F-measure ACC MCC F-measure ACC MCC F-measure ACC MCC F-measure

Type I 51.3 0.24 0.36 91.9 0.68 0.71 93.8 0.72 0.75 91.6 0.72 0.75

Type II 26.5 0.15 0.26 45.7 0.56 0.60 51.0 0.62 0.65 53.6 0.62 0.65

Multipass 88.5 0.48 0.66 97.4 0.77 0.84 98.0 0.81 0.87 97.8 0.81 0.87

Anchored 30.8 0.45 0.59 63.5 0.75 0.81 68.3 0.78 0.83 70.2 0.79 0.84

GPI 13.2 0.42 0.54 25.0 0.72 0.77 36.7 0.76 0.80 33.8 0.76 0.80

Peripheral 40.0 0.35 0.50 20.0 0.69 0.74 36.6 0.73 0.77 33.3 0.74 0.78

Fig. 4 MCC, F-measure of

each membrane protein types

using Jackknife test
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using PseAA, DWT, and hybrid. This fact shows that the

membrane protein types can be efficiently discriminated on

the bases of differences in the amino acids at their N and C

terminus. In all three feature-extraction strategies, the

multipass class has received highest accuracy, MCC, and

F-measures. This might be due to two reasons. First is that

its sequence average length is higher than that of the Type-

II, lipid-anchored, and GPI-anchored membrane protein.

The second is that its number of sequences is 1903, which

is high as compared to the other sequences. Membrane-

bound proteins are of special interest to the drug discovery

community as they constitute one-third of the genome and

make up half of the pharmaceutically relevant drug targets.

Defective membrane proteins are involved in diseases

such as cancer, cardiovascular diseases and neurological

diseases. Using the jackknife test F-measure, MCC and

Q-Statistics are shown in Fig. 5.

Mem-EnsSAAC yields the highest MCC and F-measure

of 0.76, 0.80, 0.73 and 0.79, respectively, using both

jackknife and independent dataset test. On the other hand,

accuracy, sensitivity, and specificity of all classifiers using

PseAA composition, DWT, SAAC, and hybrid are shown

in Fig. 6 with Mem-EnsSAAC offering highest sensitivity

and specificity.

The proposed method is also compared with state of

art existing methods in Table 4. The proposed Mem-

EnsSAAC provides the highest results in all the three

tests, self-consistency, jackknife and independent dataset

Fig. 5 MCC, F-measure and

Q-statistics of classifiers using

Jackknife test

Fig. 6 Accuracy, sensitivity

and specificity of classifiers

using Jackknife test

Prediction of membrane proteins using split amino acid 2457

123



test obtaining an accuracy of 99.9, 92.4 and 92.2%,

respectively.

The proposed Mem-EnsSAAC is 6.3% higher in case of

jackknife and 1.6% in case of independent dataset test from

highest performing membrane protein predictors. The

achieved results are thus the highest, reported so far. A

similar improvement is shown by the other performance

measures. This effective performance improvement is due

to the good discrimination capabilities of SAAC and the

learning capability and robustness of the majority voting

based ensemble approach.

Prediction performance using Dataset2

Dataset2 is also used to analyze the performance of the

selected classification algorithms. The feature extraction

strategy used for this dataset is SAAC and we have eval-

uated the performance of classifiers using jackknife test. In

Table 5, the performance of individual and ensemble

classifier for overall and each membrane protein type’s is

shown and compared with that of MemType-2L (Chou and

Shen 2007a) and (Mahdavi and Jahandideh 2011). Among

the individual classifiers, SVM yields the highest accuracy

of 84.2%. On the other hand, PNN and KNN yield an

accuracy of 83.0 and 82.4%, respectively.

Thus in case of the individual classifiers, still the per-

formance of SVM is better as compared to the rest of

classifiers. The accuracy of the ensemble classifier is

86.2%, which accounts for its superiority as against the

individual classifiers. The predicted results of Mem-Ens-

SAAC are higher than the predicted output of MemType-

2L (Chou and Shen 2007a) and (Mahdavi and Jahandideh

2011), and are the best results reported so far.

Conclusions

In this study, the prediction of membrane protein types has

been investigated. In this context, three feature extraction

methods are analyzed in combination with several classifi-

cation strategies. We have shown that the SAAC-based

feature extraction yields better results than that of the PseAA

and DWT. It has thus been observed that the membrane

protein types can be efficiently discriminated based on the

differences in the amino acid at their N and C terminus.

Among the different individual classifiers, SVM in con-

junction with the SAAC performs the best using jackknife

test. While the RF yields better prediction performance using

SAAC for independent dataset test. The proposed Mem-

EnsSAAC predictor using SAAC provides the best-reported

Table 4 Performance comparison with existing approaches on dataset1

Methods Self-consistency

test accuracy (%)

Jackknife test

accuracy (%)

Independent dataset

test accuracy (%)

Amphipathic PseAA and least hamming distance (Chou and Cai 2005a) – 74.1 74.3

Amphipathic PseAA and least euclidean distance (Chou and Cai 2005a) – 74.6 75.2

Amphipathic PseAA and Prot-Lock (Chou and Cai 2005a) – 77.6 82.9

Amphipathic PseAA and CDA (Chou and Cai 2005a) – 86.1 90.6

Proposed Mem-EnsSAAC 99.9 92.4 92.2

Table 5 Performance comparison with existing approaches on dataset2

Jackknife test

Membrane types KNN PNN SVM Proposed

Mem-EnsSAAC

MemType-2L

(Chou and Shen 2007a)

(Mahdavi and

Jahandideh 2011)

Single-pass Type-I 89.0 89.0 89.2 91.5 87.2 83.7

Single-pass Type-II 68.8 69.1 64.3 73.6 72.8 53.2

Single-pass Type-III 58.8 47.0 52.9 76.5 41.7 29.2

Single-pass Type-IV 67.6 67.6 79.4 85.3 75.0 50.0

Multipass 89.9 91.0 92.2 92.8 95.7 92.2

Lipid chain-anchored 73.2 72.2 62.9 75.2 56.3 45.0

GPI anchored 74.7 74.7 80.5 81.8 68.7 67.0

Peripheral 69.8 71.1 75.8 74.7 80.5 65.9

Overall accuracy 82.4 83.0 84.2 86.2 85.0 76.8
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results using the same dataset so far. This shows that as

against PseAA and DWT, the SAAC-based feature extrac-

tion has better discrimination capabilities in case of mem-

brane protein types. Especially, the prediction accuracy of

each membrane proteins types has been improved. The

prediction performance of the different classifiers using

the SAAC, is Mem-EnsSAAC [ SVM [ PNN [ KNN [
RF [ Adaboost. The overall success rates obtained by the

proposed Mem-EnsSAAC approach are 99.9, 92.4 and

92.2% using the self-consistency, jackknife and the inde-

pendent dataset test, respectively. The prediction perfor-

mance of Mem-EnsSAAC is promising and we hope that it

will help the biologist to elucidate membrane protein types

and their functions using protein sequence related

information.

Since user-friendly and publicly accessible web-servers

represent the future direction for developing practically

more useful predictors (Chou and Shen 2009a), therefore,

we have provided a free user friendly and publically

accessible web-server for predicting membrane protein

types Mem-EnsSAAC at http://111.68.99.218/membrane.
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