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Abstract The structure and function of a cadaverine—
lysine antiporter CadB and a putrescine—ornithine anti-
porter PotE in Escherichia coli were evaluated using model
structures based on the crystal structure of AdiC, an agm-
atine—arginine antiporter, and the activities of various
CadB and PotE mutants. The central cavity of CadB,
containing the substrate binding site, was wider than that of
PotE, mirroring the different sizes of cadaverine and
putrescine. The size of the central cavity of CadB and PotE
was dependent on the angle of transmembrane helix 6
(TM6) against the periplasm. Tyr’>, Tyr®, Tyr®°, Glu®™*,
Tyr235, Asp303, and Tyr423 of CadB, and Cysﬁz, Trpzm,
Glu*”, Trp*?, and Tyr*® of PotE were strongly involved
in the antiport activities. In addition, Trp**, Tyr”’, Tyr'"’,
Tyr*®, and Tyr**® of CadB were involved preferentially in
cadaverine uptake at neutral pH, while only Tyr*® of PotE
was involved preferentially in putrescine uptake. The
results indicate that the central cavity of CadB consists of
TMs 2, 3, 6,7, 8, and 10, and that of PotE consists of TMs
2, 3, 6, and 8. These results also suggest that several amino
acid residues are necessary for recognition of cadaverine in
the periplasm because the level of cadaverine is much
lower than that of putrescine in the periplasm at neutral pH.
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All the amino acid residues identified as being strongly
involved in both the antiport and uptake activities were
located on the surface of the transport path consisting of the
central cavity and TM12.
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Abbreviations

AdiC Agmatine—arginine antiporter

CadB Cadaverine-lysine antiporter

PotE Putrescine—ornithine antiporter

APC superfamily Amino acid/polyamine/organocation
superfamily

™ Transmembrane helix

Introduction

Polyamines are necessary for normal cell growth of bac-
teria at both neutral and acidic pH, and polyamine levels
are elaborately regulated by biosynthesis, degradation, and
transport (Igarashi and Kashiwagi 2010b). As for poly-
amine transport systems in Escherichia coli, there are two
polyamine uptake systems, PotABCD, a spermidine-pref-
erential uptake system, and PotFGHI, a putrescine-specific
uptake system, which belong to ATP-binding cassette
transporters (Igarashi and Kashiwagi 1996, 1999, 2010a). It
is also shown that spermidine excretion protein complex,
MdtJI, and another putrescine uptake protein PuuP during
the utilization of putrescine as energy source exist in E. coli
(Higashi et al. 2008; Kurihara et al. 2009).

Furthermore, unique transporters such as CadB, a
cadaverine-lysine antiporter (Soksawatmaekhin et al.
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2004, 2006), PotE, a putrescine—ornithine antiporter
(Kashiwagi et al. 1992, 1997, 2000), and AdiC, an agma-
tine—arginine antiporter (Gong et al. 2003; Iyer et al. 2003),
which belong to the amino acid/polyamine/organocation
(APC) superfamily of transporters (Jack et al. 2000), are
necessary for cell growth of Escherichia coli at acidic pH
(Fig. 1). These transporters function as electrogenic anti-
porters, and increase the pH in medium and nucleotide
biosynthesis by producing CO,, together with the respec-
tive amino acid decarboxylases (Takayama et al. 1994;
Soksawatmaekhin et al. 2004). So, cadB is transcribed
together with cadA encoding the inducible lysine decar-
boxylase (Meng and Bennett 1992; Watson et al. 1992),
and potE is transcribed together with speF encoding the
inducible ornithine decarboxylase (Kashiwagi et al. 1991).
In the case of adi genes, adiC and adiA encoding inducible
arginine decarboxylase are coordinately regulated but
independently transcribed (Gong et al. 2003). CadB and
PotE also catalyze the proton motive force-dependent
uptake of cadaverine and putrescine at neutral pH, as
indicated by the fact that the porE gene in a medium-copy
number vector was initially identified as a gene for
putrescine transporter at neutral pH (Kashiwagi et al. 1990;
Soksawatmaekhin et al. 2004).

Recently, the crystal structures of AdiC were reported at
3.6 A resolution (Gao et al. 2009) and 3.2 A resolution
(Fang et al. 2009). Furthermore, the crystal structure of the
AdiC-arginine complex was reported at 3.0 A resolution
(Gao et al. 2010). Thus, the structural models of CadB and
PotE were constructed with SWISS-MODEL (Arnold et al.
2006; Bordoli et al. 2009) using the ternary structure of
AdiC as a template. Correlations and comparisons of
structure and function for CadB and PotE were made based
on the model and on the activities of various mutants of
CadB and PotE.

Fig. 1 Physiological functions

of AdiC, CadB and PotE in

E. coli. In acidic conditions, the
three proteilns .fun?tlon as pKa=7.8 pKa = 11.0

electrogenic diamine-amino Arginine Agmatine
acid antiporters, and pH in the

medium is increased by /

Acidic condition

Comparison of structures of CadB and PotE

Based on the structure of AdiC, models of the ternary
structure of CadB and PotE were constructed (Fig. 2). The
overall sizes (vertical size x horizontal size vs membrane)
of CadB and PotE were 60 x 40 and 56 x 40 A, respec-
tively. The most significant structural difference among
AdiC, CadB, and PotE was observed in transmembrane
helix 6a (TM6a)—specifically, angle of TM6a against the
central cavity constituting the substrate binding site was
different in three transporters. The difference in the angle of
TM6a between CadB and PotE was small, but there was a
marked difference in the position of TM6a relative to the
other TM domain in CadB and PotE (Fig. 2). This was due
to a structural difference at the region of variable loop
between TMS5 and TM6 and the length of TM6a and TM6b
(Fig. 3). In addition, the relative position of TM2 in AdiC
was different from the position of TM2 in CadB and PotE
(Fig. 2). This was due to the difference in the size and
position of the variable loop between TMI1 and TM2
(Fig. 3). The difference of the relative position of TM2 in
CadB and PotE was also small, but it was caused by dif-
ference in the size of TM1la and TM1b in CadB and PotE
(Fig. 3). Another difference between AdiC and CadB, and
PotE was observed in the variable loop between TM7
and TMS (Figs. 2, 3). Thus, the relative position of TM7
and TMS in AdiC was different from that in CadB and PotE.
Since the variable loop between TM8 and TM9 is different
in CadB and PotE, the relative position of TM8 and TM9 in
CadB and PotE may be different. Such a difference of TM8
and TM9 in CadB and PotE may also influence the structure
of the adjacent TMs, i.e., TM7 and TM10. Taken together,
the structural difference between CadB and PotE was
mainly due to the difference of TM6, the loop structure
between TMS5 and TM6, and TM1 (Figs. 2, 3).

excretion of the diamines
(Soksawatmaekhin et al. 2004). AdiC
Amino acid decarboxylases

Periplasm
pKa=7.3 pKa =9.7 pKa=7.1 pKa=9.5
Lysine Cadaverine Ornithine Putrescine

CadB

generates a pH gradient by / \
consuming a cytoplasmic

proton. This process causes the Arginine 7_> Agmatine
increase in the level of ATP in +CO,
cells (Soksawatmaekhin et al.
2004)

H+

/ \

Ornithine 7—> Putrescine
+CO,

/ \

Lysine 7—> Cadaverine

H+ +CO, H+

Cytoplasm

® Generation of membrane potential and pH gradient
® Neutralization of acidic condition
® Increase in nucleotide biosynthesis by producing CO,
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Although the overall ternary structures of CadB and
PotE are similar, there is a clear difference in the central
cavity, where substrates are recognized. The size of the
central cavity was bigger in CadB than in PotE, which
reflects the size of the substrate, cadaverine (7.4 A) and
putrescine (6.2 A) (Fig. 4). This was largely due to the
differences in the size and the angle of TM6a. The largest
width of the central cavity of CadB was 27 A, while that of
PotE was 23 A. Thus it is expected that the substrates
(cadaverine and putrescine) could easily access the central
cavity.

Alignment of functional amino acid residues
at the central cavity of CadB and PotE

We have previously identified functional amino acids
which are involved in the activities of CadB and PotE
(Kashiwagi et al. 1997, 2000; Soksawatmaekhin et al.
2006). These amino acid residues are aligned on the newly
constructed secondary structure of CadB and PotE based on
the model ternary structure (Fig. 5). Since Tyr’>, Tyr®,
Tyrgo, G1u204, Tyr235, Asp303, and Tyr423 of CadB, and
Cys62, Trpzm, Glu207, Trp292, and Tyr425 of PotE were
strongly, and Tyr55, Glu76, Tyr246, Tyr310, Cys370, and
Glu*”7 of CadB, and G1u77, Tyrgz, Cys210, Cyszgs, Cys286,
and Glu*® of PotE were moderately involved in the

Fig. 2 Structural model of AdiC, CadB, and PotE. Model structure of
CadB and PotE was constructed using AdiC as a template (Gao et al.
2009) using SWISS-MODEL Workspace, a web-based integrated
service dedicated to protein structure homology modeling

antiport activities together with uptake activities, it is
thought that the transport path of CadB consists of TMs 2,
3,6,7,8, 10, and 12, and that of PotE consists of TMs 2, 3,
6, 8, and 12 (Figs. 5, 6). The results confirm that the central
cavity is bigger in CadB than in PotE. Since the functional
amino acid residues were not found on TM1 of CadB and
PotE, the structural difference of TM1 in CadB and PotE is
thought to influence the relative position of TM2 and TM3
in CadB and PotE. It is also thought that TM12 of CadB
and PotE constitutes the entrance of the transport path of
cadaverine and putrescine from the cytoplasm.
Furthermore, Trp*, Tyr”’, Tyr'", Tyr**® and Tyr*®® of
CadB, and only Tyr” of PotE were strongly involved in
cadaverine and putrescine uptake at neutral pH, and Trp*',
Tyr'”*, Glu'® and Glu**® of CadB, and Tyr’® and Trp**? of
PotE were moderately involved in the uptake at the neutral
pH without affecting the antiport activities (Fig. 5). These
results suggest that certain residues of amino acids are
necessary for recognition of cadaverine in the periplasm
because the level of cadaverine is much lower than that of
putrescine in the periplasm at neutral pH. In addition, Arg>*’
of CadB and Lys®' and Tyr’*® of PotE were involved in
cadaverine—lysine and putrescine—ornithine antiport activi-
ties without affecting uptake activities. It may be that a basic
amino acid is necessary for recognition of the COOH group
of lysine and ornithine. These amino acids are also located in
the central cavity, i.e., both Arg299 of CadB and Lys3°1 of

Periplasm

Cytoplasm

Periplasm

Cytoplasm

(http://swissmodel.expasy.org/) (Arnold et al. 2006; Bordoli et al.
2009). The structures were visualized using PyMOL viewer v 0.99
(http://www.pymol.org). TMs shown with a black number in a white
square constitute the central cavity
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Fig. 3 Amino acid alignment of AdiC, CadB, and PotE. Sequence box with white lettering, and a-helix on a loop by a grey box with
alignment was performed using CLUSTAL-W version 1.83 white lettering
(http://clustalw.ddbj.nig.ac.jp/top-j.html). TM is shown by a black

PotE in TMS8 (Fig. 6). Although two tyrosine residues in  Such a functional difference may be caused by the differ-
TMI10 of CadB were strongly involved in the uptake activ-  ence of the variable loop between TM8 and TM9 in CadB
ities, no functional amino acid was found in TM10 of PotE. and PotE, as mentioned in the previous section.
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7.4 A
Cadaverine

Fig. 4 Conformational difference of the central cavity between CadB
and PotE. The structure of the central cavity of CadB and PotE from
the extracellular side and its oblique view was constructed as
described in the legend of Fig. 2 and shown together with the size of
cadaverine and putrescine. TMs shown with a black number in a white

The transport path consisting of the central cavity and
TM12 was modeled according to the ternary structure of
CadB and PotE (Fig. 6). Functional amino acid residues
were located on the surface of transport path, and the
number of functional amino acid residues correlated well
with the size of the central cavity.

Working hypothesis for the function of CadB and PotE

It has been shown that the expression of cadB mRNA is
greatly enhanced at acidic pH by lysine and moderately by
ornithine, and that of potE mRNA is enhanced greatly by
ornithine and moderately by lysine (Soksawatmaekhin
et al. 2004). It was also shown that PotE catalyzes
putrescine-lysine exchange (Kashiwagi et al. 1992). It is
expected that lysine is much more abundant than ornithine
in the external environment of bacteria, judging from the
amino acid composition in bacteria and mammals (Herbert
et al. 1966; Gitlitz et al. 1974; Kashiwagi and Igarashi
1988). Cadaverine content of E. coli at neutral pH is <2%
of putrescine (Igarashi et al. 1986), and it takes time to
synthesize cadaverine with inducible lysine decarboxylase
at acidic pH.

A model for agmatine—arginine exchange has been
proposed (Gao et al. 2010). According to the model, it is

6.2A
Putrescine

square constitute the central cavity. Differences of angle between
TM10 and TM6a of CadB and PotE were emphasized in the right
figures of the central cavities. Surface structure of CadB and PotE was
visualized using PyMOL viewer v. 0.99 (http://www.pymol.org)

thought that CadB and PotE also exist as an outward-open
form. Since putrescine is abundant inside cells due to a
combination of unbound putrescine (Miyamoto et al.
1993) and putrescine released from RNA at acidic pH,
probably PotE functions first. Either ornithine or lysine
binds to PotE, and the structure of PotE changes to an
inward-open form. Then, putrescine exchanges with
ornithine or lysine due to the higher affinity of putrescine
than ornithine or lysine for PotE (Kashiwagi et al. 1992).
As a result, ornithine or lysine is moved into the cyto-
plasm, and putrescine is moved into the periplasm
through interaction with aromatic amino acids, Trp®°! and
Trp292 on TM6a and TMS. After this, cadaverine is
accumulated through inducible lysine decarboxylase.
Subsequently, when cadaverine levels rise due to the
activity of inducible lysine decarboxylase, the cadaver-
ine-lysine antiporter of CadB is initiated. CadB functions
similarly to PotE. First lysine binds to the central cavity,
and it is exchanged with cadaverine. Then, bound
cadaverine moves into the periplasm through interaction
with aromatic amino acids Tyr® and Tyr’® on TM3 and
Tyr**> on TM7. The Km value of putrescine for antiport
activity of PotE was 73 pM (Kashiwagi et al. 1992), and
that of cadaverine for antiport activity of CadB was
303 uM (Soksawatmaekhin et al. 2004). In this way, both
CadB and PotE function as electrogenic cadaverine-lysine
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-NH,

: Diamine uptake activity

O

: Strongly involved

antiporter and putrescine—ornithine or lysine antiporter,
leading to an increase in pH in medium, and stimulation
of cell growth as reported previously (Takayama et al.
1994; Soksawatmaekhin et al. 2004) (Fig. 1). When the
cad operon was inactivated, expression of potE mRNA
was greatly enhanced (Soksawatmaekhin et al. 2004),
confirming that CadB and PotE function together. Neu-
tralization of the external environment is an important
function of free polyamines, although polyamines usually
function through their interaction with nucleic acids,
especially with RNA (Igarashi and Kashiwagi 2010b).
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X : Not involved

: Diamine/amino acid antiport activity

. : Moderately involved

Concluding remarks and future perspectives

Based on the crystal structure of AdiC, model structures
of CadB and PotE were constructed. Although the model
structures of CadB and PotE were similar, the width of
the central cavity was different, reflecting differences in
the size of the substrate. Accordingly, TMs constituting
the central cavity were different in CadB and PotE. The
cavity of CadB consisted mainly of TMs 2, 3, 6, 7, 8, and
10, and that of PotE consisted of TMs 2, 3, 6, and 8 (see
Fig. 6). As for the working hypothesis for the molecular
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Fig. 6 Amino acid residues
involved in transport activity
located on the surface of
transport path of CadB and
PotE. Amino acids strongly
involved in both uptake and
antiport activities, and uptake
activity only are shown together
with amino acids moderately
involved in antiport activity
only (see Fig. 5). The central
cavity was modeled based on
the results shown in Figs. 4 and
5. TM12 is involved in the
recognition of cadaverine and
putrescine

® : Uptake activity

mechanism of antiport activity, further study is necessary
to obtain clear evidence for that. These two transporters
contribute to cell growth by creating membrane potential
and increasing pH in the external medium (see Fig. 1). If
free diamines (cadaverine and putrescine) have another
unique function outside the cells in addition to elevating
the pH, the importance of these transporters increase
greatly. Thus, it may be interesting to look for another
function of cadaverine and putrescine in the external
medium.
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