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Abstract Mitochondria are all-important organelles of

eukaryotic cells since they are involved in processes asso-

ciated with cellular mortality and human diseases. There-

fore, trustworthy techniques are highly required for the

identification of new mitochondrial proteins. We propose

Mito-GSAAC system for prediction of mitochondrial pro-

teins. The aim of this work is to investigate an effective

feature extraction strategy and to develop an ensemble

approach that can better exploit the advantages of this

feature extraction strategy for mitochondria classification.

We investigate four kinds of protein representations for

prediction of mitochondrial proteins: amino acid composi-

tion, dipeptide composition, pseudo amino acid composi-

tion, and split amino acid composition (SAAC). Individual

classifiers such as support vector machine (SVM), k-nearest

neighbor, multilayer perceptron, random forest, AdaBoost,

and bagging are first trained. An ensemble classifier is then

built using genetic programming (GP) for evolving a

complex but effective decision space from the individual

decision spaces of the trained classifiers. The highest

prediction performance for Jackknife test is 92.62% using

GP-based ensemble classifier on SAAC features, which is

the highest accuracy, reported so far on the Mitochondria

dataset being used. While on the Malaria Parasite Mito-

chondria dataset, the highest accuracy is obtained by SVM

using SAAC and it is further enhanced to 93.21% using GP-

based ensemble. It is observed that SAAC has better dis-

crimination power for mitochondria prediction over the rest

of the feature extraction strategies. Thus, the improved

prediction performance is largely due to the better capa-

bility of SAAC for discriminating between mitochondria

and non-mitochondria proteins at the N and C terminus and

the effective combination capability of GP. Mito-GSAAC

can be accessed at http://111.68.99.218/Mito-GSAAC. It is

expected that the novel approach and the accompanied

predictor will have a major impact to Molecular Cell

Biology, Proteomics, Bioinformatics, System Biology, and

Drug Development.

Keywords Mitochondrial protein � Amino acid

composition � Random forest � Genetic programming �
Dipeptide composition � AdaBoost

Introduction

Mitochondria are popularly known as the powerhouse of

the cell as well as the central unit of eukaryotic cells.

Mitochondria perform key roles in composite biochemical

processes such as programed cell death (Gottlieb 2000) and

ionic homeostasis (Jassem et al. 2002). In addition, mito-

chondrial dysfunctions have been revealed to be associated

with apoptosis, aging, and a number of pathological con-

ditions. We are particularly interested in predicting mito-

chondrial proteins since they are affiliated with over 100

known human diseases such as Alzheimer’s disease

(Hutchin and Cortopassi 1995), Type II diabetes (Gerbitz

et al. 1996), and Parkinson’s disease (Wooten et al. 1997).
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The prediction of mitochondrial proteins has largely

been performed using machine learning and statistical

approaches. Some of the interesting approaches that use

machine learning and statistical approaches in conjunction

with sequence information as well as biological informa-

tion for the prediction of mitochondrial proteins are Target

P (Emanuelsson et al. 2000), Signal P 3.0 (Bendtsen et al.

2004), WoLF PSORT (Horton et al. 2006), TargetLoc

(Höglund et al. 2006), MitoProt II (Claros and Vincens

1996), MITOPRED (Guda et al. 2004), MitPred (Kumar

et al. 2006) and PFMpred (Verma et al. 2009). In MitPred,

first support vector machine (SVM)-based methods were

developed using amino acid and dipeptide (Dp) composi-

tion of proteins (Kumar et al. 2006) and then the split

amino acid composition (SAAC) was used (Kumar et al.

2006). The prediction accuracy was further improved by

combining blast search and SVM method. Finally, a hybrid

approach that combines Hidden Markov model profiles and

SVM was used for the prediction of mitochondria proteins.

On the other hand, in case of PFMpred, a hybrid model

combining PSSM profile and SAAC was developed for

mitochondria prediction and has achieved high perfor-

mance accuracy of 92% (Kumar et al. 2006). Similarly,

several approaches that employ in machine learning or

statistical methods using protein sequence information

have also been reported, whereby typically, avoiding any

need of biological information is paid in terms of a

decrease in the accuracy. A number of different computa-

tional approaches based on amino acid composition (AAC)

or Dp composition (Dp) have been developed, including

the covariant discriminant algorithm based (Chou and

Elrod 1999), discrete wavelet transform based (Jiang et al.

2006), SVM based (Hua and Sun 2001; Chou and Cai

2002; Kumar et al. 2006; Jiang et al. 2006; Tan et al. 2006)

and fuzzy kNN based (Huang and Li 2004). Tan et al.

(2006) have reported the highest accuracy of 85% using

pure machine learning approaches by applying genetic

algorithm-partial least square (GA-PLS) on Dp features in

conjunction with SVM.

Recently, Hu and Fan (2009) have proposed the phys-

iochemical encoding method that maps protein sequences

into feature vector composed of the locations and length of

the amino acid groups (AAGs) with similar physiochemical

properties. Their method yields an improvement of about

20% than that of the method based on simple ACC. An

extended version of the pseudo-amino acid composition

has been also been employed for the submitochondria

subcellular localization and a good prediction performance

has been achieved (Du and Li 2006). Similarly, Nanni and

Lumini (2008a) have achieved high prediction perfor-

mance using an interesting approach based on genetic

programming (GP) for creating Chou’s pseudo amino acid-

based features for sub-mitochondria localization. To

improve the mitochondria prediction ability, this study

employed GP for generating an effective decision space

from that of the individual classifiers’ spaces. It has been

observed that the utilization of ensemble classifiers is

increasing for predicting protein subcellular localization.

There are protein sequences that have multiple protein

subcellular localizations for which interesting ensemble

classifiers have been developed (Shen and Chou 2007;

Chou and Shen 2007). Rotation forest has been proposed,

which is based on investigating the diversity-accuracy

landscape for ensemble classifier (Rodrı́guez et al. 2006).

Similarly, RotBoost, which is a relatively new ensemble

technique, has been proposed by combining rotation forest

and Adaptive Boosting (AdaBoost) and has yielded lower

prediction error than either of rotation forest and Adaboost

(Zhang and Zhang 2008). Recently, (Nanni et al. 2010)

have proposed an effective ensemble approach for protein

subcellular localization using a high performance set of

PseAAC and sequence-based descriptor.

For approximately incorporating the sequence-order

effects, the idea of the pseudo amino acid composition

(PseAAC) has been proposed (Chou 2001, 2005a, b).

PseAAC has then been used in conjunction with various

machine learning approaches to enhance the prediction

quality (Chou and Cai 2006; Chou and Shen 2006a; Guo

et al. 2006; Xiao et al. 2005, 2006a). However, the percent

composition of the whole sequence does not give proper

weight to the computational bias, which is known to be

present in mitochondrial protein termini. Therefore, the

concept of SAAC was introduced where the protein

sequence is divided into three parts: N terminus, C termi-

nus and a region between these two termini (Chou and

Shen 2006a, b). SAAC has thus proved better accuracy for

mitochondria predictions as it is giving greater weight to

the proteins that have a signal at either N or C terminus

(Kumar et al. 2006).

In the present study, our aim is to develop a novel high

performance prediction system that can employ both

selection of an effective feature extraction strategy and

construction of an ensemble approach for mitochondria

classification using sequence information only. For this

purpose, we have used two recent datasets and analyzed

different feature extraction strategies such as AAC, Dp,

PseAAC, and SAAC. A number of different classifiers

are then trained on these extracted features, i.e. SVM,

k-nearest neighbor (kNN), random forest (RF), multilayer

perceptron (MLP), AdaBoost, and bagging. A GP-based

ensemble classifier is subsequently developed for mito-

chondrial prediction, which is able to develop an efficient

decision space from the decision spaces of the individual

classifiers.
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Materials and methods

Datasets

The first dataset used in this paper is the same as in

(Jiang et al. 2006), which consist of 499 mitochondrial

proteins called positive examples. We denote this dataset

by Mitochondria dataset (Mito_D). This dataset was

obtained from Swiss-Prot release 46.6 by the keyword

mitochondrial. A total of 2,833 entries were obtained. All

the sequences with ambiguous words, such as POTEN-

TIAL, BY SIMILARITY, or PROBABLE and fragments

were then excluded. Moreover, 681 proteins (so called

negative examples) belonging to locations other than

mitochondrial site were selected by taking one out of

every 250 entries in Swiss-Prot. Mitochondrial protein

sequences or fragments were then deleted from the neg-

ative examples.

To validate the performance of our proposed method,

we have used another dataset taken from (Verma et al.

2009). We denote this dataset by Malaria Parasite Mito-

chondria dataset (MP_Mito_D). This dataset consists of

total 175 instances out of which 40 are mitochondrial

proteins called positive examples and 135 examples belong

to other locations, i.e. cytoplasm, extracellular, apicoplast,

and are called negative examples. The homologies between

sequences are checked. To remove the homologous

sequences from the benchmark dataset, a 25% cut-off

threshold is imposed and only those protein sequences are

considered that have less than 25% sequence identity to

any other protein sequences in a same subset (Chou and

Shen 2006b, 2007, 2008).

Performance measures

We have assessed the performance of our method using the

following performance measures.

(a) Sensitivity or coverage of positive examples It is the

percentage of mitochondrial proteins, which are

correctly predicted as mitochondria.

Sensitivity ¼ TP

TPþ FN
� 100 ð1Þ

where, TP and TN are correctly predicted mitochondrial

and non-mitochondrial proteins, respectively, whereas FP

and FN are wrongly predicted mitochondrial and non-

mitochondrial proteins, respectively.

(b) Specificity or coverage of negative examples It is the

percentage of non-mitochondrial proteins, which are

correctly predicted as non-mitochondria.

Specificity ¼ TN

FPþ TN
� 100 ð2Þ

(c) Accuracy It is the percentage of correctly predicted

proteins (mitochondrial and non-mitochondrial proteins).

Accuracy ¼ TPþ TN

TPþ FPþ FNþ TN
� 100 ð3Þ

(d) Mathew’s correlation coefficient It is considered as

one of the most robust performance parameter. MCC

equal to one is regarded as perfect prediction while

zero for completely random prediction.

MCC ¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½TPþ FP�½TPþ FN�½TNþ FP�½TNþ FN�
p

ð4Þ

(e) Q-Statistics To measure the diversity of the classifiers

Q-statistic is considered as a promising performance

parameter (Nanni and Lumini 2008b). The Q-statistic

of any two base classifiers C and D is defined as:

Qi;j ¼
ad � bc

ad þ bc
ð5Þ

where, a and d represent the number of correct and

incorrect prediction of both classifiers. However, b is the

correct prediction of classifier first and incorrect prediction

of classifier second. In contrast, c is the correct prediction

of classifier second but incorrect prediction of classifier

first. The value of Q varies between -1 and 1.

Feature extraction strategies

Amino acid composition and dipeptide composition

The aim of calculating composition of proteins is to

transform the variable length of protein sequence into a

fixed-length feature vector (Hayat and Khan 2010). This is

a most crucial step during classification of proteins using

machine-learning techniques because they require fixed

length patterns. The information of proteins can be

encapsulated to a vector of 20 dimensions using AAC of

the protein. In addition to AAC, Dp has also been used for

classification that gives a fixed pattern length of 400. The

advantage of Dp over AAC is that it encapsulates infor-

mation about the fraction of amino acids as well as their

local order. The AAC as well as Dp-based features have

been generated as described by (Garg et al. 2005). Both

compositions have been used as features to classify mito-

chondrial and non-mitochondrial proteins.

Split amino acid composition

In SAAC method (Chou and Shen 2006a, b), the protein

sequence is divided in parts and composition of each part is

calculated separately. Recently, (Verma et al. 2009), have

developed SAAC-based method to predict mitochondrial
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proteins of malaria parasite and have achieved reasonable

accuracy. In our SAAC model, each protein is divided into

three parts: (i) 25 amino acids of N-termini, (ii) 25 amino

acids of C-termini, and (iii) region between these two ter-

minuses. There are some small sequences in the datasets

whose length is less than 50 amino acids in the protein

sequence. Therefore, to accommodate these sequences, we

have divided these sequences into three parts with 10 amino

acids of N and C terminus and the region between these two

terminuses.

Pseudo amino acid composition

Amino acid composition model has been widely used in

conjunction with quite a few statistical methods for pre-

dicting protein attributes. However, in case of AAC, all the

sequence-order information is lost. To compensate this

problem, the concept of the PseAAC has been proposed,

which incorporates the sequence-order effects (Chou 2000,

2001). Simple AAC contains the composition of the 20

amino acids while the PseAA composition contains a set of

greater than 20 discrete factors. The first 20 of these rep-

resent the components of its basic AAC and the additional

factors carry some sequence-order information. For

example

PseAA ¼ P1; P2; . . .;P20; P20þ1; . . .;Pk ð6Þ

where k is the numbers of tiers used in PseAA. The optimal

value of tiers and the selection of the best physiochemical

properties can influence the classification performance. In

our case, we have selected k = 21 and analyzed the per-

formance using different combination of physiochemical

properties. We have considered k = 21 because it is

yielding best results. The first 20 elements, i.e. P1, P2,…,

P20 just represent the occurrence of frequencies of the 20

amino acids. Whereas, P21 is the 1st correlation order

factor, P22 is the second correlation order factor, and so on.

These elements are determined based on the physiochem-

ical properties. In this study, we have used three physio-

chemical properties, i.e. hydrophobicity, electronic, and

bulk properties. There are various models for representing

these properties. We have used FH, EIIP, and CPV models,

respectively.

Classification approaches

Support vector machine

Support vector machine is a machine learning approach

and is based on statistical learning theory (Vapnik 1998). A

brief and clear description on how to use SVM for classi-

fication (Chou and Cai 2002; Cai et al. 2003). It has also

been reported that SVM in conjunction with feature

selection provides quite interesting results (Huang et al.

2008). In this study, we have implemented SVM using the

LIBSVM 2.88-1 package, which allows us to choose a

number of parameters and kernels (e.g. linear, polynomial,

radial basis function, and sigmoid). In this particular work,

the mitochondrial proteins were defined as one class

(labeled as ?1) and the non-mitochondrial proteins were

defined as another class (labeled as -1). SVM was

implemented in MATLAB 7.7 and a third degree polyno-

mial was chosen as the kernel function. Quadratic pro-

gramming method was employed to solve the optimization

problem. All the parameters were kept constant except C

(regulatory parameter) and s (the kernel width parameter).

In the training process, C and s were optimized by

parameter optimization (Guo et al. 2006; Khan et al.

2008a).

k-nearest neighbor

The k-nearest neighbor algorithm is a method which clas-

sifies objects based on k-nearest training examples in the

feature space. The Euclidean distance of test sample to all

other samples in the feature space is calculated and k

samples are selected based on minimum Euclidian dis-

tance. The value of k is usually taken as odd. The Euclidian

distance is calculated using the Eq. 5.

S X;Xið Þ ¼ 1� X � Xi

Xk k Xik k
i ¼ 1; 2; . . .;Nð Þ ð7Þ

The sample under question X is then assigned to the cate-

gory, which is found in majority among the k samples. The

kNN is considered as a simple classifier, based on instance-

based learning and has been commonly employed in pro-

tein prediction problems (Khan et al. 2008a).

Random forest

Random forest is designed to produce accurate predictions

that do not overfit the data (Breiman 2001). RF employs

the statistical technique bootstrap in which samples are

drawn to construct multiple trees. Each tree is grown using

some form of randomization. The leaf nodes of each tree

are labeled by estimates of the posterior distribution. Each

internal node contains a test that best divides the space of

data to be classified. A protein sample is classified by

sending it down every tree and aggregating the reached leaf

distributions. Out-of-bag samples can be employed to

compute an unbiased error rate and variable importance,

eliminating the need for a test set or cross-validation.

Because a large number of trees are grown, there is limited

generalization error (that is, the true error of the population

as opposed to the training error only), which means that

overfitting is unlikely.
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By growing each tree to maximum size without pruning

and selecting only the best split among a random subset at

each node, RF tries to maintain some prediction strength

while inducing diversity among trees (Breiman 2001).

Random predictor selection decreases the correlation

among un-pruned trees and keeps the bias low. By taking

an ensemble of un-pruned trees, variance is also reduced.

Another advantage of RF is that the predicted output

depends only on one user-selected parameter which is the

number of predictors to be chosen randomly at each node.

In this work, the parameters of RF are set with number-of-

trees equal to 15 and iterations equal to 25.

AdaBoost

AdaBoost is one of the most popular and successful

implementations of boosting. Its name is an acronym cre-

ated from its description, i.e. Adaptive Boosting. We have

used Adaboost.M1 (Freund and Schapire 1996) provided in

Weka 3.6.2, where REPTree has been used as a weak

learner with number of iterations equal to 25 and the rest of

the parameters are set with the default values.

Bagging

One of the simple ensemble classifier is a method that

generates multiple versions of a predictor and employs

these to develop an aggregated predictor. The aggregation

averages over the versions when predicting a numerical

outcome and employs a plurality vote when predicting a

class (Breiman 1996). Weka 3.6.2 is used for simulation of

bagging approach with REPTree as a weak learner. The

numbers of iterations were set to 25 and the remaining

parameters are set with default values.

Multilayer perceptron

The MLP consists of a system of simple interconnected

neurons, which yields a model representing a nonlinear

mapping between an input and an output vector (Khan

et al. 2008b). The nodes are connected by weights and

output signals, which function as the sum of the inputs to

the node modified by a simple nonlinear transfer, or acti-

vation function. The superposition of many simple non-

linear transfer functions enables the MLP to approximate

non-linear functions. An MLP has one or more hidden

layers between input and output layers. In this work, we

have used the Matlab-based neural networks toolbox for

MLP implementation. An MLP having one input, two

hidden, and one out layers has been used. The training

algorithm was set to trainl-based backpropagation

approach. The rest of the parameters were used as default.

Predicting mitochondria proteins

Developing individual mitochondria classifier

Several mitochondria prediction methods employing indi-

vidual classifiers have been proposed in the literature so

far. In our proposed method, we have trained different

individual classifiers on several feature extraction strate-

gies. First, mitochondria protein sequences are converted

into features using the feature extraction strategies. These

features are finally provided to the different individual

classifiers for training and prediction performance for each

individual classifier is determined as shown in Fig. 1. We

have trained six different individual classifiers such as

SVM, kNN, MLP, RF, AdaBoost, and bagging on four

different feature extraction strategies: AAC, Dp, PseAAC

and SAAC.

Developing GP based ensemble classifier

(Mito-GSAAC)

GP introduced by Koza (1992) is an evolutionary algorithm

designed for automatically constructing and evolving

computer programs. It differs from genetic algorithm in the

ability to evolve variable length solutions. GP has emerged

as a powerful tool not only for evolving a classifier but also

Fig. 1 Proposed mitochondria

prediction method for individual

classifier
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for optimum combination of classifiers (Khan et al. 2005).

GP works by evolving a population of randomly created

initial population using a fitness measure. It selects the

fittest one to take part in the evolution and thus efficiently

searches for the desired solution.

Several interesting combination strategies in classifica-

tion of protein sequences have been employed recently.

Out of these, combination strategies majority voting-based

strategies have been widely used (Khan et al. 2010). GP, on

the other hand, has shown promising results when used for

combination of binary classifiers due to its inherent learn-

ing capability and its tree structure (Khan et al. 2005).

Therefore, this work capitalizes the learning capabilities of

GP, whereby it is used as a stacking-based ensemble

approach and thus is different from the majority voting

technique. We have employed GP to develop a complex

but efficient decision space when provided with decision

spaces of the individual trained classifiers as shown in

Fig. 2.

Results and discussion

Mitochondria prediction using different amino

acid-based features

This work aims at predicting eukaryotic mitochondrial

proteins using SAAC and ensemble classifier without using

any biological information. However, in order to create the

ensemble classifier, first we have tested a number of clas-

sifiers using different feature extraction strategies like

AAC, Dp, PseAAC, and SAAC. The performance of the

various classification algorithms is evaluated through var-

ious performance measures such as accuracy, sensitivity,

specificity, MCC and Q-Statistics. We have found that all

the classifiers, SVM, kNN, MLP, RF, AdaBoost and bag-

ging have yielded better performance on SAAC as com-

pared to other feature extraction strategies (Table 1). This

means that SAAC offers greater discrimination power in

comparison with the rest of feature extraction strategies

and is largely due to the composition difference at the N

and C terminus in mitochondria and non-mitochondria.

We have achieved a classification accuracy of 90.34% on

SAAC using RF as a classifier with number of itera-

tions equal to 25 and number of trees equal to 15. Finally,

as detailed in Sect. 4.3, we have developed a GP-based

ensemble classifier using the predictions of individual

classifiers, SVM, kNN, RF and AdaBoost on SAAC

features.

Using the first feature extraction strategy AAC, the

classification accuracy of AdaBoost is better compared to

the other classification algorithms. In case of Dp, SVM

obtained the highest accuracy among the various classifi-

ers. Similarly using PseAA, the classification accuracy of

SVM is the highest among the various classifiers. In case of

SAAC, the accuracies of the individual classifiers are:

AdaBoost 88.64%, bagging 88.64%, kNN 84.58%, MLP

85.54%, RF 90.34%, and SVM 88.05%. Thus, the classi-

fication performance of the various classification algo-

rithms that we used has improved in case of SAAC.

We have also used a hybrid feature-extraction strategy

to analyze the performance of the various classification

algorithms, whereby the different features are just concat-

enated. In case of this hybrid feature-extraction strategy,

the accuracy of AdaBoost, Bagging, kNN, and MLP

decreases, while slight improvement in the accuracy of RF

and SVM has been observed. Therefore, it is observed that

petite improvement in accuracy is obtained for some of the

classifiers at the cost of quite high dimensionality of the

feature vector space.

Is SAAC really better for mitochondria classification?

It is reported in literature that mitochondria have a large

difference in composition from non-mitochondria mostly

in the N- and C-terminus (Kumar et al. 2006). N-terminus

or amine terminus is the initial portion of some amino acids

in the protein sequence. Similarly, C-terminus or carboxyl-

terminus is the end portion of amino acids in the sequence.

Therefore, splitting the protein sequence into three parts

i.e. N-terminus, C-terminus and the portion of sequence

between these two termini, and then calculating the AAC

for all three parts would provide a better discrimination for

mitochondria versus non-mitochondria as can be observed

Fig. 2 GP-based ensemble

classifier
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from Table 1. Hence, it shows that overall protein

sequence composition avoids the high signals in some parts

of the protein sequence, which can better discriminate the

mitochondria from non-mitochondria.

GP ensemble and SAAC-based mitochondria

classification

We observed that for mitochondria prediction, SAAC

performs better than the various feature extraction strate-

gies that we have used. Therefore, for better exploitation of

the SAAC features for mitochondria prediction, we have

developed an ensemble classification approach using GP.

Previously, GP has been used for the optimum combination

of classifiers for gender classification problem and it has

been observed that it provides better prediction perfor-

mance (Khan et al. 2005; Khan and Mirza 2007). Thus, by

employing GP-based ensemble approach, a high accuracy

of 92.62% is obtained for the mitochondria prediction. We

denote our proposed GP ensemble as Mito-GSAAC.

We have used conventional functions in the GP tree: a

set of four binary arithmetic operators (?, -, * and a

Table 1 Jackknife results on

Mito_D dataset using different

feature extraction strategies and

individual classifiers

Jack-knife test

Methods Acc Se Sp MCC Q-statistics

AAC

AdaBoostM1 80.51 82.1 68.94 0.59 0.89

Bagging 80 79.95 70.34 0.58 0.88

kNN (k = 2) 77.71 80.76 80.65 0.54 0.85

MLP 72.23 64.01 78.76 0.45 0.87

RF 78.34 76.99 69.74 0.55 0.88

SVM (C = 3, c = 0.0031) 73.47 73.57 79.02 0.46 0.87

Dp

AdaBoostM1 77.23 85.32 55.91 0.53 0.86

Bagging 77.12 85.67 55.11 0.53 0.86

kNN (k = 2) 74.07 93.69 70.81 0.47 0.84

MLP 75.11 79.53 64.12 0.54 0.85

RF 75.08 79.71 55.11 0.48 0.86

SVM (C = 25, c = 0.9) 82.03 82.97 85.48 0.63 0.87

PseAAC

AdaBoostM1 76.44 76.37 64.13 0.51 0.86

Bagging 77.29 77.05 65.93 0.52 0.86

kNN (k = 4) 75.85 73.86 82.46 0.51 0.85

MLP 77.84 78.1 67.93 0.53 0.86

RF 74.24 72.73 62.53 0.46 0.085

SVM (C = 9, c = 0.004) 82.46 86.49 83.66 0.63 0.88

SAAC

AdaBoostM1 88.64 85.71 87.78 0.76 0.92

Bagging 88.64 86.57 86.57 0.76 0.93

kNN (k = 6) 84.58 82.09 90.31 0.69 0.89

MLP 85.54 87.35 88.67 0.72 0.89

RF 90.34 93.25 90.33 0.8 0.94

SVM (C = 5, c = 0.0025) 88.05 87.96 91.03 0.75 0.92

Hybrid features

AdaBoostM1 86.12 83.65 87.23 0.74 0.89

Bagging 86.45 85.34 86.97 0.74 0.89

kNN (k = 8) 84.6 81.11 89.61 0.69 0.87

MLP 83.56 82.42 85.98 0.71 0.086

RF 90.50 93.6 90.25 0.8 0.92

SVM (C = 9, c = 0.0025) 88.78 88.05 90.33 0.76 0.9
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protected division), if less than (IFLT), if greater than

(IFGT), and absolute. We have combined the predictions of

kNN, SVM, RF, and AdaBoost using GP to develop an

optimal decision space. The dataset is divided into two

portions, i.e., training and testing. Two-third of training

data is given to GP for training and then it is validated on

the remaining one-third data (Table 2). First, an initial

population of 100 polynomials is generated. Fitness for

each new individual is calculated using area under receiver

operating curve (AUROC).

ROC and MCC as fitness criteria in GP

ROC and MCC have been used as fitness criteria in GP

simulation for developing ensemble classifier. ROC is a

graph plotted between true positive rate (TPR) and false

positive rate (FPR) for different threshold values. TPR

represents the number of correct positive cases divided by

the total number of positive cases whereas, FPR represents

the number of negative cases predicted as positive cases,

divided by the total number of negative cases (Khan et al.

2005). The area under the ROC curve i.e. AUROC is then

computed and is considered as the fitness in GP simulation.

A GP individual with the highest value of AUROC is

chosen the best individual in the population.

MCC is also considered as a rigorous performance

measure in classification applications. Therefore, we have

also used MCC as fitness criteria in some of the GP sim-

ulations. It is observed that both the fitness criterion i.e.

AUROC and MCC yield almost the same performance on

the testing data (Table 3). The accuracy versus complexity

graph and the best individual GP tree for the MCC-based

fitness criteria are demonstrated in Fig. 3.

Comparison with existing state of the art approaches

Performance comparisons on the Mito_D dataset

We have compared our proposed Mito-GSAAC with the

existing prediction methods using the Mito_D dataset and

jackknife test. All prediction performances are listed in

Table 4. The results show that Mito-GSAAC can identify

mitochondrial proteins from other proteins with a relatively

high accuracy of 92.62% and MCC of 0.85. MITOPRED,

which uses biological information, also shows high per-

formance with an accuracy of 95.68%. However, we have

achieved highest accuracy without using any biological

information like that of one which has achieved accuracy

of 85%. In practice, not all the biological information can

easily be attained. Once such information is absent, our

method will be influenced little. Like MITOPRED, Mito-

Prot also has some limitations; it can only predict the

sequences starting by a methionine and the mature proteins.

The discrete wavelet transforms method (Jiang et al. 2006)

based on the sequence-scale similarity measurement does

not rely on subcellular locations information and can

directly predict protein sequences with different length.

Although the performance in terms of the specificity is

relatively higher, the accuracy is poor. It is usually due to

the specific properties of mitochondrial protein that make it

difficult to discriminate it from other proteins by just one

method, or simply because the number of proteins in the

mitochondrion is immoderate (Cameron et al. 2005). With

the increase of the exact experimental mitochondrial pro-

teins, the performance may also be improved significantly.

Performance analysis of the proposed Mito-GSAAC

on the MP_Mito_D dataset

We also evaluate the performance of the proposed

approach Mito-GSAAC on the MP_Mito_D dataset using

two important statistical tests; jackknife and fivefold cross

validation test.

In case of jackknife test, RF using AAC yielded the

highest accuracy and MCC values of 85.14% and 0.53,

respectively (Table 5). While, in case of Dp composition,

SVM achieved better accuracy than the rest of the classi-

fiers. On the other hand, in case of SAAC, both SVM and

kNN yielded better accuracies as compared to the rest of

Table 2 GP parameter settings for evolving the ensemble classifiers

Objective To evolve an optimal ensemble

classifier for prediction

Function set ?, -,*, protected division, IFGT,

IFLT, and ABS

Special function Classifier (kNN, SVM, RF, AdaBoost)

Terminal set Constant randomly chosen

between 0 and 1

Fitness ROC, MCC

Selection Generational

Wrapper Positive if C0, else negative

Population size 200

Initial tree depth limit 7

Tree generation method Ramped half and half

Reproduction probability 20%

Mate selection probability 80%

Table 3 GP performance on Mito_D dataset for Jackknife test using

both the ROC and MCC fitness criteria

Fitness

criterion

Best individual

fitness

ACC Se Sp MCC

ROC 0.9482 92.62 90.96 91.52 0.84

MCC 0.8984 92.62 90.96 91.52 0.84
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the classifiers. Using the hybrid features (when all the

different features are just concatenated) and jackknife test,

the accuracy of SVM is 89.21%, which is slightly high as

compared to that obtained using SAAC. On the other hand,

the performance of the rest of the classifiers decreased

when used in conjunction with the hybrid features, mainly

due to the curse of dimensionality.

In case of fivefold cross validation, the performance of

RF, SVM, and kNN using individual feature extraction

strategy is shown in Table 6. When the Mitochondria

prediction performance using different feature-extraction

strategies is analyzed, enhanced performance is observed

using SAAC in case of all the different classification

algorithms.

In case of the hybrid feature-extraction strategy, the

classification accuracy obtained by AdaBoost, bagging,

MLP, RF, SVM, and kNN are 85.22, 85.10, 83.14, 87.01,

92.23, and 90.71%, respectively. It has been observed

again that using the hybrid feature-extraction strategy,

SVM has achieved slight improvement in accuracy as

compared to that using SAAC. The performance

improvement for SVM is only 0.23%; however, the

dimensionality of the feature space is increased greatly. On

the other hand, the performance of the rest of the classifiers

decreased when trained on the hybrid features.

It has thus been observed that a mitochondria protein

can be efficiently discriminated based on the differences in

the amino acid at their N- and C-terminus by the SAAC

feature extraction strategy. Therefore, the predicted results

of AdaBoost, RF, SVM and kNN using the SAAC features

are then combined through GP. The results of GP-ensemble

are analyzed using both the tests; jackknife, and fivefold

cross-validation as shown in Table 7.

In case of jackknife test, Mito-GSAAC has obtained an

accuracy of 90.05%. In the GP simulation, the population

size and no. of generations were kept equal to 200 and 100,

respectively. The accuracy of Mito-GSAAC is 1.98%

higher than the highest individual classifier’s result using

all the feature extraction strategies.

Similarly, the predicted results for fivefold cross-vali-

dation test are also combined through GP. Mito-GSAAC

obtained an accuracy of 93.21%. The accuracy of Mito-

GSAAC using fivefold cross-validation test is 1.71%

higher than the highest individual classifier’s result using

all the feature extraction strategies.

Comparison with existing approaches on the MP_Mito_D

dataset

We have also compared our proposed approach Mito-

GSAAC with already published methods using the

Fig. 3 Accuracy versus

complexity and the best

individual GP tree for MCC as

fitness criteria

Table 4 Performance comparison on Mito_D dataset using Jackknife

test for the existing state of the art mitochondria predictors and our

proposed Mito-GSAAC

Methods Acc Se Sp MCC AUROC

SVM(84-D) methoda 85.00 79.16 89.28 0.69 –

DWT method 76.53 50.30 95.74 0.54 –

MITOPREDb 95.68 92.79 97.80 0.89 –

MitoProtc 85.08 86.17 84.14 0.70 –

MitPred 84.83 80.42 84.77 0.69 –

Random Forest (proposed) 90.34 93.25 90.33 0.80 –

Mito-GSAAC (proposed) 92.62 90.96 91.52 0.85 0.92

a 84-D 84 Dipeptide composition technology
b Prediction performances of MITOPRED were calculated at a con-

fidence cutoff of 0.85
c Prediction performances of MitoProt were calculated at a threshold

of 0.70

Mito-GSAAC 1451

123



MP_Mito_D dataset (Table 8). In case of the MP_Mito_D

dataset, Verma et al. (2009) have employed Dp and PSSM

composition using SVM and have reported 92.57% accu-

racy and 0.78 MCC. Further, they have applied the com-

bination of SAAC and PSSM using SVM as a classifier and

have reported an accuracy of 92.00% and 0.81 MCC.

However, the values of the classification accuracy and

MCC of our proposed approach Mito-GSAAC are 93.21%,

respectively, which are better compared to those obtained

by Verma et al. 2009. Thus, the predicted results show that

the performance of our proposed approach is not only

better from RF, SVM, and kNN but also higher than the

existing approaches.

Conclusions

In this paper, we have shown that a GP-based ensemble

classifier can be developed for better exploitation of the

advantages of the individual classifier trained on SAAC-

Table 5 Prediction performance of classifiers using Jackknife

test on MP_Mito_D dataset

Jack-knife test

Methods Acc Se Sp MCC

AAC

AdaBoostM1 81.05 80.2 70.59 0.6

Bagging 79.83 81.15 73.4 0.57

kNN (k = 11) 70.86 65 72.59 0.32

MLP 74.23 66.31 76.61 0.46

RF 85.14 88.89 40 0.53

SVM (C = 5, c = 0.009) 83.42 60 90.37 0.51

Dp

AdaBoostM1 78.63 86.38 57.41 0.54

Bagging 79.19 86.16 56.14 0.54

kNN (k = 1) 39.34 97.5 22.22 0.21

MLP 77.71 80.33 65.32 0.55

RF 83.43 100 27.5 0.47

SVM (C = 16, c = 0.029) 88.00 70 93.33 0.65

PseAAC

AdaBoostM1 77.49 79.05 67.15 0.52

Bagging 75.21 79.85 68.13 0.5

kNN (k = 9) 72.57 62.5 75.55 0.34

MLP 79.74 81.2 68.63 0.53

RF 80.57 100 15 0.34

SVM (C = 15, c = 0.005) 86.28 65 92.59 0.59

SAAC

AdaBoostM1 87.44 84.11 88.88 0.76

Bagging 86.14 84.51 88.17 0.75

kNN (k = 13) 88.57 67.5 94.81 0.66

MLP 84.59 85.55 87.17 0.71

RF 84.57 93.33 35 0.51

SVM (C = 3, c = 0.02) 88.57 77.5 91.85 0.68

Hybrid features

AdaBoostM1 83.52 80.62 85.93 0.73

Bagging 84.49 83.84 85.37 0.73

kNN (k = 8) 87.92 65.81 94.95 0.65

MLP 81.54 80.12 84.58 0.7

RF 84.62 92.53 37.01 0.52

SVM (C = 20, c = 0.005) 89.21 78.27 91.6 0.69

Table 6 Prediction performance of classifiers using fivefold cross

validation on MP_Mito_D dataset

Fivefold cross-validation

Methods Acc Se Sp MCC

AAC

AdaBoostM1 80.55 81.29 72.19 0.61

Bagging 80.89 82.65 74.45 0.57

kNN (k = 11) 76.57 75 77.03 0.45

MLP 72.29 68.34 74.69 0.43

RF 85.71 40 99.29 0.55

SVM (C = 4, c = 0.9) 86.85 65 93.33 0.61

Dp

AdaBoostM1 76.61 83.31 62.11 0.52

Bagging 81.14 83.66 67.11 0.54

kNN (k = 1) 42.28 100 25.18 0.26

MLP 79.11 81.13 68.39 0.57

RF 86.24 40 100 0.58

SVM (C = 25, c = 0.035) 91.43 70 97.77 0.74

PseAAC

AdaBoostM1 79.71 81.65 63.65 0.53

Bagging 78.81 81.81 66.1 0.51

kNN (k = 9) 78.28 77.5 78.51 0.49

MLP 80.71 82.92 67.6 0.53

RF 85.14 40 98.51 0.53

SVM (C = 3, c = 0.002) 85.71 65 91.85 0.58

SAAC

AdaBoostM1 88.94 85.31 89.81 0.77

Bagging 85.11 81.11 91.11 0.73

kNN (k = 10) 91.42 77.5 95.55 0.75

MLP 86.19 84.5 89.11 0.73

RF 87.42 52.5 97.77 0.61

SVM (C = 5, c = 0.0025) 92 85 94.07 0.77

Hybrid features

AdaBoostM1 85.22 82.67 86.33 0.74

Bagging 85.1 82.44 87.3 0.74

kNN (k = 8) 90.71 75.09 96.04 0.74

MLP 83.14 81.72 86.51 0.71

RF 87.01 53.56 95.12 0.61

SVM (C = 14, c = 0.0029) 92.23 86.49 93.73 0.78
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based features. We have investigated four kinds of protein

representations for mitochondria prediction namely, AAC,

Dp, PseAAC and SAAC and used two datasets for per-

formance analysis. First different individual classifiers such

as SVM, kNN, MLP, RF, AdaBoost and bagging are

trained and their prediction performances are determined.

In case of Jackknife test, RF among all individual classi-

fiers has given the highest accuracy of 90.34% in con-

junction with SAAC-based features on the Mito_D

dataset while SVM obtained the highest accuracy of 92.0%

using SAAC and fivefold cross validation test on the

MP_Mito_D dataset. Consequently, SAAC has performed

better than the rest of feature extraction strategies. This

better performance might be due to the high signals in the

parts of mitochondria protein sequence. The proposed

Mito-GSAAC has achieved a high performance accuracy

of 92.62% on the Mito_D dataset and 93.21% on the

MP_Mito_D dataset. Until now, most of existing studies

employed only a single individual classifier to predict

mitochondrial proteins. However, in the current work, we

have first employed different individual classifiers and

then, finally, we have developed a GP-based ensemble

classifier for mitochondria prediction. This work thus

proposes an effective mitochondria prediction method,

Mito-GSAAC that uses raw sequence data only and thus

can be helpful in the research related to cell biology and

drug discovery.
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