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Abstract Apoptosis proteins are very important for

understanding the mechanism of programmed cell death.

Obtaining information on subcellular location of apoptosis

proteins is very helpful to understand the apoptosis

mechanism. In this paper, based on amino acid substitution

matrix and auto covariance transformation, we introduce a

new sequence-based model, which not only quantitatively

describes the differences between amino acids, but also

partially incorporates the sequence-order information. This

method is applied to predict the apoptosis proteins’ sub-

cellular location of two widely used datasets by the support

vector machine classifier. The results obtained by jackknife

test are quite promising, indicating that the proposed

method might serve as a potential and efficient prediction

model for apoptosis protein subcellular location prediction.

Keywords Apoptosis proteins � Subcellular location �
Substitution matrix � Auto covariance transformation �
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Introduction

Apoptosis, or programmed cell death, is a fundamental

process controlling normal tissue homeostasis by regulat-

ing a balance between cell proliferation and death (Chou

et al. 1997, 1999, 2000; Chou 2004a, b, c, d, 2005a, b, c;

Jacobson et al. 1997). When apoptosis malfunctions, a

variety of formidable diseases can ensue: blocking apop-

tosis is associated with cancer (Adams and Cory 1998;

Evan and Littlewood 1998) and autoimmune diseases,

while unwanted apoptosis can possibly lead to ischemic

damage (Reed and Paternostro 1999) or neurodegenerative

disease (Schulz et al. 1999). Apoptosis proteins play a

central role in the mechanism of programmed cell death

(Raff 1998; Steller 1995). The function of a protein is

closely correlated with its subcellular location (Chou 2001;

Chou and Cai 2002; Chou and Elrod 1999). To understand

the apoptosis mechanism and functions of various apop-

tosis proteins, it is helpful to know about the subcellular

location of apoptosis proteins. Therefore, the study of

subcellular location of apoptosis proteins is very important

in biology.

During the last decade, much work had been done in an

attempt to predict the proteins’ subcellular location, which

are mainly focused on how to effectively represent a pro-

tein sequence and obtain the feature space of the sequence

(Cedano et al. 1997; Chen and Li 2004; Chou 2001;

Dubchak et al. 1995; Feng 2001; Garg et al. 2005; Gu et al.

2010; Huang and Li 2004; Nakashima and Nishikawa

1994; Zhou and Doctor 2003). Recently, some topics on

the impact of the feature space were discussed (Assfalg

et al. 2009, 2010). Most of the work obtained the feature

space of the protein sequence based on amino acid com-

position (AAC; Cedano et al. 1997; Feng 2001; Nakashima

and Nishikawa 1994; Zhou and Doctor 2003), dipeptide
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composition (DPC) (Chen and Li 2004; Huang and Li

2004). However, these approaches treated each peptide or

polypeptide separately, and their relationships were

ignored. Actually, some amino acids have similar proper-

ties and thus can be substituted for each other without

changing either the structure or the function of the proteins.

To partially incorporate this effect, some sequence feature

space models based on classifications of amino acids were

proposed. For example, based on the concept of coarse-

grained description and grouping, Zhang et al. (2006)

presented a new encoding method with grouped weight for

protein sequence (encoding based on grouped weight,

named as EBGW). Recently, Zhang et al. (2009) intro-

duced a novel representation method of protein sequence

for prediction of subcellular location on the basis of dis-

tance frequency and used a novel way to calculate distance

frequency. Chen and Li (2007a) also proposed a new

algorithm by using a distinctive set of information

parameters derived from primary sequences. By an attempt

on different classifications of 20 amino acids, the predic-

tion accuracy was greatly improved. Though the overall

prediction accuracy had been improved for apoptosis pro-

teins using existing methods, they still have some disad-

vantages. For example, amino acids of the same group also

have discrepancies in some properties, but they could not

be distinguished in the above methods. In other words, the

above methods failed to describe the differences between

amino acids quantitatively. In addition, the sequence-order

information of protein sequences was ignored.

Actually, many studies have indicated that sequence-

based prediction approaches, such as protein subcellular

location prediction (Chou and Shen 2007a, 2010b), protein

quaternary attribute prediction (Xiao et al. 2009), identifi-

cation of proteases and their types (Chou and Shen 2008b),

and signal peptide prediction (Chou and Shen 2007b; Hiss

and Schneider 2009), can timely provide very useful

information and insights for both basic research and drug

design and hence are widely welcome by science com-

munity. The present study is attempted to develop a novel

sequence-based method for predicting apoptosis protein

subcellular localization in hopes that it may become a

useful complementary tool to the existing methods in the

relevant areas.

To avoid losing many important information hidden in

protein sequences, the pseudo amino acid composition

(PseAAC) was proposed (Chou 2001, 2005a) to replace the

simple AAC for representing the sample of a protein. For a

summary about its development and applications, such as

how to use the concept of Chou’s PseAAC to develop 16

different forms of PseAAC, including those that are able to

incorporate the functional domain information, gene

ontology (GO) information, cellular automaton image

information, sequential evolution information, among many

others, see a recent comprehensive review (Chou 2009). In

this paper, we aim to propose a different model of PseAAC

to represent protein samples via the approach of amino acid

substitution matrix and auto covariance transformation.

This method is applied to predict the apoptosis proteins’

subcellular location of two datasets. Based on the amino

acid substitution matrix, we first convert a given apoptosis

protein sequence with L residues into a 20 9 L matrix by

representing each peptide with a 20-D vector. Then the auto

covariance transformation is used to transform the above

representation matrix into a fixed-length vector. Finally, we

employ the SVM and the jackknife test to evaluate our

method. Our prediction results show that the overall pre-

diction accuracy of apoptosis proteins subcellular location

for the two datasets ZW225 and CL317 is 87.1 and 90%,

respectively.

Materials and methods

Datasets

In this study, we use the two datasets constructed by Zhang

et al. (2006) and Chen and Li (2007b). The former dataset

(denoted as ZW225) consists of 225 apoptosis proteins

divided into four subcellular locations with 41 nuclear

proteins, 70 cytoplasmic proteins, 25 mitochondrial pro-

teins and 89 membrane proteins, while proteins sequences

in the second dataset (denoted as CL317) are classified into

six types in subcellular locations, including 112 cytoplas-

mic proteins, 55 membrane proteins, 34 mitochondrial

proteins, 17 secreted proteins, 52 nuclear proteins and 47

endoplasmic reticulum proteins. All the protein sequences

in the two datasets are extracted from SWISS-PROT, and

the accession numbers can be found in the literature (Zhou

and Doctor 2003; Zhang et al. 2006).

As is well known, the sequence similarity of a dataset

will seriously affect the final evaluation results, and thus

should be considered in construction of a dataset. For

example, Chou and Shen (2010a, b) constructed a bench-

mark dataset of eukaryotic proteins using a cutoff simi-

larity threshold of 25%. But in this study we did not use a

stringent threshold to cutoff the homologous sequences

from the original datasets because the current two datasets,

which served as widely used benchmark datasets to eval-

uate a new proposed method (Chen and Li 2007b; Zhang

et al. 2009; Gu et al. 2010), contain too few samples to

reduce the identity.

Substitution matrix

As is known, the degrees of similarity between 20 amino

acids are different. The mutations between them are scored
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by a 20 9 20 matrix called substitution matrix (Henikoff

and Henikoff 1992; Leslid et al. 2002; Malde 2008). In

bioinformatics and evolutionary biology, the substitution

matrix describes the rate at which one character in a sequence

changes to other character states over time. The substitution

matrices are usually used in the context of amino acid or

DNA sequence alignment, where the similarity between

sequences depends on their divergence time and the substi-

tution rates as represented in the matrix. In this paper, dif-

ferent substitution matrices are used which belong to the two

well-known families: Blosum (Henikoff and Henikoff 1992)

and Pam (Dayhoff et al. 1978), i.e., Blosum40, Blosum62,

Blosum100, Pam40, Pam80, and Pam160.

Representation of protein sequence

We denote a given 20 9 20 substitution matrix as M, and

the element Mi,j represents the probability of amino acid i

mutating to amino acid j during the evolution process (i,

j = 1, 2,…,20). The matrix M could be denoted as a 20-D

vector, that is, M = (V1, V2,…,V20), where Vi = (M1,i,

M2,i,…,M20,i)
T. For a given protein sequence S = s1s2…sL,

si represents the ith amino acid of the protein sequence and

could be substituted by a vector Vsi
of the substitution

matrix M. Then, we can easily obtain a 20 9 L matrix D.

For convenience, let us denote

D ¼ Vs1
;Vs2

; . . .;VsL
ð Þ

to describe the given protein sequence.

In order to employ SVM classifier to perform our method,

the protein sequences should be converted into fixed-length

vectors. AAC is a conventional feature construction method,

which refers to the occurrence frequency of each of these 20

components in a given protein sequence. Since the informa-

tion in the primary sequence is greatly reduced by considering

the AAC alone, other informative features should be taken

into account within our studies. Here, the auto covariance

(AC) transformation is introduced to convert the above matrix

D into a fixed-length vector. As a statistical tool for analyzing

sequences of vectors developed by Wold et al. (1993), AC

transformation has been successfully used for protein family

classification (Guo et al. 2006; Lapinsh et al. 2002), protein

interaction prediction (Guo et al. 2008) and prediction of

secondary structure content (Lin and Pan 2001; Zhang et al.

1998, 2001). Here, the AC variable measures the average

correlation between two residues separated by a distance of lg

along the sequence S, which can be calculated by

AC i; lgð Þ ¼
XL�lg

j¼1

Di;j � �Di

� �
Di;jþlg � �Di

� �
= L� lgð Þ

where i denotes the ith amino acid, L is the length of the

protein sequence, Di,j is the matrix score of amino acid i at

position j, �Di is the average score for amino acid i along the

whole sequence:

Di ¼
XL

j¼1

Di;j=L

in such way, the number of AC variables can be calculated

as 20 9 LG, where LG is the maximum of lg (lg = 1,

2,…,LG). Combining the 20 AAC and the 20 9 LG AC

variables, each given protein sequence is characterized by a

(20 ? 20 9 LG)-D feature vector.

Support vector machine

In recent years, SVM-based machine learning algorithm

has been used for predicting various protein attributes

tasks, such as membrane protein type (Cai et al. 2004),

protein structural class (Cai et al. 2002a; Ding et al. 2007),

specificity of GalNAc-transferase (Cai et al. 2002c), HIV

protease cleavage sites in protein (Cai et al. 2002b), and so

on. The algorithm often obtains higher prediction accuracy

compared with other classification approaches, when the

invariant feature vectors are used (Cai et al. 2002a; Hua

and Sun 2001; Huang and Shi 2005; Zhou et al. 2007). The

basic idea of applying SVM to pattern classification can be

stated briefly: first, map the input vectors into one feature

space; then, within this feature space, construct a hyper-

plane which can separate the two classes. SVM training

always seeks a global optimized solution and avoids over-

fitting, so it has the ability to deal with a large number of

features.

In our study, the LIBSVM package is used to implement

the SVM classifier (Chang and Lin 2009). The radial basis

function (RBF) is chosen as the kernel function, which is

defined as K x; x0ð Þ ¼ exp �c x� x0j j2
� �

. Two parameters,

the regularization parameter C and the kernel width

parameter c are optimized on the training set using a grid

search strategy in the LIBSVM.

Evaluation methods

In statistical prediction, the following three cross-valida-

tion methods are often used to examine a predictor for its

effectiveness in practical application: independent dataset

test, sub sampling test, and jackknife test (Chou and Zhang

1995). However, as elucidated in (Chou and Shen 2008a)

and demonstrated by Eq. 50 of (Chou and Shen 2007a),

among the three cross-validation methods, the jackknife

test is deemed the most objective that can always yield a

unique result for a given benchmark dataset, and hence has

been increasingly used by investigators to examine the

accuracy of various predictors (Chen et al. 2009; Ding et al.
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2009; Jiang et al. 2008; Li and Li 2008; Lin 2008; Lin et al.

2008; Zeng et al. 2009; Zhou 1998; Zhou et al. 2007). So,

in this paper, jackknife test is employed to evaluate the

prediction performance of our method. Each protein

sequence in the samples is singled out in turn as a test

sample, and the remaining protein sequences are used as

training samples. To evaluate the performance of the test,

the overall prediction accuracy Ac, individual sensitivity

Sin, individual specificity Sip and Matthews’s correlation

coefficient MCCi are discussed, and they are calculated as

follows:

Sin ¼
TPi

TPi þ FNi

Sip ¼
TNi

TNi þ FPi

MCCi ¼
TPiTNi�FPiFNiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPiþFPið Þ TPiþFNið Þ TNiþFPið Þ TNiþFNið Þ
p

Ac ¼
P

i TPi

N

where TPi denotes the numbers of the ith subcellular location

correctly recognized positives, FNi denotes the numbers of

the ith subcellular location recognized as other subcellular

location, FPi denotes the numbers of other subcellular loca-

tion recognized as the ith subcellular location, TNi denotes

the numbers of other subcellular location correctly recog-

nized. N is the number of all protein sequences.

Results and discussion

Firstly, the dataset CL317 is applied to validate the pro-

posed method. We transform each apoptosis protein

sequence into a fixed-length vector through the substitution

matrix and auto covariance transformation. Then these

feature vectors are fed to the SVM classifier to perform our

prediction. In this paper, we select radial basis kernel

function to build the prediction model and the two

parameters C and c are set at C = 128, c = 8. In order to

optimize our prediction accuracy, we try to investigate the

effect of the parameter LG value and different substitution

matrices (Blosum40, Blosum62, Blosum100, Pam40,

Pam80, Pam160) variation on the quality of our method;

results are shown in Fig. 1. As is seen from Fig. 1, the

accuracy first increases to a maximum value and then

slightly goes down as the value of LG increases, but last

with a little fluctuation. The best prediction accuracy

reaches 90% for the dataset CL317, when the value of LG

is 15, and the substitution matrix is Blosum100. It is worth

mentioning that the Blosum matrices, which are based on

the replacement patterns found in more highly conserved

regions of the sequences, were also proved to have better

performance in many research (Henikoff and Henikoff

1993; Johnson and Overington 1993).

In order to validate the performance of the proposed

approach further, the dataset ZW225 is adopted. We also

employ the parameter LG = 15 and substitution matrix

Blosum100 on the dataset ZW225. Through SVM classifier
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Fig. 1 Effect of the LG values

and substitution matrices on

dataset CL317 in jackknife test
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and the jackknife test, the prediction results of dataset

CL317 and ZW225 are listed in Table 1.

From Table 1, we can see that the overall accuracies for

ZW225 and CL317 datasets by our method achieve 87.1

and 90%, respectively. Table 2 shows the prediction results

of different methods by the jackknife test for the ZW225

dataset. We can find that the overall accuracy by our

method is higher than that of EBGW_SVM (Zhang et al.

2006), DF_SVM (Zhang et al. 2009), ID_SVM (Chen and

Li 2007b). The value of sensitivity for each protein class is

listed. For example, the sensitivity of mitochondrial pro-

teins reaches 85.7% in our method, while the others are 60,

64, 68 and 60%. For the nuclear proteins, the sensitivity of

our method is 84.6%, which is also the highest. To evaluate

the performance of our method, we also compared other

methods with our method on the CL317 dataset in Table 3.

The overall accuracy of our method reaches 90%, which is

slightly lower than FKNN (Jiang et al. 2008), FKNN (Ding

and Zhang 2008), PseAAC_SVM (Lin et al. 2009),

EN_FKNN (Gu et al. 2010), but higher than the other three

methods (Chen and Li 2007a, b; Zhang et al. 2009). All the

results indicate that the proposed method has a good performance for prediction of subcellular locations. The

successful performance of our method may be attributed to

the following reasons: (1) compared with the conventional

classification-based and composition-based methods, our

approach making use of the Blosum100 matrix could

quantitatively measure various degrees of similarity

between amino acids; (2) the parameter value LG = 15 is

adopted in the auto covariance transformation, so our

method considered correlations between not only neighbor

residues but also residues with a long distance in a

sequence, which could describe more sequence-order

information.

Conclusions

Based on amino acid substitution matrix and auto

covariance transformation, a new representation model for

Table 1 Prediction results on

two datasets in jackknife test
Dataset Subcellular location Sensitivity Specificity MCC Overall accuracy (%)

ZW225 Cyto 81.3 91.0 76.7 87.1

Memb 93.3 95.6 89.8

Mito 85.7 98.5 76.2

Nucl 84.6 96.8 78.8

CL317 Cyto 86.4 92.2 82.3 90.0

Memb 90.7 98.1 87.8

Mito 93.8 99.3 89.9

Nucl 92.2 98.5 89.6

Secr 85.7 99.3 76.7

Endo 93.8 98.9 89.9

Table 2 Comparison of different methods by the jackknife test on

ZW225 dataset

Method Sensitivity for each class (%) Overall

accuracy (%)
Cyto Memb Mito Nucl

EBGW_SVMa 90.0 93.3 60.0 63.4 83.1

DF_SVMb 87.1 92.1 64.0 73.2 84.0

ID_SVMc 92.9 91.0 68.0 73.2 85.8

EN_FKNNd 94.3 94.4 60.0 80.5 88.0

Our method 81.3 93.3 85.7 84.6 87.1

The bold values indicate the highest accuracies achieved by our

method
a Zhang et al. (2006)
b Zhang et al. (2009)
c Chen and Li (2007b)
d Gu et al. (2010)

Table 3 Comparison of different methods by the jackknife test on

CL317 dataset

Method Sensitivity for each class (%) Overall

accuracy

(%)Cyto Memb Mito Secr Nucl Endo

IDa 81.3 81.8 85.3 88.2 82.7 83.0 82.7

ID_SVMb 91.1 89.1 79.4 58.8 73.1 87.2 84.2

DF_SVMc 92.9 85.5 76.5 76.5 93.6 86.5 88.0

FKNNd 92.0 89.1 85.3 76.5 92.3 93.7 90.2

FKNNe 93.8 92.7 82.4 76.5 90.4 93.6 90.9

PseAAC_SVMf 93.8 90.9 85.3 76.5 90.4 95.7 91.1

EN_FKNNg 98.2 83.6 79.4 82.4 90.4 97.9 91.5

Our method 86.4 90.7 93.8 85.7 92.1 93.8 90.0

a Chen and Li (2004)
b Chen and Li (2007b)
c Zhang et al. (2009)
d Jiang et al. (2008)
e Ding and Zhang (2008)
f Lin et al. (2009)
g Gu et al. (2010)
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protein sequence was presented, and applied to predict the

apoptosis proteins subcellular location. Two datasets

CL317 and ZW225 are selected to validate the perfor-

mance of our proposed method. Comparing with other

feature extraction approaches, our model is shown effec-

tively in obtaining information from protein sequences.

The experiment results indicated that the proposed

method is promising. With the growing amount of the

size of the datasets, we hope that our model will be a

useful complementary tool to the existing methods for

further study in the prediction of apoptosis proteins sub-

cellular location.
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