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Abstract Sulfur plays a pivotal role in the cellular

metabolism of many organisms. In plants, the uptake and

assimilation of sulfate is strongly regulated at the tran-

scriptional level. Regulatory factors are the demand of

reduced sulfur in organic or non-organic form and the level

of O-acetylserine (OAS), the carbon precursor for cysteine

biosynthesis. In plants, cysteine is synthesized by action of

the cysteine–synthase complex (CSC) containing serine

acetyltransferase (SAT) and O-acetylserine-(thiol)-lyase

(OASTL). Both enzymes are located in plastids, mito-

chondria and the cytosol. The function of the compart-

mentation of the CSC to regulate sulfate uptake and

assimilation is still not clearly resolved. To address this

question, we analyzed Arabidopsis thaliana mutants for the

plastidic and cytosolic SAT isoenzymes under sulfur star-

vation conditions. In addition, subcellular metabolite

analysis by non-aqueous fractionation revealed distinct

changes in subcellular metabolite distribution upon short-

term sulfur starvation. Metabolite and transcript analyses of

SERAT1.1 and SERAT2.1 mutants [previously analyzed in

Krueger et al. (Plant Cell Environ 32:349–367, 2009)]

grown under sulfur starvation conditions indicate that both

isoenzymes do not contribute directly to the transcriptional

regulation of genes involved in sulfate uptake and assimi-

lation. Here, we summarize the current knowledge about

the regulation of cysteine biosynthesis and the contribution

of the different compartments to this metabolic process.

We relate hypotheses and views of the regulation of cys-

teine biosynthesis with our results of applying sulfur star-

vation to mutants impaired in compartment-specific

cysteine biosynthetic enzymes.
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Introduction

Sulfur is an essential macro nutrient for plant growth and

development. Within plants, sulfur is mainly present as

sulfate, which is taken up into cortical root and epidermal

cells by a family of proton sulfate co-transporters (Lass and

Ullrich-Eberius 1984; Hawkesford et al. 1993; Smith et al.

1995; Takahashi et al. 1997). Long distance transport from

root to shoot occurs with the transpiration flow through the

xylem (Herschbach and Rennenberg 1991). In leaves,

sulfate is taken up into the cells and stored in the vacuole or

transported into chloroplasts. The sulfate transporters

SULTR4.1 and SULTR4.2 were shown to be located in the

tonoplast membrane and function as sulfate efflux carriers

(Kataoka et al. 2004). However, sulfate transporters

localized in plastids, the organelles primarily important for

sulfate reduction, have not been described so far
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(Hawkesford and De Kok 2006). In chloroplasts, sulfate

becomes activated through adenylation to adenosine-50-
phopsphosulfate (APS) by ATP-sulfurylase. Subsequently,

APS is reduced to sulfite by APS-reductase (APR) and

further reduced to sulfide by the action of sulfite reductase

(SIR). The incorporation of the sulfide moiety into the b
position of alanine is the final step in the synthesis of the

first sulfur containing organic molecule cysteine (Kopriva

et al. 2009). The carbon precursor for cysteine biosynthesis

is provided by O-acetylserine (OAS), the activated form of

serine. Cysteine biosynthesis from serine is catalyzed by

serine acetyltransferase (SAT) and O-acetylserine-(thiol)-

lyase (OASTL). SAT generates OAS which subsequently

condensates with sulfide in the reaction catalyzed by

OASTL to form cysteine. One important feature of the

homodimeric OASTL is that it assembles with SAT into

the cysteine–synthase complex (CSC), which was reported

to represent a main control point for the regulation of

cysteine synthesis (Kredich and Tomkins 1966; Droux

et al. 1998; Wirtz and Hell 2006). Due to the presence of

SAT and OASTL activity in the cytosol, mitochondria and

plastids, it was assumed that cysteine can be synthesized in

all three compartments (Brunold and Suter 1982; Lunn

et al. 1990; Ruffet et al. 1995; Warrilow and Hawkesford

1998; Hesse et al. 1999; Howarth et al. 2003; Kawashima

et al. 2005). Although remarkable progress has been made

in understanding the function of the compartmentation of

cysteine biosynthesis (Heeg et al. 2008; Haas et al. 2008;

Watanabe et al. 2008a, b; Krueger et al. 2009), it is still not

clearly resolved why the enzymes for cysteine biosynthesis

are needed in all three cellular compartments. The Ara-

bidopsis thaliana genome encodes nine OASTL-like iso-

forms located in the cytosol, plastids and mitochondria

(Warrilow and Hawkesford 1998; Wirtz and Hell 2006;

Heeg et al. 2008; Watanabe et al. 2008a). Although all nine

members of the OASTL-like family share high sequence

homology on nucleotide and amino acid level, some were

shown to be rather active as b-cyano-alanine-synthases and

presumably function in cyanide detoxification (Watanabe

et al. 2008a). The tight association of SAT and OASTL in a

bi-enzyme complex was first described by Kredich and

Tomkins (1966) for Salmonella typhimurium. Several

studies indicate that this multimeric complex also exists in

different plant species (Droux et al. 1998; Bogdanova and

Hell 1997; Berkowitz et al. 2002). With respect to their

stoichiometric ratio, it has been demonstrated that OASTL

activity exceeds SAT activity by 345-fold in plastids, 200-

fold in the cytosol and 10-fold in mitochondria (Ruffet

et al. 1994; Heeg et al. 2008), which indicates that SAT is

exclusively present in the complex bound form. As it was

shown that cysteine biosynthesis is most efficient at a ratio

of SAT to OASTL of 1:350, it was assumed that the

chloroplast is the main site for cysteine biosynthesis in

plants (Ruffet et al. 1994; Droux et al. 1998). In vivo

interaction of SAT and OASTL was recently confirmed in

fluorescent resonance energy transfer (FRET) studies

(Wirtz and Hell 2006). Complex formation strongly

depends on concentrations of OAS and sulfide, the two

substrates for cysteine biosynthesis. High OAS concentra-

tions promote CSC dissociation, whereas sulfide stabilizes

the complex (Kredich et al. 1969; Berkowitz et al. 2002;

Wirtz and Hell 2006, 2007). This suggested that the CSC

might play a central role for the regulation of cysteine

biosynthesis depending on the sulfur status of the plant.

Upon sulfur limiting conditions, accumulating OAS is

believed to dissociate the CSC leading to reduced SAT

activity and, consequently reduced OAS production and

less acetyl-CoA consumption. Five SAT isoforms with

different expression patterns and biochemical properties

exist in A. thaliana (Kawashima et al. 2005). SERAT3.1

and SERAT3.2 are expressed at low levels and exhibit very

low substrate affinities for serine and acetyl-CoA.

Although both are assigned as SAT enzymes they can only

partly compensate for whole SAT activity in Arabidopsis

(Watanabe et al. 2008b). In comparison, analysis of qua-

druple mutants for the different SAT isoenzymes shows

that cytosolic SERAT1.1, plastidic SERAT2.1 and mito-

chondrial SERAT2.2 alone can take over the function of

the other SAT isoforms (Watanabe et al. 2008b). However,

a second approach with transgenic Arabidopsis plants

silenced for the mitochondrial SAT isoform showed dra-

matically reduced growth rate, OAS levels and flux into

thiols, indicating a predominant function of the mito-

chondrial SERAT2.2 for cysteine biosynthesis in plants

(Haas et al. 2008). In plants, SAT activity is modulated by

feedback inhibition through cysteine, similarly as observed

for enteric bacteria. In A. thaliana, SERAT1.1, SERAT2.2

and SERAT3.2 isoenzymes are sensitive to feedback

inhibition by cysteine; however, the Ki value of these iso-

forms is different (Noji et al. 1998; Wirtz and Hell 2003;

Kawashima et al. 2005; Wirtz and Hell 2006). Feedback

regulation is a common mechanism in regulation cysteine

biosynthesis. In enteric bacteria, cysteine levels decrease

upon sulfur starvation, which results in activation of

feedback-sensitive SAT and, in consequence, OAS levels

and hence, NAS levels rise, leading to the activation of the

cysteine regulon. De-repression strongly depends on

activity of the tetrameric cysB-protein (Ostrowski et al.

1989; Kredich 1992). The cysB-protein acts as transcrip-

tional activator of the cysteine regulon, whereas it has been

shown to inhibit initiation of transcription on its own

promoter. Binding of cysB to the promoters of the cysteine

regulon and hence initiation of transcription is enhanced by

binding of N-acetylserine (NAS), which derives from pH-

dependent chemical conversion of OAS (Ostrowski and

Kredich 1990; Lynch et al. 1994). A similar mechanism for
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the regulation of sulfur uptake and assimilation has been

postulated for plants with the feedback-sensitive cytosolic

SERAT1.1 (Saito 2000; Liu et al. 2006). Although no

functional homolog of a transcriptional activator has been

identified in plants so far, regulation of gene expression

through the pathway intermediates OAS, sulfide and glu-

tathione is well known for plants (Neuenschwander et al.

1991; Vauclare et al. 2002; Hirai et al. 2003; Nikiforova

et al. 2003; Buchner et al. 2004; Maruyama-Nakashita

et al. 2004a, b, 2006; Hopkins et al. 2005; Durenkamp et al.

2007). Externally applied OAS induces expression of APR

and sulfate transporters, whereas sulfide and glutathione

negatively regulate the expression of these genes

(Neuenschwander et al. 1991; Vauclare et al. 2002;

Buchner et al. 2004; Maruyama-Nakashita et al. 2004a,

2006). Recently, the transcription factor sulfur limitation

responses less mutant 1 (SLIM1) was identified by EMS

mutagenesis of plants expressing green fluorescent protein

(GFP) under the control of the SULTR1.2 promoter

(Maruyama-Nakashita et al. 2006). Sulfate uptake and

plant growth were significantly reduced in the slim1 mutant

under sulfur starvation conditions compared to the wild

type. As SLIM1 expression is constitutive and not altered

upon sulfur starvation, regulation of transcription mediated

by SLIM1 might be controlled at the posttranslational level

(Maruyama-Nakashita et al. 2006). With respect to post-

translational regulation of sulfate uptake and assimilation,

it was recently shown that small deletions in the C-terminal

region of the sulfate transporter anti-sigma (STAS) domain

results in loss of transport capacity for sulfate (Rouached

et al. 2005). Moreover, the STAS domain appears to

interact with OASTL (Rouached et al. 2005; Shibagaki and

Grossman 2007). Thus, this domain might represent a new

site for the regulation of sulfate uptake. Adjustment of

sulfate uptake and assimilation with cysteine biosynthesis

is important as cysteine serves as precursor for many sul-

fur-containing compounds essential for cell metabolism

and survival like methionine and its derivatives, essential

vitamins, co-factors such as thiamine, iron–sulfur proteins

and glutathione (Beinert 2000; Leustek et al. 2000;

Marquet 2001; Mendel and Hansch 2002; Wittstock and

Halkier 2002; Hesse and Höfgen 2003; Meyer 2008).

Glutathione is a highly abundant non-protein thiol present

in many organisms (Noctor et al. 2002). In plants, gluta-

thione plays an important role in the detoxification of

reactive-oxygen-species (ROS), which are produced in

response to many biotic and abiotic stresses as part of the

glutathione-ascorbate cycle (May et al. 1998; Noctor and

Foyer 1998; Ruiz and Blumwald 2002; Xiang et al. 2001;

Meyer 2008). Glutathione is synthesized in two sequential

ATP-consuming reactions catalyzed by c-glutamylcys-

teine-synthetase (GSH1) and glutathione synthetase

(GSH2; Hell and Bergmann 1990; May et al. 1998; Noctor

et al. 2002). In plants, c-glutamylcysteine synthesis by

GSH1 takes place exclusively in the plastids and represents

the rate limiting step in glutathione biosynthesis (Wachter

et al. 2005; Hothorn et al. 2006). Moreover, GSH1 activity

is tightly redox-controlled by glutathione and feedback

inhibited by c-glutamylcysteine (Cobbett et al. 1998; Jez

and Cahoon 2004; Hothorn et al. 2006; Pasternak et al.

2008). The Km values for cysteine (1.6 mM) and glutamate

(9.1 mM) of A. thaliana GSH1 enzymes are relatively high

compared to Nicotiana tabacum (0.19 mM cysteine,

10.4 mM glutamate) and Brassica napus (0.12 mM cys-

teine, 8.5 mM glutamate; Hell and Bergmann 1990; Jez

and Cahoon 2004; Hothorn et al. 2006). In contrast, the Km

value of the A. thaliana GSH2 enzyme, which exhibits

cytosolic and plastidic localization (Wachter et al. 2005),

has been determined to be 0.038 mM for c-glutamylcys-

teine, 0.057 mM for ATP and 1.51 mM for glycine (Jez

and Cahoon 2004). Despite GSH2 appears to be dually

targeted, multiple transcript analysis and determination of

enzyme activity of GSH2 in purified chloroplasts indicate

that GSH2 is predominantly localized in the cytosol

(Hell and Bergmann 1990; Wachter et al. 2005; Pasternak

et al. 2008). Uptake studies using isolated wheat chloro-

plast indicate that glutathione is taken up into chloroplasts

by a low and high affinity uptake system (Noctor et al.

2002).

Although substantial knowledge about cysteine and

glutathione biosynthesis in plants has been compiled over

the last decade (Nikiforova et al. 2006; Wirtz and Hell

2006; Heeg et al. 2008; Haas et al. 2008; Meyer 2008;

Pasternak et al. 2008; Watanabe et al. 2008a, b; Krueger

et al. 2009) the understanding of its regulation is far from

being complete.

Application of nutrient stress conditions in combination

with transcript, enzyme and metabolite analysis of T-DNA

insertion mutants for SERAT1.1, SERAT2.1 and the

respective double mutant should give additional insight

into regulation and homeostasis of cysteine biosynthesis

and related biosynthetic processes.

Materials and methods

Plant cultivation

Sterile Arabidopsis seeds were transferred to agar plates,

stratified for one night at 4�C and grown on agar plates

(Murashige and Skoog 1962) for 10 days. Ten-day-old

seedlings were carefully transferred to autoclaved pipette-

tip boxes (Eppendorf, Hamburg, Germany) filled with

0.5 l Hoagland medium (Arnon and Hoagland 1939) and

grown in the greenhouse (16/8 h light/dark cycle,

140 lmol m-2 s-1 photon flux density, 50% humidity,
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21�C). To adapt seedlings to lower humidity, the boxes

were covered with a transparent cover for 5 days. From

5 days onwards, the cover was completely removed. The

hydroponic cultures were grown for additional 3 weeks

before starvation experiments were conducted.

Enzyme assays

Soluble protein extracts were prepared using 100 mg fro-

zen Arabidopsis leaf or root material or fractions of

lyophilized powder from non-aqueous gradients and 500

lL extraction buffer [50 mM 4-(2-hydroxyethyl)-1-piper-

azine ethanesulphonic acid (HEPES)/KOH, pH 7.4, 5 mM

MgCl2, 1 mM ethylenediaminetetraacetic acid (EDTA),

1 mM ethylene glycoltetraacetic acid (EGTA), 0.1% (v/v)

Triton-X (Sigma-Aldrich, Munich, Germany), 10% (v/v)

glycerol, 5 mM 1,4-bis-sulphanylbutane-2,3-diol (DTT),

2 mM benzamidine, 2 mM e-aminocapronic acid, 0.5 mM

phenylmethane sulphonylfluoride (PMSF) and 1 g L-1

polyvinylpolypyrrolidone (PVPP)] modified from Geigen-

berger and Stitt (1993). After centrifugation, the superna-

tant was desalted and total protein quantified according to

Bradford (1976). SAT (EC 2.3.1.30) activity was assayed

via high-performance liquid chromatography (HPLC) by

the determination of OAS content (Lindroth and Mopper

1979; Kim et al. 1997; Krueger et al. 2009). OASTL (EC

2.5.1.47; OASTL) activity was determined by measuring

cysteine formation using the method described by Gaitonde

(1967). UDP-glucose-pyrophosphorylase (EC 2.7.7.9;

UGPase) activity was determined according to Zrenner

et al. (1993) and NADP-glyceraldehyde-phosphate dehy-

drogenase (EC 1.2.1.13; GAPDH) activity was determined

according to Stitt et al. (1983).

Metabolite analysis

Individual soluble thiols were determined as the sum of

their reduced and oxidized forms. 50 mg of freshly ground

frozen plant material or material from NAF was added to

10 mg polyvinylpolypyrrolidone (PVPP; previously

washed with 0.1 N HCl) and 1 mL 0.1 N HCl. The sam-

ples were shaken for 60 min at room temperature and

centrifuged (15 min at 13,000g; 4�C). After centrifugation,

the supernatants were frozen at -20�C until reduction/

derivatization. Prior to derivatization with mBrB (3-bro-

momethyl-5-ethyl-2,6-dimethyl-pyrazolo[1,2-a]pyrazol-

1,7-dione, Calbiochem), thiols were reduced by incubation

with 10 mM DTT for 40 min at room temperature. HPLC

was conducted with a Hypersil ODS C18 column. Samples

were eluted with increasing concentrations of methanol in

an acetic acid/methanol mixture. Column eluent was

monitored by fluorescence detection (kex 380/kem 480).

Sulfide was determined following a modified protocol from

Vetter et al. (1989), Völkel and Grieshaber (1992) and

Wohlgemuth et al. (2000). Twenty milligrams of freshly

ground frozen plant tissue was extracted for 30 min in the

dark with 160 lL extraction buffer [10 lL 3-bromomethyl-

5-ethyl-2,6-dimethyl-pyrazolo(1,2-a)pyrazol-1,7-dione (Cal-

biochem, Darmstadt, Germany); 100 lL 160 mM HEPES/

16 mM EDTA, pH 8.0; 50 lL acetonitrile] and was sta-

bilized with 100 lL 65 mM methanesulphonic acid. The

extracts were centrifuged for 15 min at 14,000g and 4�C.

The supernatant was diluted one to four with solvent

solution (88% of 0.25% acetic acid, 12% methanol) and

analyzed with a Merck (Darmstadt, Germany)/Hitachi

(Tokyo, Japan) HPLC system [AS-2000 autosampler;

L-6200 intelligent pump; F-1050 fluorescence detector; RP

select B (5 mM), LiChrospher 60, LiChroCART 125-4

chromatography column; D-7000 HPLC System Manager

Version 2.1].The column eluent was monitored by fluo-

rescence detection (lex 380/lem 480). OAS was determined

following a modified protocol from Kim et al. (1997)

described in Krueger et al. (2009). For organic ion analysis,

20 mg of freshly ground frozen plant material or material

from NAF was homogenized in 200 mL 0.1 mM HCl.

Samples were centrifuged for 5 min at 14,000g and 4�C.

The supernatant was transferred to Ultrafree MC 5000 MC

NMWL Filter Unit (Millipore, Schwalbach, Germany) and

was centrifuged for 90 min at 5,000g and 4�C. After fil-

tration, 20 mL of the diluted sample was analyzed by

HPLC with conductivity detection facilitating a Dionex

ICS-2000 system (Dionex, Idstein, Germany). Ions were

eluted in a KOH gradient.

NAF

The method described here is based on the method

described by Krueger et al. (2009) for the determination of

subcellular metabolite levels in A. thaliana leaves. Four

gradients were made from biologically independent plant

material of plants grown under control conditions and one

gradient for the respective starvation condition. For all

analyzed metabolites and enzymes in the fractions of the

gradients, the recovery rate was determined. UGPase

activity as cytosolic marker was determined according to

Zrenner et al. (1993). GAPDH activity as chloroplast

marker was determined according to Stitt et al. (1983).

According to Winter et al. (1994), nitrate was used as

vacuolar marker. Nitrate concentration was analyzed by

ion-exchange chromatography (IEC). Marker measure-

ments from three technical replicates of each gradient were

averaged (Riens et al. 1991). The compartmental distribu-

tion was estimated according to Riens et al. (1991) using a

C version of the compartment calculation program Bestfit

(Steinhauser et al., unpublished data).
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RNA extraction and RT-PCR

Total RNA was extracted with the RNeasy Plant Mini Kit

(Qiagen, Hilden, Germany) and was digested with TURBO

DNA-free (Ambion, Huntingdon, UK). Absence of geno-

mic DNA contamination was confirmed by PCR on the

RNA sample before cDNA synthesis. PCR reactions con-

tained 1 lM Aktin Primer, Taq polymerase and buffer

(Finnzymes, Espoo, Finland) and 5 mM deoxyribonucleo-

tides. After 5 min of initial denaturation at 92�C, 30 cycles

of 30 s at 92�C, 30 s at 60�C and 2 min at 74�C were

performed. Amplicons were made visible on ethidium

bromide-stained agarose gels. Total RNA (5 lg) was sub-

jected to cDNA synthesis using oligo(dT) primer and

Superscript III (Invitrogen, Karlsruhe, Germany), accord-

ing to the manufacturer’s instructions. The RT-PCR of

SULTR4.2 sulfate transporter (At3g12520), SULTR2.1

sulfate transporter (At5g10180), SULTR1.2 sulfate trans-

porter (At1g78000), APR3 APS-reductase 3 (At4g21990)

and ACTIN (AT3G18780) cDNA was conducted in three

repetitions with cDNA from biologically independent plant

material of wild type, csat, psat and dmsat plants. Quality

of cDNA was assessed by quantitative PCR using primers

amplifying sequences located at the 30- or 50-end of gly-

ceraldehyde-3-phosphate dehydrogenase (At1g113440)

mRNA, respectively (GAPDH five prime end 50-TCTCG

ATCTCAATTTCGCAAAA-30; 50-CGAAACCGTTGATT

CCGATTC-30 and three prime end 50-TTGGTGACAAC

AGGTCAAGCA-30; 50-AAACTTGTCGCTCAATGCAA

TC-30). Only cDNA where the ratio between the relative

amount of 30 and 50 amplicon was below 1.5 was used for

further analysis. PCR was conducted in an optical well

plate with an ABI PRISM� 7900 HT Sequence Detection

System (Applied Biosystems, Foster City, CA, USA).

SYBR� Green (Applied Biosystems) was used to monitor

product formation. PCR conditions were as described by

Czechowski et al. (2004) with minor modifications. Reac-

tions contained 5 lL two-times SYBR� Green Master Mix

reagent (Applied Biosystems), 1 lL of 1:5 diluted cDNA

and 200 nM of each gene-specific primer. Total reaction

volume was 10 lL. The thermal profile used was 50�C for

2 min, 95�C for 10 min, 40 cycles of 95�C for 15 s and

60�C for 1 min. SDS 2.0 software (Applied Biosystems)

was used for data analysis. Primer sequences used for the

amplification of sulfur starvation marker genes:

SULTR4.2, 50-ACCACAGTGTGCTTTAGCAGCAAT-30;
50-TCTCTTGTCCACACGCCACAGA-30, APR3, 50-GGA

AGAGATCCTCCGTGAAAGC-30; 50-CTGTAACCTCAG

AAGCAACAATGGA-30, SULTR1.2, 50-TCACCCTGTG

GACGGAAGTC-30; 50-GTTTCATCGGAACATGTCCAC

C-30, SULTR2.1, 50-ATTGTTGCTCTAACCGAGGCGAT

T-30; 50-TGTACCCTTTTATTCCGGCGAACG-30, Actin,

50-CTCAAAGACCAGCTCTTCCATC-30; 50-GCCTTTG

ATCTTGAGAGCTTAG-30.

Results

OAS concentration increases and cysteine and sulfide

levels decrease upon sulfur starvation

OAS, sulfide and cysteine concentrations were determined

in leaf tissue of plants grown for 5 days under sulfur

starvation conditions and compared to concentrations in

leaves of plants grown under control conditions. Under

control conditions, the total sulfide content was with

13.1 pmol mg-1 FW similar to the total cysteine concen-

tration (17.4 pmol mg-1 FW) (Fig. 1). OAS had, with

2.5 pmol mg-1 (FW), a very low steady state concentra-

tion. After sulfur starvation conditions were applied to

hydroponic cultures for 5 days, OAS levels increased sig-

nificantly to 8 pmol mg-1 (FW), whereas sulfide and cys-

teine concentrations decreased to 7 pmol mg-1 (FW) and

12 pmol mg -1 (FW), respectively.

SAT and OASTL activities are not significantly altered

upon sulfur starvation

In order to understand the regulation of cysteine biosyn-

thesis and the impact of the subcellular compartments, we

applied sulfur starvation to SAT mutants missing the

cytosolic (At5g56760; csat), plastidic (At1g55920; psat) or

both (dmsat) SAT isoenzymes. Compared to wild-type,

SAT activity was slightly reduced in csat and dmsat

Fig. 1 Determination of O-acetylserine (OAS), sulfide and cysteine

concentrations in Arabidopsis thaliana leaf material. Total tissue

content of OAS, sulfide and cysteine of wild type plants grown in

hydroponic culture and transferred for 5 days to media with (black
bars) or without (white bars) sulfate. Data are presented in

pmol mg-1 (FW) as mean values ± SD of three biologically

independent replicates collected from at least ten plants per replicate
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mutants independent of presence or absence of sulfur in the

culture medium (Fig. 2a, b) However, upon starvation, no

significant differences in SAT activity were observed in

leaves and roots of wild type and mutant plants compared

to the non-starved control (Fig. 2a, b). OASTL activity was

not altered upon sulfur starvation or compared to wild type

(Fig. 2c, d).

Cysteine biosynthesis is reduced in wild type

and mutant plants under sulfur starvation conditions

OAS accumulates upon sulfide-limiting conditions. How-

ever, csat, psat and dmsat mutants never accumulated OAS

to the same extent as wild type (Fig. 3a, b). Due to sulfur

starvation, cysteine levels decreased significantly in leaves

of wild type, psat and dmsat mutant plants in comparison to

the non-starved control (Fig. 3c, d). In roots, only wild type

and the psat mutant exhibited reduced cysteine levels in

comparison to the non-starved control. Moreover, sulfur

starvation abolished the differences between mutants and

wild type. The analysis of downstream products of cysteine

biosynthesis revealed a dramatic decrease in glutathione

content upon sulfur starvation (Fig. 3g, h). However, none

of the mutants was affected more severely than the wild

type. c-glutamylcysteine levels decreased in wild type and

psat mutants upon sulfur starvation; nevertheless, they did

not further decrease in csat and dmsat plants, those mutants,

which already exhibited reduced c-glutamylcysteine levels

versus wild type under non-starved conditions (Fig. 3e, f).

Compared to the wild type, no differences in c-glutamyl-

cysteine content were observed in either of the mutants

upon sulfur starvation. To assess the extent of starvation,

sulfate content was determined (Fig. 4a, b). Under non-

starved conditions leaf sulfate content was reduced in csat

(P = 0.011) and dmsat (P = 0.061) mutants while it

remained at wild type levels for the psat mutant. In contrast,

sulfate levels in roots remained unchanged in all three

mutants compared to wild type. Upon 5 days of starvation,

sulfate content was reduced to approximately 20% of the

non-starved control. None of the mutants, however, dis-

played reduced sulfate levels compared to wild type.

Knock out of specific SAT isoenzymes does not affect

the expression of genes involved in sulfate uptake

and reduction

OAS is thought to be a regulator of gene expression in

plants (Hirai et al. 2003; Nikiforova et al. 2003; Hopkins

et al. 2005). As SAT T-DNA insertion mutants exhibited

reduced OAS levels compared to wild type upon sulfur

(c) (d)

(a) (b)

Fig. 2 SAT and OASTL activity in mutant and wild type plants

grown in hydroponic culture and transferred for 5 days to media with

(black bars) or without (white bars) sulfate. SAT (a, b) and OASTL

(c, d) activities were analyzed in leaves (a, c) and roots (b, d) of sat

mutant lines and wild type. Mean values and SD of four biological

replicates collected from at least ten plants per replicate for each

mutant and the wild type are presented. Asterisks mark significant

differences between wild type and mutant (P \ 0.05)
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starvation (Fig. 3), expression of APS-reductase (APR) and

several sulfate transporters was investigated upon sulfur

starvation. Under non-starved conditions, expression of

these genes was not modulated in the SAT mutants com-

pared to wild type (Krueger et al. 2009). In contrast,

transcripts of the sulfur starvation responsive APS-reduc-

tase 3 and the sulfate transporters SULTR4.1 and

SULTR1.2 were significantly induced in leaves and roots,

whereas SULTR2.1 was induced in roots and repressed in

leaves after 5 days of starvation (Fig. 5). The expression

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3 Content of metabolites related to cysteine biosynthesis. OAS

(a, b), cysteine (c, d), c-glutamylcysteine (e, f) and glutathione (g, h)

content in leaf (a, c, e, g) and root (b, d, e, h) tissue of mutants and

wild type plants grown for 5 days under sulfur starvation conditions.

Mean values and SD of three to four biological replicates collected

from at least ten plants per replicate for each mutant and the wild type

are presented. Letters indicate differences between starved plants and

non-starved controls (aP \ 0.05, aaP \ 0.001), whereas asterisks
mark significant differences between wild type and mutant (P \ 0.05)
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level of all sulfur-responsive genes was similar for the

mutants and wild type after 5 days of starvation.

Changes in the subcellular distribution of OAS

and thiols upon sulfur starvation

To determine alterations in the subcellular distribution of

sulfur-containing metabolites upon sulfur starvation, non-

aqueous fractionation (NAF) of A. thaliana leaf material

was conducted as previously described by Krueger et al.

(2009). Assignment of the metabolite distribution to the

compartments cytosol, plastid and vacuole was made

according to best fit calculation (Riens et al. 1991; Krueger

et al. 2009). Previously, it was shown that NAF is not

suitable for analyzing metabolite composition within

mitochondria, as the mitochondrial marker was in no

fraction superior and similarly distributed as the marker for

the cytosolic compartment (Gerhardt and Heldt 1984; Farré

et al. 2001; Tiessen et al. 2002; Fettke et al. 2005; Krueger

et al. 2009). Therefore, mitochondrial localized metabolites

are contained in the cytosolic fractions. The relative

abundances of the different metabolites were normalized to

the protein: chlorophyll ratio before fractionation and to the

average ratio of organelle volumes to total cell volume

published for spinach, wheat and potato (Winter et al.

1992, 1993; Leidreiter et al. 1995). Figure 6 depicts per-

cent changes of subcellular metabolite concentration after

2, 3 and 4 days of sulfur starvation compared to the non-

starved control. The subcellular distribution of OAS and

thiols revealed that less than 5% of the cellular OAS is

located in the chloroplasts (Fig. 6). Moreover, chloroplas-

tically localized OAS did not accumulate upon sulfur

starvation. OAS accumulated mainly in the fractions

assigned to the cytosol upon sulfur starvation. After 4 days

of sulfur starvation the OAS pool assigned to the cytosol

was increased up to 70%, whereas the cytosolic cysteine

pool was decreased only around 20%. In agreement with

our previous observations, c-glutamylcysteine did not

accumulate in the chloroplasts to a major extent; however,

in plants grown in hydroponic culture, 10% of the cellular

c-glutamylcysteine was located in the chloroplasts (Fig. 6).

Interestingly, the plastidic c-glutamylcysteine pool stayed

relatively constant over 4 days of sulfur starvation,

whereas the cytosolic c-glutamylcysteine concentration

was already decreased to 21% after 3 days and slightly

enhanced to 29% after 4 days of sulfur starvation. At these

(a)

(b)

Fig. 5 Relative expression of different sulfur starvation marker genes

in leaves (a) and roots (b) was analyzed by quantitative RT-PCR.

Black bars represent wild type; dark grey bars, csat; light grey bars,

psat and white bars, dmsat mutant, respectively. For each experiment,

mean values and SD of three replicates collected from at least ten

plants per replicate for each mutant and the wild type are presented.

Letters indicate differences between starved plants and non-starved

controls (aP \ 0.05)

(a) (b)

Fig. 4 Changes in sulfate content upon 5 days of sulfur starvation in

leaf (a) and root (b) tissues. For each experiment, mean values and

SD of three to four biological replicates collected from at least ten

plants per replicate for each mutant and the wild type are presented.

Letters indicate differences between starved plants and non-starved

controls (aP \ 0.05, aaP \ 0.001), whereas asterisks mark significant

differences between wild type and mutant (P \ 0.05)
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time points, the cytosolic glutathione level was reduced to

60% at day 3 and 48% at day 4 of the non-starved control,

whereas the plastidic glutathione pool was decreased from

25% under non-starved conditions to 5% after 4 days of

starvation. Vacuolar concentrations of all metabolites

analyzed were low compared to the cytosol.

Discussion

OAS rather than sulfide limits cysteine biosynthesis

To understand the regulation of cysteine, biosynthesis

knowledge of the concentration and compartmentation of

cysteine precursor molecules is necessary. Aside from

O-acetylserine (OAS), sulfide is the direct precursor for

cysteine. Therefore, a method to measure sulfide in lug-

worm body wall and colon fluid (Völkel and Grieshaber

1992; Wohlgemuth et al. 2000) was modified to determine

sulfide levels in plant leaf extracts. Sulfide concentrations

determined in A. thaliana leaves were 13.1 pmol mg-1

(FW) and therefore in a similar range as cysteine concen-

trations (Fig. 1). The observation that sulfide concentra-

tions by far exceeded OAS concentrations indicates that

under normal growth conditions, OAS is the limiting factor

for the synthesis of cysteine. These results were supported

by the finding that under sulfur starvation conditions OAS

accumulated to the same extent as sulfide content

decreased (Fig. 1). That sulfide alone is not the limiting

factor for the cysteine biosynthesis was already speculated

by Rennenberg (1983), who observed enhanced cysteine

levels after OAS feeding at the cost of hydrogen sulfide

emission in pumpkin leaves. In addition, in plants over-

expressing an adenosine 50-phosphosulfate-reductase

(APR) from Pseudomonas aeruginosa thiol levels were

significantly enhanced only after external application of

OAS (Tsakraklides et al. 2002). In plants, sulfide is not

only released from the sulfate assimilation pathway but

also through the cysteine degrading activity of OASTL or

cysteine-desulfhydrase (Riemenschneider et al. 2005).

However, more than 50% of sulfide detected in leaf tissue

could be assigned to the chloroplast, which indicates that

the sulfate assimilation pathway is the main source for the

cellular sulfide (Krueger et al. 2009). Determination of

metabolite concentrations at the subcellular level is

important to understand the tight regulation of CSC. OAS

and sulfide-driven dissociation and association kinetics

have recently been established for the CSC using BIAcore

technology (Berkowitz et al. 2002). Cytosolic sulfide

concentration (*55 lM) under non-stressed conditions

(a) (b)

(c) (d)

Fig. 6 Changes in subcellular distribution of metabolites involved in

cysteine and glutathione biosynthesis under sulfur starvation condi-

tions in Arabidopsis thaliana leaves. Percent distribution to the

subcellular compartments vacuole, cytosol and plastid of OAS (a),

cysteine (b), c-glutamylcysteine (c) and glutathione (d) was calcu-

lated using the best fit algorithm (Riens et al. 1991). Subcellular

concentrations were evaluated as described by Krueger et al. 2009.

Changes in subcellular concentrations of the different metabolites

upon sulfur starvation were expressed in percent changes relative to

control conditions. Mean values and SD of four independent gradients

for control conditions and mean values of three technical replicates of

one gradient for the respective starvation condition are shown
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would rather promote association of the CSC, whereas

upon 5 days of sulfur starvation cytosolic sulfide concen-

tration (*27 lM) would support the dissociation of the

CSC (Krueger et al. 2009 and data published here; Fig. 1).

The performance of compartment-specific

SAT knock-out mutants under sulfur starvation

Sulfate starvation was extensively used as a tool to inves-

tigate the regulation of sulfate uptake and assimilation in

plants (Takahashi et al. 1997; Lappartient et al. 1999;

Nikiforova et al. 2003; Hirai et al. 2003; Hopkins et al.

2005). It has been proposed that sulfur limitation might

induce SAT activity to enhance OAS production and, in

consequence, as OAS influences sulfate assimilation,

accelerate sulfate uptake and ensure cysteine biosynthesis

(Saito 2000; Ravina et al. 2002; Kawashima et al. 2005). In

the present study modulation of SAT activity in leaves and

roots of wild type and mutant plants under sulfur starvation

could not be observed (Fig. 2). Furthermore, also under

sulfur starvation conditions, SAT activity was slightly but

significantly reduced in leaves and roots of csat mutant and

in leaves of dmsat mutant compared to wild type. In

addition, the observation that reduced SAT activity in the

csat and dmsat mutant resulted in moderately lower con-

centrations of OAS and thiol compounds indicates that

SERAT1.1 is at least partially active, despite high cytosolic

cysteine concentrations (Fig. 6; Krueger et al. 2009). These

results are supported by the finding that CSC formation

enhances SAT activity and prevents SAT from feedback

inhibition by cysteine (Kumaran et al. 2009). As OASTL

present in the cytosol is in 200-fold excess over SAT

almost all SAT is likely bound in the CSC and therefore

presumably not longer subject to feedback regulation by

cysteine. That SERAT1.1 is functional and to some extent

involved in cysteine biosynthesis was also described by

Watanabe et al. (2008b). The high residual SAT activity in

csat, psat and dmsat mutants analyzed in this study can be

explained by the action of mitochondrial SAT, which was

shown to be the predominant SAT in A. thaliana (Haas

et al. 2008; Watanabe et al. 2008b; Krueger et al. 2009).

With respect to OASTL activity, no alteration was

observed upon sulfur starvation in SAT mutants and wild

type (Fig. 2). These results are in agreement with earlier

studies showing that OASTL activity is only slightly

affected by sulfur starvation in plants (Takahashi and Saito

1996). One of the first responses to sulfur starvation in

plants is accumulation of OAS (Nikiforova et al. 2003;

Hirai et al. 2003; Hopkins et al. 2005). Although OAS

levels increased upon 5 days of sulfur starvation in all

plants analyzed, the mutants exhibited significantly lower

OAS concentrations in comparison to wild type (Fig. 3).

Thus, it appears that due to sulfide limitation, the flux of

OAS into thiols is reduced and OAS produced by all SAT

isoezymes accumulates. This shift between mutant and

wild type may indicate the real contribution of SERAT1.1

and SERAT2.1 to OAS formation. That SERAT1.1 and

SERAT2.1 contribute to cysteine biosynthesis is supported

by the fact that both enzymes are able to compensate for

the whole SAT activity in plants (Watanabe et al. 2008b).

Concentration of cysteine, c-glutamylcysteine and gluta-

thione decreases upon 5 days of sulfur starvation to nearly

equal levels and no significant difference could be

observed between wild type and mutant plants. This might

have two reasons: first, upon starvation, sulfide rather than

OAS becomes limiting for the cysteine biosynthesis, which

is supported by the accumulation of OAS. Secondly, the

cell might try to keep thiol concentration on a certain level,

even if the flux into thiols is reduced. Analysis of plants

with reduced mitochondrial SAT activity supports this

hypothesis as here thiols were even higher concentrated in

comparison to wild type (Haas et al. 2008).

Does knock out of compartment-specific SAT

isoenzymes influence the regulation of gene

expression upon sulfate assimilation?

Bacteria possess a cysteine regulon which is strongly con-

trolled by the metabolic state of the cell. A decrease in

cysteine which results from sulfate limitation leads to

activation of the cysteine-sensitive SAT which, in conse-

quence, increases OAS levels. OAS rapidly converts to

N-acetylserine (NAS), which further positively regulates

the cysteine regulon by binding to the cysB activator protein

(Ostrowski et al. 1987; Lynch et al. 1994). Similarly, the

plant genome contains a set of genes involved in sulfate

uptake and assimilation. Expression of these genes is

affected upon sulfate starvation (Neuenschwander et al.

1991; Koprivova et al. 2000; Vauclare et al. 2002; Hirai

et al. 2003; Nikiforova et al. 2003; Buchner et al. 2004;

Hawkesford and De Kok 2006). In contrast to the plant

system, the bacterial mechanisms of regulation of gene

expression through metabolites are well understood

(Ostrowski et al. 1987; Ostrowski and Kredich 1990; Lynch

et al. 1994). An elegant model has been proposed for the

regulation of sulfate uptake and assimilation upon sulfur

limitation in plants. Upon sulfate starvation the decrease in

cytosolic cysteine concentration would activate the cys-

teine-sensitive SERAT1.1 and enhanced cytosolic OAS

levels would promote the expression of genes involved in

sulfate uptake and accumulation (Saito 2000; Ravina et al.

2002; Kawashima et al. 2005). However, expression of

sulfate transporters and APR3, which are known to respond

to sulfur starvation and OAS feeding (Hirai et al. 2003;

Nikiforova et al. 2003), was induced to the same extent in

csat or the other mutants compared to wild type upon 5 days
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of sulfur starvation (Fig. 5). These data indicate that

SERAT1.1 and SERAT2.1 do not function as a regulator for

gene expression upon sulfur starvation. However, these data

do not exclude a metabolite-mediated signal. Differences in

thiol concentration between mutants and wild type plants

grown under full nutrient conditions disappeared after

5 days of starvation, whereas at this time point, OAS

accumulation was less pronounced in mutants compared to

the wild type. Besides OAS, cysteine and glutathione were

shown to regulate expression of genes involved in sulfate

uptake and assimilation (Koprivova et al. 2000; Vauclare

et al. 2002). Therefore, it may be speculated that the

decrease in thiol concentration leads to an enhanced

expression of APR3 and sulfate transporter and might

overwrite the OAS-mediated response. Although no dif-

ferences in the expression of genes involved in sulfate

uptake and assimilation could be observed in the mutants,

the content of sulfate in leaves of the csat mutant was sig-

nificantly reduced under non-stress conditions (Fig. 4a). A

similar behavior was observed in mutants lacking the

cytosolic OASTL (Heeg et al. 2008). Therefore, influencing

the cytosolic cysteine biosynthesis seems to interfere with

sulfate uptake. These results might become important for

understanding the regulation of sulfate uptake as it was

shown that cytosolic OASTL interact with sulfate trans-

porters via the STAS domain (Shibagaki and Grossman

2007). Thus, in plants, the cytosolic CSC might represent a

link between cysteine biosynthesis and sulfate uptake.

Sulfur starvation leads to distinct changes

in the subcellular distribution of OAS and thiols

Recently, several reverse genetic approaches have partly

clarified the function of cysteine biosynthesis in the dif-

ferent subcellular compartments (Heeg et al. 2008; Haas

et al. 2008; Watanabe et al. 2008a, b; Krueger et al. 2009).

That cysteine synthesis takes place mainly in plastids was

one of the thoughts which could be falsified. Here, we

show that OAS accumulates outside the plastids when

plants are grown for 4 days under sulfur starvation condi-

tions, which further supports these findings.

NAF does generally not allow sufficient separation of

mitochondria (Krueger et al. 2009), therefore it cannot be

resolved to which extent OAS accumulates within this

organelle. Upon sulfur starvation the cytosolic cysteine

concentration decreases compared to the non-starved con-

trol, whereas no changes are observed for the vacuolar

cysteine pool. Surprisingly, the plastidic cysteine pool is

very low and even below the detection limit in plants

grown in hydroponic culture. These results indicate a rapid

incorporation of cysteine into other metabolites as, for

example, into sulfur-containing proteins or c-glutamyl-

cysteine (Abdel-Ghany et al. 2005; Wachter et al. 2005).

Interestingly, the main pool of c-glutamylcysteine is

located in the cytosol, whereas the amount located in the

plastids is rather low. As GSH1 is strictly feedback regu-

lated by its own product and glutathione is mainly syn-

thesized in the cytosol, the export of c-glutamylcysteine

from the plastid into the cytosol would guarantee an effi-

cient biosynthesis of glutathione even under stress condi-

tions or during different developmental stages (Hell and

Bergmann 1990; Vernoux et al. 2000; Noctor et al. 2002;

Jez and Cahoon 2004; Wachter et al. 2005; Pasternak et al.

2008). Furthermore, the low Km value of GSH2 for

c-glutamylcysteine (38 lM; Jez and Cahoon 2004) and its

relatively high cytosolic concentration under non-stressed

conditions (*225 lM; Krueger et al. 2009) indicates that

the cytosol represents a reservoir for c-glutamylcysteine to

allow a demand-driven synthesis of glutathione. This

hypothesis is further supported by the finding that after 3

and 4 days of sulfur starvation, the cytosolic c-glutamyl-

cysteine pool was significantly diminished, whereas no

decrease in the plastidic pool could be observed. In com-

parison, glutathione concentration was decreased in plas-

tids and the cytosol. The decrease in both compartments

in combination with the unchanged concentration of

c-glutamylcysteine within plastids might support the spec-

ulation that at least in A. thaliana glutathione is imported

into plastids (Wachter et al. 2005; Pasternak et al. 2008).
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Geigenberger P (2002) Starch synthesis in potato tubers is

regulated by post-translational redox modification of ADP-

glucose pyrophosphorylase: a novel regulatory mechanism

Impact of sulfur starvation on cysteine biosynthesis 1041

123



linking starch synthesis to the sucrose supply. Plant Cell

14:2191–2213

Tsakraklides G, Martin M, Chalam R, Tarczynski M, Schmidt A,

Leustek T (2002) Sulfate reduction is increased in transgenic

Arabidopsis thaliana expressing 50-adenylylsulfate reductase

from Pseudomonas aeruginosa. Plant J 32:879–889

Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P,

Krahenbuhl U, den Camp R, Brunold C (2002) Flux control

of sulphate assimilation in Arabidopsis thaliana: adenosine

50-phosphosulphate reductase is more susceptible than ATP

sulphurylase to negative control by thiols. Plant J 31:729–740

Vernoux T, Wilson RC, Seeley KA, Reichheld J-P, Muroy S, Brown

S, Maughan SC, Cobbett CS, van Montagu M, Inze D, May M,

Sung Z (2000) The ROOT MERISTEMLESS1/CADMIUM

SENSITIVE2 gene defines a glutathione-dependent pathway

involved in initiation and maintenance of cell division during

postembryonic root development. Plant Cell 12:97–110

Vetter RD, Matrai PA, Javor B, O’Brien J (1989) Reduced sulfur

compounds in the environment: analysis by HPLC. Symp Ser

Am Chem Soc 393:243–261

Völkel S, Grieshaber M (1992) Mechanisms of sulfide tolerance in the

peanut worm Sipunculus nudus (Sipunculidae) and in the

lugworm Arenicola marina (Polychaeta). J Comp Physiol B

Biochem Syst Environ Physiol 126:469–477

Wachter A, Wolf S, Steininger H, Bogs J, Rausch T (2005)

Differential targeting of GSH1 and GSH2 is achieved by

multiple transcription initiation: implications for the compart-

mentation of glutathione biosynthesis in the Brassicaceae. Plant J

41:15–30

Warrilow A, Hawkesford M (1998) Separation, subcellular location

and influence of sulphur nutrition on isoforms of cysteine

synthase in spinach. J Exp Bot 49:1625–1636

Watanabe M, Kusano M, Oikawa A, Fukushima A, Noji M, Saito K

(2008a) Physiological roles of the b-substituted alanine synthase

gene family in Arabidopsis. Plant Physiol 146:310–320

Watanabe M, Mochida K, Kato T, Tabata S, Yoshimoto N, Noji M,

Saito K (2008b) Comparative genomics and reverse genetics

analysis reveal indispensable functions of the serine acetyltrans-

ferase gene family in Arabidopsis. Plant Cell 20:2484–2496

Winter H, Lohaus G, Heldt HW (1992) Phloem transport of amino

acids in relation to their cytosolic levels in barley leaves. Plant

Physiol 99:996–1004

Winter H, Robinson DG, Heldt HW (1993) Subcellular volumes

and metabolite concentrations in barley leaves. Planta 191:180–

190

Winter H, Robinson D, Heldt H (1994) Subcellular volumes

and metabolite concentrations in spinach leaves. Planta

193:530–535

Wirtz M, Hell R (2003) Production of cysteine for bacterial and plant

biotechnology: application of cysteine feedback-insensitive

isoforms of serine acetyltransferase. Amino Acids 24:195–203

Wirtz M, Hell R (2006) Functional analysis of the cysteine synthase

protein complex from plants: Structural, biochemical and

regulatory properties. J Plant Physiol 163:273–286

Wirtz M, Hell R (2007) Dominant-negative modification reveals the

regulatory function of the multimeric cysteine synthase protein

complex in transgenic tobacco. Plant Cell 19:625–639

Wittstock U, Halkier BA (2002) Glucosinolate research in the

Arabidopsis era. Trends Plant Sci 7:263–270

Wohlgemuth S, Taylor A, Grieshaber M (2000) Ventilatory and

metabolic responses to hypoxia and sulphide in the lugworm

Arenicola marina (L.). J Exp Biol 203:3177–3188

Xiang C, Werner B, Christensen E, Oliver D (2001) The biological

functions of glutathione revisited in Arabidopsis transgenic

plants with altered glutathione levels. Plant Physiol 126:564–574

Zrenner R, Willmitzer L, Sonnewald U (1993) Analysis of the

expression of potato uridinediphosphate-glucose pyrophosphor-

ylase and its inhibition by antisense RNA. Planta 190:247–252

1042 S. Krueger et al.

123


	Impact of sulfur starvation on cysteine biosynthesis in T-DNA mutants deficient for compartment-specific serine-acetyltransferase
	Abstract
	Introduction
	Materials and methods
	Plant cultivation
	Enzyme assays
	Metabolite analysis
	NAF
	RNA extraction and RT-PCR

	Results
	OAS concentration increases and cysteine and sulfide levels decrease upon sulfur starvation
	SAT and OASTL activities are not significantly altered upon sulfur starvation
	Cysteine biosynthesis is reduced in wild type and mutant plants under sulfur starvation conditions
	Knock out of specific SAT isoenzymes does not affect the expression of genes involved in sulfate uptake and reduction
	Changes in the subcellular distribution of OAS and thiols upon sulfur starvation

	Discussion
	OAS rather than sulfide limits cysteine biosynthesis
	The performance of compartment-specific SAT knock-out mutants under sulfur starvation
	Does knock out of compartment-specific SAT isoenzymes influence the regulation of gene expression upon sulfate assimilation?
	Sulfur starvation leads to distinct changes in the subcellular distribution of OAS and thiols

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


