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Abstract Identifying protein–protein interactions (PPIs)

is critical for understanding the cellular function of the

proteins and the machinery of a proteome. Data of PPIs

derived from high-throughput technologies are often

incomplete and noisy. Therefore, it is important to develop

computational methods and high-quality interaction dataset

for predicting PPIs. A sequence-based method is proposed

by combining correlation coefficient (CC) transformation

and support vector machine (SVM). CC transformation not

only adequately considers the neighboring effect of protein

sequence but describes the level of CC between two protein

sequences. A gold standard positives (interacting) dataset

MIPS Core and a gold standard negatives (non-interacting)

dataset GO-NEG of yeast Saccharomyces cerevisiae were

mined to objectively evaluate the above method and

attenuate the bias. The SVM model combined with CC

transformation yielded the best performance with a high

accuracy of 87.94% using gold standard positives and gold

standard negatives datasets. The source code of MATLAB

and the datasets are available on request under smgsmg@

mail.ustc.edu.cn.
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Introduction

Studies of protein–protein interactions (PPIs) provide

critical insight into the cellular processes of DNA tran-

scription and replication, metabolic cycles, signaling cas-

cades, cell proliferation and apoptosis, etc. high-throughput

experimental technologies, including yeast two-hybrid

screen (Y2H) (Ito et al. 2000; Uetz et al. 2000), mass

spectrometry protein complex identification (MS-PCI) (Ho

et al. 2002) and coimmunoprecipitated protein complex

(Co-IP) (von Mering et al. 2002; Ho et al. 2002), protein

chips (Zhu et al. 2001) and tandem affinity purification

(TAP) (Gavin et al. 2002), have been developed to eluci-

date and model protein interactions at genomic scale.

Although genome-scale protein interaction networks have

now been built and experimentally validated in several

species such as Saccharomyces cerevisiae (Uetz et al.

2000; Krogan et al. 2006), Escherichia coli (Li et al.,

2004), Drosophila melanogaster (Giot et al. 2003) and

Helicobacter pylori (Rain et al. 2001), these interaction

datasets are often noisy and always contain many false

positive interactions (Uetz et al. 2000; Ito et al.

2001).Therefore, several ‘in silico’ (computed) interaction
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prediction methods have been developed, which provide

an attracting perspective on predicting and understand-

ing PPIs as complementary methods to experimental ones.

Among a number of computational methods that have

been widely exploited for the prediction of PPIs, kernel

methods attracted much attention. Similar kernels were

designed for predicting interactions from sequence.

Kernels, including spectrum kernel (Leslie et al. 2002),

Pfam kernel (Gomez et al. 2003), constrained diffusion

kernel (Koji and William 2004), pairwise kernel and

sequence kernel (Ben-Hur and Noble 2006), signature

product kernel (Martin et al. 2005; Faulon et al. 2008),

were defined for describing the relationship between two

pairs of sequences. By combining with support vector

machine (SVM), which holds good generalization per-

formance and performs better for small sample size, such

kernels resulted in more accurate SVM performance when

dealing with prediction problems of predicting PPIs.

Meanwhile, with the increase of the number of protein

sequences, sequence-based methods using various coding

schemes have recently been proposed for PPIs (Sprinzak

and Margalit 2001; Gomez et al. 2003; Martin et al. 2005;

Shen et al. 2007; Guo et al. 2008b). Specifically, signa-

ture features of protein pair’s sequences were used to

predict PPIs (Sprinzak and Margalit 2001). Gomez et al.

(2003) put forward an attraction-repulsion model using

the domain or motif content of a sequence to predict a

candidate interaction. Martin et al. (2005) devised a

protein descriptor called signature products to represent

interactions between pairs of protein sequences by com-

bining the full-length sequence information of both

domains and their ligands. Shen et al. (2007) proposed a

SVM model by combining a conjoint triad feature with

S-kernel function of protein pairs to predict PPI network.

Guo et al. (2008b) proposed a sequence-based method by

combining auto covariance feature representation and

SVM, and when performed on the PPI data of yeast

S. cerevisiae, it achieved a very promising prediction

result. Sequence-derived structural and physicochemical

features of protein sequence, including Moran autocorre-

lation (Horne 1988), autocross-covariance transformation

(Wold et al. 1993), normalized Moreau–Broto autocorre-

lation (Feng and Zhang 2000) and Geary autocorrelation

(Sokal and Thomson 2006) have also been used for pre-

dicting PPIs and enhance the prediction ability.

Despite their achievement, the existing methods for PPIs

are limited by the fact that protein interaction datasets are

usually incomplete and potentially unreliable (Uetz et al.

2000; Ito et al. 2001). Even reliable techniques can gen-

erate many false positive data. The absolute number of

false positives may be larger than that of true positives

because the expected number of negatives is several orders

of magnitude higher than the number of positives. (Manly

et al. 2004; Jansen and Gerstein 2004).Therefore, compu-

tational methods of assessing the reliability of each can-

didate protein interaction are very urgently needed. Saito

et al. (2003) developed interaction generality measure to

assess the credibility of PPIs using the topological prop-

erties of the interaction network structure. Meanwhile, the

gene ontology (GO) is extensively exploited to analyze all

kinds of high-throughput experiments (Resnik 1999; Wu

et al. 2006; Guo et al. 2006, 2008a; Wang et al. 2007).

Resnik’s method was proposed to determine the similarity

of two GO terms based on their distances to the closest

common ancestor term and/or the annotation statistics of

their common ancestor terms (Resnik 1999). Although

Resnik’s method is better than other methods (Guo et al.

2006), it ignores the information contained in the structure

of the ontology. An improved method has been provided to

encode a GO term’s semantics into a numeric value by

aggregating the semantic contributions of their ancestor

terms in the GO graph and the outcomes were shown to be

more consistent with human perspectives (Wang et al.

2007). Thus, high-quality protein interaction data was

achieved by exploring the information buried in the GO

and GO annotations. Based on this idea, a new functional

predictor was constructed to systematically predict the map

of potential physical interactions between yeast proteins by

fully exploring the knowledge buried in two GO annota-

tions, namely, the Biological Processes and Cellular

Components annotations (Wu et al. 2006; Guo et al.

2008a).

In this paper, a sequence-based method with correlation

coefficient (CC) transformation was proposed to take into

account the longer range relationship of amino acid resi-

dues of protein sequences and the level of CC between

sequences of a protein pair. Gold standard positive and

negative datasets were also constructed to objectively

evaluate this method. Results suggested the competitive

advantage of the method.

Materials and methods

Constructing positive and negative datasets

We chose S. cerevisiae physically interacting protein pairs

that are derived from the following three popular databases

as positive examples when training our classifiers. (1) DIP

core dataset (Xenarios et al. 2002; Deane et al. 2002)

was derived from the DIP database of DIP_20071007

(http://dip.doe-mbi.ucla.edu/dip). The original DIP core

database contains 2,808 proteins and 6,459 interactions.

After the protein pairs with B50 amino acids have been

removed, the remaining dataset includes 2,800 proteins and

6,436 interactions. (2) MIPS Core dataset was gathered
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from the MIPS dataset (Mewes et al. 2006; Guldener et al.

2006) (http://mips.gsf.de/). MIPS dataset contains 4,556

proteins and 15,037 interactions. The MIPS Core dataset

was extracted from the MIPS dataset following the prin-

ciple that the selected PPIs have been validated by at least

two large-scale or small-scale methods. The final MIPS

Core dataset contains 829 proteins and 1,025 interactions

after removing protein pairs with B50 amino acids. (3)

BIND yeast database contains 10,517 interactions of 4,233

yeast proteins. Subset dataset with 736 proteins and 750

trusted interactions has been chosen from the BIND yeast

database by multiple experimental assays (Bader et al.

2001; Ben-Hur and Noble 2006).

Negative training examples play an important role for the

reliability of the prediction model and influence its perfor-

mances of the test examples. Four strategies as following for

constructing negative training examples were employed. (1)

R-NEG: the non-interacting protein pairs are assembled by

randomly pairing proteins that appeared in the positive

datasets. (2) BS-NEG: this method is based on an assump-

tion that proteins occupying different subcellular localiza-

tions do not interact. The non-interacting pairs were

generated from proteins in separate subcellular compart-

ments and the negative training examples were selected

from these different subsets according to the proportional

law. The non-pairing proteins are derived from database

Organelle DB (seen in Fig. 1). (3) IS-NEG: considering a

biased estimate of the accuracy of a PPI predictor, it is

necessary to generate a dataset of the non-interacting pairs

with the same localization to attenuate this bias. The non-

interacting protein pairs with the same localization were

generated from database Organelle DB and none of them has

existed in the whole DIP Core, MIPS Core and BIND

interacting pairs. (4) GO-NEG: Wu et al. (2006) designed a

metric called relative specificity similarity (RSS) for

semantic similarity, to score the degree of functional

association or the localization proximity between two pro-

teins. It fully explored the knowledge buried in the cellular

component and biological process annotations of GO for the

yeast genome. Wu et al. (2006) had two conclusions: (1)

interacting proteins often function in the same Biological

Processes (2) interacting proteins exist in close proximity.

Here, the protein pairs of GO-NEG (0 \=RSS Cellular

Components \=0.4 and 0 \=RSS Biological Processes

\=0.4) with lower confidence were selected as negative

samples, because protein pairs with low confidence level

values of RSS Biological Processes and RSS Cellular

Components involve in weakly related or unrelated biolog-

ical processes and localize in different cellular components.

Two rational requirements should be made during the con-

struction of the negative datasets: (1) in each case the

number of negative examples is equal to the number of

positive examples in the dataset. (2) Non-interacting protein

pairs can not be listed in the DIP, MIPS and BIND datasets.

The details of PPIs data are summarized in Table 1.

Molecular descriptors

Twelve physicochemical properties of amino acids were

chosen to reflect the amino acids characteristics. These

properties include hydrophobicity (Sweet and Eisenberg

1983), hydrophilicity (Hopp and Woods 1981), polarity

(Grantham 1974), polarizability (Charton and Charton

1982), solvation free energy (Eisenberg and McLachlan

1986), graph shape index (Fauchere 1988), transfer free

energy (Janin 1979), amino acid composition (Grantham

1974), CC in regression analysis (Prabhakaran and Ponnu-

swamy 1982), residue accessible surface area in tripeptide

(Chothia 1976), partition coefficient (Garel 1973) and

entropy of formation (Hutchens 1970), respectively. These

sequence-based physiochemical properties are employed as

basis for classification. Supplementary Table S1 showed

the values of the 12 physicochemical properties for each

amino acid. Min–max normalization reprocessing method

was used to normalize these physicochemical properties

according to Eqs. 1 and 2:

mpr ¼
spr �minðsprÞ

maxðsprÞ �minðsprÞ
ðP ¼ 1; 2; . . .; 20; r ¼ 1; 2; . . .; 12Þ ð1Þ

Fig. 1 Number of proteins of S. cerevisiae distributed in different

subcellular compartments from Organelle DB (http://organelledb.

lsi.umich.edu/) (Wiwatwattana et al. 2007). Organelle DB presents a

catalog of localized proteins and major protein complexes of

eukaryote S. cerevisiae

Table 1 PPIs of three different databases with S. cerevisiae used in

prediction

Dataset # Proteins # Interactions # Positive training

examples

DIP core 2,800 6,436 6,436

MIPS core 829 1,025 1,025

BIND 736 750 750
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m0pr ¼
mpr

mpr

�
�

�
�

ð2Þ

where spr is the rth descriptor value for Pth amino acid and

the norm �kk is the 2-norm for vectors. Thus each protein

sequence was coded by the normalized values of 12

descriptors.

Correlation coefficient transformation was employed to

transform the physicochemical descriptions into a uniform

length. CC variables describe the level of correlation between

two protein sequences in terms of their specific physico-

chemical properties, which are defined based on the distribu-

tion of amino acid properties along the sequence. Furthermore,

CC variables consider the long range correlation in the protein

sequences which is very important to represent the PPI

information. Also, CC variables represent the co-evolution of

12 physiochemical properties between the 2 proteins at dif-

ferent sequence distances. Co-evolution of physiochemical

properties and co-evolution in general have been successfully

used to predict interacting proteins (Brenner et al. 1998;

Madaoui and Guerois 2008; Yeang and Haussler 2007).

Correlation coefficient of protein sequence could be

defined as:

CCðdÞ ¼
Pm�d

i¼1 Ai;j �
Pn�d

k¼1 Bk;j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm�d

i¼1 Ai;j � AT
i;j

� �
r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn�d

k¼1 Bk;j � BT
k;j

� �
r

ð3Þ

where A and B represent two protein pairs, respectively.

Ai,j and Bk,j are given by

Ai;j ¼ Xi;j �
1

m

Xm

i¼1

Xi;j

 !

Xiþd;j �
1

m

Xm

i¼1

Xi;j

 !

ð4Þ

Bk;j ¼ Yk;j �
1

n

Xn

k¼1

Yk;j

 !

Ykþd;j �
1

n

Xn

k¼1

Yk;j

 !

ð5Þ

where i and k are the position of the amino acid sequences X

and Y, j is 1 of 12 physicochemical properties of amino acids,

m and n are the length of amino acid sequences X and Y,

respectively, d represents the distance between two different

residues of protein sequence. In Eq. 3, d is the lag of CC and

d = 1, 2,…, lg, where lg is the maximum d. The CC feature

is calculated with 12 descriptors and 12 9 lg descriptor

values. Obviously, the dimension of vector space of protein

sequence with CC transformation(12 9 lg) is dramatically

reduced compared with that of auto cross covariance

(2 9 12 9 12 9 lg) (Wold et al. 1993) and auto covariance

(AC) transformation (2 9 12 9 lg) (Guo et al. 2008b).

SVM optimization and evaluation of performance

Kernel method address the classification problem by

mapping the data into a high dimensional feature space,

where each coordinate corresponds to one feature of the

data items. The advantage of the kernel method is in

the feature space no need computing the coordinates of the

data, but rather simply computing the inner products

between all pairs of data. This operation is often compu-

tationally cheaper than the explicit computation of the

coordinates. The representative kernel-based methods

include SVM (Vapnik 1998), kernel Fisher’s linear dis-

criminant analysis (Baudat and Anouar 2000) and kernel

principal components analysis (Scholkopf et al. 1998),

which have effectively solved many practical problems.

Inverse problems of matrix are often ill-posed and

always encountered in many machine learning methods

such as LDA, CCA and SVM. To solve these problems

numerically one must introduce some additional assump-

tion on the smoothness or a bound on the norm. The popular

method is often known as regularization and regularization

constant C is usually applied to improve the generalization

performance and diminish the complexity of model.

Cross validation is a popular model evaluation method

which validates how well a model generalizes to new data.

K-fold cross validation divides the dataset into k subsets and

repeats k times. Each time, one of the k subsets is used as the

test set and the rest k - 1 subsets are put together to form a

training set. Then the average error across all k trials is

computed. The advantage of this validation method is that it

matters less how the data gets divided. Every data point gets to

be in a test set exactly once and in a training set k - 1 times.

LIBSVM (http://www.csie.ntu.edu.te/*cjlin/libsvm)

was used to do classification. Radial Basis Function

kðx; x0Þ ¼ expð�c x� x0k k2Þwas selected as the kernel

function and the optimized parameters (C, c) were obtained

with a grid search approach. The prediction performances

are evaluated as follows:

Sensitivity ¼ TP

TPþ FN
; Precision ¼ TP

TPþ FP
ð6Þ

Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
ð7Þ

MCC

¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FNÞ � ðTNþ FPÞ � ðTPþ FPÞ � ðTNþ FNÞ
p

ð8Þ

where TP is the true positive, FN is the false negative, FP is

the false positive, TN is the true negative and MCC denotes

Mathews CC.

The P value was calculated to evaluate the credibility of

the prediction performance. P value is defined as

Pðz� zobservedÞ

¼ #ðz� zobservedÞ
#ðrandomly generalized observation datasetsÞ ð9Þ
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where z and zobserved refer to the value of sensitivity,

precision, MCC and accuracy with the above validated and

randomly generated observation datasets, respectively.

Randomly generalized 1,000 observation datasets were

constructed from the protein pairs of the validated datasets

and the size of each randomly generalized dataset is equal

to that of the validated datasets.

Results and discussions

Assessment of prediction ability with different positive

and negative datasets

Support vector machine prediction models were con-

structed to evaluate the performance of the three positive

datasets of S. cerevisiae and the four negative datasets

respectively. Twelve combinations were built with the

above datasets. 50% of the protein pairs were randomly

selected from the positive and negative dataset as the

training set and the remaining 50% were chosen as the test

set. For instance, the final data set consisted of 2,050

protein pairs when datasets of MIPS Core plus GO-NEG

are trained with the SVM method and the training set and

test set include 1,025 and 1,025 protein pairs respectively.

The regularization parameter C and parameter c were

selected by applying fivefold cross-validation. This process

has been repeated five times.

Tables 2 and 3 illustrate the average prediction perfor-

mance of the SVM models. The models with positive

datasets DIP Core, MIPS Core and BIND and negative

dataset R-NEG yield the Accuracy of 80.7, 83.6 and 76.9%,

respectively. These accuracies are higher than those with

negative dataset IS-NEG and lower than those with negative

dataset BS-NEG. The simple uniform random choice of

non-interacting protein pairs (R-NEG) yields an unbiased

estimate of the true distribution when predicting PPIs (Ben-

Hur and Noble 2006). However, imposing the constraint of

non co-localization induces a different distribution on the

features and the resulting biased distribution of negative

examples leads to over-optimistic estimates of classifier

accuracy. So selecting the non-interacting protein pairs

from the same co-localization is an useful method to

attenuate this prediction bias. The SVM models based on

three positive datasets and the negative dataset BS-NEG

yield the Accuracy of 82.7, 85.8 and 77.8%, respectively,

whereas, the Accuracy with negative dataset IS-NEG are

79.5, 81.8 and 75.8%, respectively, and these results are

Table 3 Sensitivity (SN),Precision (PE), MCC and Accuracy (ACC) predicted by SVM model of CC transformation across 5 runs

SN (%) P value PE (%) P value MCC (%) P value ACC (%) P value

IS-NEG

DIP core 80.2 0.04 81.3 0.028 64.3 0.009 79.5 0.011

MIPS core 81.4 0.0056 82.8 0.0078 73.5 0.023 81.8 0.028

BIND 73.4 0.68 74.9 0.29 57.3 0.81 75.8 0.81

GO-NEG

DIP core 84.15 0.0017 85.36 0.04 69.83 0.028 84.91 0.035

MIPS core 86.86 0.006 89.52 0.0038 75.98 0.009 87.94 0.0003

BIND 81.6 0.51 83 0.09 64.38 0.339 82.21 0.89

The negative datasets based on IS-NEG and GO-NEG datasets

Table 2 Sensitivity (SN), Precision (PE), MCC and Accuracy (ACC) predicted by SVM model of CC transformation across five runs

SN (%) P value PE (%) P value MCC (%) P value ACC (%) P value

R-NEG

DIP core 81.4 0.29 82.8 0.82 66.3 0.43 80.7 0.0187

MIPS core 82.4 0.08 84.8 0.03 74.3 0.013 83.6 0.0001

BIND 75.6 0.84 77.8 0.49 59.8 0.96 76.9 0.9

BS-NEG

DIP core 82.9 0.09 83.4 0.032 68.3 0.026 82.7 0.01

MIPS core 84.2 0.035 86.5 0.021 76.7 0.04 85.8 0.01

BIND 77.6 0.94 79.8 0.59 60.8 0.74 77.8 0.69

The negative datasets based on R-NEG and BS-NEG datasets
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apparently lower than those with negative dataset BS-NEG.

The SVM models with three positive datasets and GO-NEG

yield the Accuracy of 84.91, 87.94 and 82.21%, respec-

tively, which achieves the best results compared with other

three negative datasets. The average prediction perfor-

mance, i.e., Sensitivity, Precision, MCC and Accuracy

based on MIPS Core and GO-NEG are 86.86, 89.52, 75.98

and 87.94%, respectively. Therefore, the model based on

the positive dataset MIPS Core and negative dataset

GO-NEG achieves the best performance. GO-NEG gener-

ally outperforms R-NEG, BS-NEG and IS-NEG based on

positive dataset MIPS Core in terms of prediction perfor-

mance. The average Accuracy based on positive dataset

MIPS Core and negative dataset GO-NEG is more than 5.2,

2.5, 7.5% higher than that on negative dataset R-NEG,

BS-NEG and IS-NEG, respectively. Moreover, the average

Accuracy based on GO-NEG and MIPS Core is more than

3.6% higher than that on GO-NEG and DIP Core. The

average Accuracy of three SVM models based on three

positive datasets and negative dataset GO-NEG is 85%,

which yields more than 5.7, 3.5, 7.6% higher than that on

negative dataset R-NEG, BS-NEG and IS-NEG, respec-

tively. It illustrates that the SVM model with CC transfor-

mation has enough generalization ability.

Gold standard positives and gold standard negatives

dataset

As shown in Tables 2 and 3, the performances of DIP Core

are inferior to that of MIPS Core. A possible explanation is

summarized: the protein interaction pairs of DIP Core may

lack biological significance or be noisy. Consequently, there

may be a number of random protein pairs in the simulation

dataset of DIP Core. We found that negative dataset GO-

NEG yielded better prediction performances than other three

negative datasets. The dataset GO-NEG has two advantages

over conventional three datasets. Protein pairs of GO-NEG

both involved in weakly related or unrelated biological

processes are localized in different cellular components.

Thus, the resulting GO-NEG dataset is less biased compared

with other three negative datasets. Moreover, the assignment

of protein pairs into categories with different RSS values is

statistically significant (Wu et al. 2006). Thus, the GO-NEG

dataset is less biased compared with those constructed using

other three strategies.

The null hypothesis statistical test are also used to

evaluate the prediction performance with P value that could

be computed with Eq. 9. The P value is compared with the

significance level (i.e., 0.05) of the null hypothesis test: if

the P value is less than 0.05, the null hypothesis is rejected

and the difference between two prediction models is con-

sidered to be statistically significant. The results of P value

could be summarized as follows: (1) for the dataset MIPS

Core, its prediction performance are statistically significant

with all four negative datasets. (2) For the dataset BIND and

DIP Core, the prediction performance are not statistically

significant with four negative datasets. Some interacting

protein pairs in positive dataset BIND and DIP Core may be

noisy or lack of biological significance compared with other

randomly generalized observation datasets.

We evaluated the 12 combinations of the three positive

datasets and the four negative datasets. The prediction

performance of the other eleven dataset combinations were

much lower than that obtained from the combination of

GSPs and GSNs, indicating that the datasets of the other

eleven combinations contain high rate false positives. And

these results demonstrate that high-quality datasets have a

strong effect on the performance of computational methods

for the prediction of PPIs.

Performance comparison of CC and AC

The prediction results of SVM prediction models with CC

and AC transformation of protein sequence for five test sets

are shown in Table 4. The results showed that SVM pre-

diction model with CC transformation outperforms that

with AC transformation in terms of performances. More-

over, the average values of Sensitivity, Precision, MCC and

Accuracy with CC transformation are more than 2, 6.6, 9.5

and 3.8% higher than those with AC transformation. The

Table 4 The prediction results of positive dataset MIPS Core and

negative dataset GO-NEG with d of 24 amino acids

Test set Sensitivity

(%)

Precision

(%)

MCC (%) Accuracy

(%)

SVM

With CC

1 87.32 84.55 72.7 86.34

2 85.15 94.69 77.99 88.78

3 88.29 88.47 77.16 88.58

4 86.75 90.7 76.22 88.09

5 86.78 89.17 75.84 87.9

Average 86.86 ± 1.3 89.52 ± 13.5 75.98 ± 4.07 87.94 ± 0.92

SVM

With AC

1 84.2 86.85 68.86 84.49

2 86.88 83.4 71.52 85.76

3 86.03 80.49 66.62 83.22

4 85.35 86.2 72.09 86.05

5 83.09 82.75 67.87 84

Average 85.11 ± 2.23 83.94 ± 6.8 69.4 ± 5.52 84.7 ± 1.42

The results illustrate the average values and the corresponding stan-

dard deviations (std) across five runs. MIPS Core is GSP dataset and

GO-NEG is GSN Dataset. Prediction model SVM with CC built with

the optimal parameters C = 75, c = 0.1125. Prediction model SVM

with AC constructed by the optimal parameters C = 47, c = 0.067
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standard deviation of Accuracy is as low as 0.92, indicating

that data points are close to the mean. Furthermore,

the Accuracy with CC and AC transformation based on

7 physicochemical properties of 20 amino acids (Guo et al.

2008b) are 81.26 and 81.79%, respectively. It shows that

the value of Accuracy with CC transformation increase

dramatically than that of AC transformation when the

number of physicochemical properties is increasing. CC

variables consider the co-evolution of physiochemical

properties between the two proteins and the long range

correlation, which leads to a significant increase in Accu-

racy. Above all, the performance can be substantially

improved by selecting the appropriate coding scheme.

The prediction results for SVM classifier with CC

transformation of different d values are shown in Fig. 2.

SVM classifier with CC based on MIPS Core and GO-NEG

is constructed by optimal parameters C = 75, c = 0.1125.

SVM classifier with CC based on DIP Core and GO-NEG

is built with optimal parameters C = 120, c = 0.22.

Figure 2 shows that the maximum value, 87.94%, of an

average Accuracy of MIPS Core is achieved and the cor-

responding d value is 24, and those of DIP Core are 84.7

and 31%, respectively. The results also illustrate that CC

transformation would lose useful classification information

of protein sequence with d value less than 24 amino acids

and introduce noise to diminish average Accuracy with d

value larger than 24 amino acid. Moreover, SVM predic-

tion model with MIPS Core is computationally more effi-

cient than that with DIP Core.

There are two possible reasons that the SVM prediction

model with CC transformation outperforms that with AC

transformation. First, CC transformation adequately con-

siders the neighboring effect of protein sequence and

describes the level of CC between two protein sequences.

Second, the dimension of vector space of protein sequence

with CC transformation is dramatically reduced compared

with that of AC transformation. It also demonstrates that

eigenvectors with CC transformation include less noisy

data and it efficiently attenuates the biased selection of

positive and negative examples.

Performance of dataset H. pylori

In order to evaluate the practical prediction ability of the

SVM prediction model with CC transformation towards

cross-species analysis, dataset H. pylori was constructed.

The H. pylori dataset contains 1,458 interacting protein

pairs and 1,458 non-interacting protein pairs (Rain et al.

2001). 50% of the protein pairs were randomly selected

from the interacting and non-interacting protein pairs as the

training set and the remaining 50% were chosen as the test

set. The regularization parameter C and parameter c were

selected by applying fivefold cross-validation. The per-

formance of this method in predicting such samples is

summarized in Table 5. The average prediction perfor-

mance, i.e., Sensitivity, Precision, MCC and Accuracy

achieved by SVM with CC transformation are 81.25, 80.53,

72.26 and 83.68%, respectively. It is shown that SVM

method achieves better performance than Boosting

(Friedman 2001) and Linear Regression with L1 regulari-

zation (the Lasso) (Efron et al. 2004). All these results

demonstrate that this SVM classifier is also able to achieve

better performance towards cross-species dataset.

Conclusions

We have developed a simple and elegant sequenced-based

approach to predict PPIs. The prediction model was con-

structed by using CC transformation and SVM. CC trans-

formation of protein sequences was calculated with

different lags along a protein chain in terms of their specific

physicochemical properties and account for longer range

relationship. It also describes the level of CC between two

protein sequences. Moreover, we evaluated high-through-

put experimental interaction datasets using the three posi-

tive datasets and the four negative datasets including GSPs

and GSNs. And the results demonstrate that a high-quality

positive and negative dataset has a strong effect on the

performance of any of the computational methods for

prediction of PPIs and plays an important role in the

inference of interacting protein pairs with high confidence.

Protein pairs both involved in weakly related or unrelated

biological processes and localized in different cellular

components are chosen and assembled into GSNs. Thus,

Fig. 2 The average accuracy of SVM classifier with CC transforma-

tion of different d values, respectively

Table 5 The performance of state-of-art methods for the dataset

Helicobacter pylori

Methods SN (%) PE (%) MCC (%) ACC (%)

SVM 81.25 80.53 72.26 83.68

Boosting 80.37 81.69 70.64 79.52

Lasso 79.35 82.11 71.24 81.19
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the resulting GSNs dataset is less biased compared with

other three negative datasets. This analysis is expected to

also provide a new approach for predicting PPIs from

protein sequences with high-quality GO-based annotations.

In conclusion, the proposed sequence-based method

using SVM and CC transformation will be a powerful tool

to predict PPIs and expedite the study of protein networks.
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