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Abstract Due to the complexity of Plasmodium falci-

parumis genome, predicting secretory proteins of P. falci-

parum is more difficult than other species. In this study,

based on the measure of diversity definition, a new

K-nearest neighbor method, K-minimum increment of

diversity (K-MID), is introduced to predict secretory pro-

teins. The prediction performance of the K-MID by using

amino acids composition as the only input vector achieves

88.89% accuracy with 0.78 Mathew’s correlation coeffi-

cient (MCC). Further, the several reduced amino acids

alphabets are applied to predict secretory proteins and the

results show that the prediction results are improved to

90.67% accuracy with 0.83 MCC by using the 169

dipeptide compositions of the reduced amino acids alpha-

bets obtained from Protein Blocks method.

Keywords Secretory proteins � Increment of diversity �
Reduced amino acids alphabets � Amino acid

and dipeptide composition � Prediction performance

Introduction

While several species of Plasmodium cause disease in

humans (including P. vivax, P. malariae, P. ovale and

P. knowlesi), Plasmodium falciparumis (P. falciparum) is

by far the deadliest. The malaria caused by P. falciparum

remains the world’s most devastating tropical infectious

disease, which results in 300–500 million clinical cases and

1–2 million deaths annually and its long-term control and

eradication is still a long way off (Snow et al. 2005;

Winzeler 2008). The potential for developing effective

drugs and vaccines against this parasite is thus consider-

able. Parasite secretes an array of proteins within the host

erythrocyte and beyond to facilitate its own survival within

the host cell and for immunomodulation (Verma et al.

2008). These proteins secreted by parasite can serve as

potential drug or vaccine targets. Therefore, the identifi-

cation of secretory proteins of P. falciparum will be helpful

for drug design and combination (Birkholtz et al. 2008).

Recently, An increasing amount of studies have indicated

that mathematical/computational approaches, such as

molecular docking (Chou et al. 2003; Wang et al. 2008a),

pharmacophore modeling (Chou et al. 2006; Sirois et al.

2004), protein subcellular location prediction (Chou and

Shen 2007d, 2008a; Shen and Chou 2007c), protein struc-

tural class prediction (Chou 1995, 2000; Chou and Cai 2004;

Chou and Zhang 1995; Xiao et al. 2008), identification of

proteases and their types (Chou and Shen 2008b; Shen and

Chou 2009), protein cleavage site prediction (Chou

1993,1996; Shen and Chou 2008a), and signal peptide pre-

diction (Chou and Shen 2007e; Shen and Chou 2007b), can

be timely provide very useful information and insights for

both basic research and drug design and hence are widely

welcome by science community. The present study was

devoted to develop a novel computational approach for

predicting secretory proteins that would be particularly

effective in characterizing the properties of selected pro-

teins. Several programs have been developed for predicting

secretory proteins, such as SecretomeP-2.0 (Bendtsen et al.

2004), TargetP (Emanuelsson et al. 2000), SRTpred (Garg

and Raghava 2008) and the work of Liu et al. (2007). When

P. falciparum genome sequence was published in 2002, it

was revealed that the nucleotide composition was unusually
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AT-rich (*80% AT on average) and the proteins of

P. falciparum are more complex than other species. Thus,

the prediction of secretory proteins for P. falciparum is more

difficulty than other species (Gardner et al. 2002). Recently,

Verma et al. first developed the SVM models for predicting

secretory proteins of malaria parasite, and achieved good

prediction accuracy (Verma et al. 2008).

On the basis of the Shannon entropy definition, Laxton

introduced the concept of measure of diversity (Laxton

1978), which is a parallel definition with Shannon entropy.

The measure of diversity is a kind of information

description on discrete state space and a measure of whole

uncertainly of a system. In order to compare the distribu-

tion of two species, one defines the increment of diversity

(ID) by the difference of the total diversity measure of two

systems and the diversity measure of the mixed system.

The ID are successfully developed and employed for

classification in biogeography. Recently, the Li’s group

firstly introduced the ID to protein prediction, the recog-

nition of protein structural class (Li and Lu 2001; Lin and

Li 2007a), the protein superfamily classification (Lin and

Li 2007b), the subcellular and subnuclear location (Chen

and Li 2007; Li and Li 2008a, b), beta-hairpin and gamma-

turn prediction (Hu and Li 2008) and good prediction

performances are obtained. It can be proved that the ID is a

good index for distinguishing two different sources estab-

lished by proteins. In this paper, based on the ID and

K-nearest neighbor method, the K-minimum increment of

diversity (K-MID) is developed to predict secretory protein

of malaria parasite. Using amino acid composition, the

prediction accuracy and Mathew’s correlation coefficient

(MCC) are 88.69% and 0.78 when K = 5, higher than the

SVM models. In order to investigate how a particular class

or property of amino acids affects prediction accuracy and

examine the effect of special amino acid with different

biochemical properties, several different reduced amino

acids alphabets are introduced in this study. The results

indicate that the 20 amino acids can be clustered into about

ten reduced amino acid groups. And by using reduced

amino acids obtained from Protein Blocks method, the best

prediction performance is obtained.

Materials and methods

Datasets

A critical issue in developing secretory protein prediction

algorithm of malaria parasite is lack of suitable training

and testing sets. In this study, the 252 secretory proteins

and 252 non-secretory proteins were constructed by

Verma et al. (2008). From the literature Verma et al.

collected total 267 secretory proteins consisting of 208

secretory proteins (119 Rifins, 22 Stevors, 67 PfEMP1);

6 experimentally proven proteins (PF10_0159, PFE0040c,

PFB0100c, PFB0095c, AAD31511, AAC47454). Another

set of 3 experimentally proved secretory proteins

(PFD1175w, PFD1170c, PFB0100c); more 7 proteins

(PFI1755c, PFE0055c, PFI1780w, PFE0360c, PF10_0321,

PF14_0607, PFE0355c); 4 REX proteins (PFI1740c,

PFI1755c, PFI1760w, PFI1735c); 2 PIESPs (PFC0435c,

PFE0060w); clag9 (PFI1730w); Sbp1 (PFE0065w) and 35

maurer’s cleft associated proteins. These all sum up to

267 secretory proteins. They got 252 non redundant

secretory proteins after removing redundant proteins using

program PROSET. The 252 non-secretory proteins are

extracted from two sources, 197 non-secretory proteins

are extracted from Swiss-Prot using SRS with query

‘‘Plasmodium falciparum (organism) but not secreted

(comment)’’ and the remaining 55 non-secretory proteins

are extracted nuclear proteins from PlasmoDB and ran-

domly picked up 55 proteins from *300 nuclear proteins.

The definition of increment of diversity

For a discrete state space X with d dimension X:{n1, n2, …,

ni, …, nd}, ni denotes the times of ith state, the Shannon

information entropy (Shannon 1948), a measure of uncer-

tainty and denoted by H(X), is defined as:

HðXÞ ¼ �
Xd

i¼1

Pi logb Pi ð1Þ

where N ¼
Pd

i¼1 ni, Pi = ni/N, Pi indicates probability of

ith state.

From the idea of information, the quantity of the mea-

sured diversity is called measure of diversity, denoted by

D(X), is defined as:

DðXÞ ¼ �
Xd

i¼1

ni logb Pi ¼ �
Xd

i¼1

ni logb

ni

N

¼ N log N �
Xd

i¼1

ni logbni ð2Þ

According to the definition of information entropy,

combining the formula (1), we get

HðXÞ ¼ �
Xd

i¼1

Pi logb Pi ¼ �
Xd

i¼1

ni

N
logb

ni

N
¼ 1

N
D Xð Þ ð3Þ

So we have

DðXÞ ¼ N � HðXÞ ð4Þ

H(X) is the information entropy, which indicates a

measure of the uncertainty associated with a random

variable. The measure of diversity D(X) in formula (4)

means a kind of information description on state space and
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a measure of whole uncertainly and total information of a

system (Laxton 1978).

In general, for two sources of diversity in the same

parameter space of d dimensions X:{n1, n2, …, ni, …, nd}

and Y:{m1, m2, …, mi, …, md}, the increment of diversity

(ID), denoted by ID(X, Y), is defined as:

ID X; Yð Þ ¼ D X þ Yð Þ � D Xð Þ � D Yð Þ ð5Þ

Here, D(X?Y) is the measure of diversity of the sum of

two diversity sources called combination diversity source

space.

It is easily proved that the increment of diversity

(ID(X, Y)) satisfies nonnegative and symmetry. Therefore,

the ID is a quantitative measure of the similarity level of

two diversity sources. The higher the similarity of two

sources, the smaller the ID.

The K-minimum increment of diversity (K-MID)

classifier

The K-nearest neighbor (K-NN) technique has become

extremely popular for a variety of forest inventory map-

ping and estimation applications, such as protein subcel-

lular localization (Chou and Shen 2006a, b, 2007a, b;

Shen and Chou 2007b, c; Shen et al. 2007), subnuclear

protein localization (Shen and Chou 2005a), protein

structural classification (Shen et al. 2005; Zhang et al.

2008a, b), protein fold pattern (Shen and Chou 2006),

membrane protein type (Shen and Chou 2005b; Shen

et al. 2006; Chou and Shen 2007c), enzyme main and sub

functional classification (Shen and Chou 2007a) as well as

signal peptide (Chou and Shen 2007e). Much of this

popularity may be attributed to the non-parametric, mul-

tivariate features of the technique, its intuitiveness, and its

ease of use. The query protein should be classified by a

majority vote of its neighbors, with the protein being

assigned to the class most common amongst its K nearest

neighbors. K is a positive integer, typically small. If

K = 1, then the protein is simply assigned to the class of

its nearest neighbor. Although different distance measures

can be used for this, such as Euclidean distance, Ham-

ming distance (Mardia et al. 1979) and Mahalanobis

distance (Chou 1995), the Euclidean distance is mostly

used. In this paper, the similarity measure of ID is used

for predicting secretory protein.

For an arbitrary protein sequence X to be predicted,

the increment of diversity (ID) between the sequence and

to all stored sequences of the diversity sources estab-

lished by secretory proteins (S) or non-secretory proteins

(N) are computed. K-minimum IDs are selected and the

average ID, denoted by K-MID(X, Y), is calculated as

follows:

K-MID X; Yð Þ ¼ 1

K

XK

i¼1

ID X; Yð Þ ð6Þ

The ID(X, Y) can be calculated by using Eq. 5. Then the

protein X can be predicted as belonging to the category

(secretory (S) or non-secretory (N)) for which the

corresponding K-MID has the minimum value, and can

be formulated as follows:

K - MID X;Yn
� �

¼Min K - MID X;YS
� �

;K - MID X;YN
� �� �

n¼ S;Nð Þ ð7Þ

where n can be secretory and non-secretory proteins and

the Min means taking the minimum value among those in

the parentheses, then the n in Eq. 7 will give the protein to

which the predicted protein sequence Y should belong.

Reduced amino acids alphabets

It has been found that some residues are similar in their

physicochemical features, and can be clustered into groups

because they play similarly structural or functional roles in

proteins (Regan and Degrado 1988; Kamtekar 1993; Henik-

off and Henikoff 1992). The reduced amino acids not only

simplify the complexity of the protein system, but also

improve the ability in finding structurally conserved regions

and the structural similarity of entire proteins. In recent years,

several alphabet reduction techniques have been applied to

protein prediction, such as intrinsically disordered proteins

prediction (Weathers et al. 2004), recognition of protein

structurally conserved regions (Li and Wang 2007), subcel-

lular localization prediction (Oğul and Mumcuoğu 2007) and

peptide and protein classification (Nanni and Lumini 2008).

To investigate how a particular class or property of amino

acids affects prediction accuracy, several reduced amino acid

alphabets with different clustering approaches were dis-

cussed in this study. These cluster methods include Miyaza-

wa–Jernigan matrix (MJM) based on inter-residue contact

energies (Rakshit and Ananthasuresh 2008), Markov models

of evolution (Susko and Roger 2007), BLOSUM62 matrix (Li

et al. 2003), Protein Blocks based on local protein structures

(Etchebest et al. 2007) and BLOSUM50 similarity matrix

(Henikoff and Henikoff 1992).

Protein sequence representation

The amino acid composition (AAC) representation of a

given sequence is composed by 20 different amino acids

with a variety of shapes, size and chemical properties. The

AAC representation has recently been widely utilized in

predicting protein function annotation. To avoid completely

lose the sequence-order information, the pseudo-amino acid

(PseAA) composition or PseAAC was proposed (Chou
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2001; Chou 2005). The essence of Chou’s pseudo-amino

acid composition is to use a discrete model to represent a

protein sample yet without complete losing its sequence-

order information. Ever since the concept of Chou’s

pseudo-amino acid composition was introduced, various

PseAAC approaches have been stimulated to deal with

different problems in proteins and protein-related systems

(Chen et al. 2009; Ding and Zhang 2008; Jiang et al. 2008;

Li and Li 2008b; Lin 2008; Lin et al. 2008; Wang et al.

2008b; Zhang and Fang 2008; Zhang et al. 2008a, b; Zhou

et al. 2007). Owing to its wide usage, recently a very flex-

ible PseAA composition generator, called ‘‘PseAAC’’

(Shen and Chou 2008b), was established at the website

http://chou.med.harvard.edu/bioinf/PseAAC/, by which

users can generate 63 different kinds of PseAA composi-

tion. In this study, the amino acid compositions (AAC) and

dipeptide compositions (DPC) of the reduced amino acid

alphabets are selected to test the K-MID algorithm.

Test and assessment

In statistical prediction, the following three cross-valida-

tion methods are often used to examine a predictor for its

effectiveness in practical application: independent dataset

test, subsampling test, and jackknife test (Chou and Zhang

1995). However, as elucidated by Chou and Shen (2008a,

b) and demonstrated in Chou and Shen (2007d), among the

three cross-validation methods, the jackknife test is deemed

the most objective that can always yield a unique result for

a given benchmark dataset, and hence has been increas-

ingly used by investigators to examine the accuracy of

various predictors (Jiang et al. 2008; Li and Li 2008b; Lin

2008; Lin et al. 2008; Yang and Chou 2008; Zhang and

Fang 2008; Zhang et al. 2008a, b; Zhou 1998; Zhou and

Assa-Munt 2001; Zhou and Doctor 2003; Zhou et al. 2007).

During the process of jackknife test, each protein is singled

out in turn as a test sample, the remaining proteins are used

as training set to calculate test sample’s membership and

predict the class. The prediction performance was evalu-

ated by the sensitivity (Sn), specificity (Sp), positive pre-

dictive value (PPV), accuracy (Acc) and Mathew’s

correlation coefficient (MCC), which defined as follows:

Sn ¼ TP= TPþ FNð Þ ð8Þ
Sp ¼ TN= TNþ FPð Þ ð9Þ
PPV ¼ TP= TPþ FPð Þ ð10Þ
Acc ¼ TPþ TNð Þ= TPþ FNþ TNþ FPð Þ ð11Þ

MCC

¼ TP� TNð Þ � FP� FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FNð Þ � TNþ FNð Þ � TPþ FPð Þ � TNþ FPð Þ

p

ð12Þ

where TP denotes the number of the correctly predicted

secretory proteins, FN denotes the number of the secretory

proteins predicted as non-secretory proteins, FP denotes the

number of the non-secretory proteins predicted as secretory

proteins, and TN denotes the number of correctly predicted

non-secretory proteins.

Result and discussion

To investigate the best K value for predicting secretory

proteins, test has been done by using of the various values

of minimum increment of diversity (MID) K (from 1 to 20).

The prediction results compared with SVM Models based

on the 20 amino acid composition (AAC) are shown in the

Table. 1. For different values of K, it is shown that the

prediction ability is improved along with the K increase, up

to the peak when K equals to 5, and decrease when the

K [ 11. The prediction accuracy (Acc) and MCC are not

changed significantly at 6–11. The performance of pre-

diction achieves 88.89% Acc with 0.78 MCC when K = 5,

better than the best results achieved by the SVM models

with 85.66% Acc and 0.72 MCC when Thr = 0.4. There-

fore, in the following calculations, the K = 5 is used as the

operation parameters.

In order to investigate how a particular class or property

of amino acids affects prediction accuracy and to determine

the minimal amount of information needed for prediction,

three latest reduced amino acids methods, Miyazawa–

Jernigan matrix (MJM) (Rakshit and Ananthasuresh 2008),

Markov models of evolution (MME) (Susko and Roger

2007) and BLOSUM62 matrix (Li et al. 2003), are applied

to predict the secretory proteins of P. falciparum. The

prediction accuracy (Acc) and MCC with the different

number of alphabets N are shown in Fig. 1 and 2, respec-

tively. The results show that the Acc and MCC do not

present significant change when the N at 10–20. The Acc or

MCC with the number of alphabets around 10 performed

similarly with the N from 12 to 20. This regular is similar

to other studies, such as disorder protein prediction

(N = 10), and structure conservative regions prediction

(N = 9). The conclusion indicates that the amino acids

content with similar features of protein sequence can be

clustered properly.

Based on the above discussion, two latest reduced amino

acids alphabets based on Protein Blocks (Etchebest et al.

2007) and BLOSUM50 substitution matrix (Weathers et al.

2004) methods are used to further determine the optimi-

zation of alphabets for secretory protein prediction

(Table. 2). The reduced amino acid alphabet obtained from

Protein Blocks method is a kind of structural alphabet

which is composed of 16 average protein fragments of

five residues in length. Because the reduced amino acid
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alphabet obtained from Protein Blocks method can extract

more useful information in secretory protein sequences,

eliminate some useless information and reduces the

dimension of the feature space, the Protein Blocks method

has been successful used to analyze longer protein frag-

ments and to predict functional regions. And the results

have proven their efficiency both in description and

prediction of longer fragments (Etchebest et al. 2007;

de Brevern 2005), such as local protein structures predic-

tion (Benros et al. 2006), outer membrane proteins analysis

(Martin et al. 2008) and backbone structure prediction

of proteins (de Brevern 2005). The prediction results of

K-MID based on the amino acids composition of the reduced

alphabets with K = 5 are shown in Table. 3.

As Table 3 shown, the sizes of 13, 11 and 9 vectors

achieve 88.89, 87.70 and 87.50% accuracy (Acc) for

Table 1 Prediction result of K-MID compared with the SVM models based on amino acid composition

K-MID(20 AAC) SVM Models(20 AAC)

K Sn(%) Sp(%) PPV(%) Acc(%) MCC Thr Sn(%) Sp(%) PPV(%) Acc(%) MCC

1 83.33 90.08 89.36 86.71 0.74 –1.0 94.84 27.60 – 61.35 0.30

2 84.13 91.27 90.60 87.70 0.76 –0.9 93.25 33.20 – 63.35 0.33

3 83.52 93.25 92.51 88.53 0.77 –0.8 92.86 37.60 – 65.34 0.37

4 83.73 93.65 92.95 88.69 0.78 –0.7 90.48 43.20 – 66.93 0.38

5 84.52 93.25 92.61 88.89 0.78 –0.6 89.29 48.00 – 68.73 0.41

6 83.73 93.25 92.54 88.49 0.77 –0.5 88.89 58.40 – 73.71 0.50

7 83.73 93.25 92.54 88.49 0.77 –0.4 87.70 65.60 – 76.69 0.55

8 82.94 93.25 92.48 88.10 0.77 –0.3 86.90 72.00 – 79.48 0.60

9 82.54 93.25 92.44 87.90 0.76 –0.2 85.71 78.00 – 81.87 0.64

10 82.54 93.25 92.44 87.90 0.76 –0.1 85.32 80.80 – 83.07 0.66

11 82.54 93.65 92.86 88.10 0.77 0.0 83.33 84.00 – 83.67 0.67

12 82.14 92.86 92.00 87.50 0.75 0.1 81.75 85.20 – 83.47 0.67

13 82.14 93.25 92.41 87.70 0.76 0.2 80.56 86.00 – 83.27 0.67

14 82.14 92.86 92.00 87.50 0.75 0.3 79.76 89.60 – 84.66 0.70

15 81.75 92.86 91.96 87.30 0.75 0.4 78.97 92.40 – 85.66 0.72

16 81.75 93.25 92.38 87.50 0.76 0.5 77.78 93.20 – 85.46 0.72

17 81.35 93.25 92.34 87.30 0.75 0.6 76.98 94.40 – 85.66 0.72

18 80.95 92.86 91.89 86.90 0.74 0.7 76.19 95.60 – 85.86 0.72

19 80.95 92.06 91.07 86.51 0.73 0.8 73.02 96.00 – 84.46 0.71

20 80.95 92.06 91.07 86.51 0.73 0.9 70.24 96.40 – 83.27 0.69

21 80.16 92.06 90.99 86.11 0.73 1.0 65.48 98.80 – 82.07 0.68

The bold values show the best results

Fig. 1 Prediction accuracy of K-MID method by using different

reduced amino acids methods

Fig. 2 Prediction Mathew’s correlation coefficient of K-MID method

by using different reduced amino acids methods
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Protein Block method, and the sizes of 15, 10 and 8 vectors

achieved 88.49, 87.70 and 84.92% accuracy for BLO-

SUM50 substitution matrix method. The best results are

88.89% Acc and 0.78 MCC with the 13 vector size, the

same to the prediction performance of 20 amino acid

compositions. When using dipeptide composition as the

input features, the prediction performance is improved

further. The accuracy achieved 89.88% with 0.81 MCC

based on 100 dipeptide compositions (DPC) of BLO-

SUM50 substitution matrix reduced alphabets. The best

prediction accuracy is up to 90.67% by using the 169 DPC

of Protein Blocks reduced alphabets with 0.83 MCC. In

summary, the suitable reduced amino acids alphabets can

improve the predict accuracy by clustering the similar

amino acids and the reduce alphabets also can reduce the

dimensions of the feature space.

In order to examine the performance of our method,

some comparisons with the SVM models program are

made, and the prediction results of two methods based on

different features are listed in Table 4. The results in

Table 4 show that prediction accuracy(Acc) obtained by

our K-MID method based on 20 AAC achieves 88.89%

with 0.78 MCC, about 3.2% higher than the SVM models

with 85.66% Acc and 0.72 MCC. For the prediction based

on 400 dipeptide compositions, the K-MID method

achieves 34.92% sensitivity (Sn) with 100% specificity

(Sp) and the SVM models only achieve 24.21% Sn with the

99.60% Sp, about 10.71% higher than the SVM models.

The sensitivity (Sn) achieves 79.76% with 100% specificity

(Sp) by using 100 dipetide compositions of reduced amino

acids alphabet. The best prediction performance of SVM

models achieves 91.07% Acc with 82.94% Sn, 99.21% Sp

and 0.83 MCC by using the PSSM profiles obtained by

PSI-BLAST. Based on the 169 dipeptide compositions of

reduced amino acids alphabet as the only input vectors, the

K-MID method achieved 90.67% Acc with 81.75% Sn,

99.60% Sp, 99.52% PPV, and 0.83 MCC, which are similar

to the SVM models. The surprising good prediction per-

formance indicates that the K-MID method is indeed a

good predictor for secretory proteins annotation.

Table 2 Two schemes for reducing amino acid alphabet used in our study

Size Protein Blocks Size BLOSUM50 substitution matrix

20 G-I–V-F-Y-W-A-L-M-E-Q-R-K–P-N-D-H–S-T-C 20 G-I–V-F-Y-W-A-L-M-E-Q-R-K–P-N-D-H–S-T-C

13 G-IV-FYW-A-L-M-E-QRK-P-ND-HS-T-C 15 G-FY-W-A-ILMV-E-Q-RK-P–N-D-H–S-T-C

11 G-IV-FYW-A-LM-EQRK-P-ND-HS-T-C 10 G-FYW-A-ILMV-RK-P-EQND-H-ST-C

9 G-IV-FYW-ALM-EQRK-P-ND-HS-TC 8 FWY-CILMV-GA-ST-P-EQND-H-KR

8 G-IV-FYW-ALM-EQRK-P-ND-HSTC 4 FWY-CILMV-AGSTP-EQNDHKR

5 G-IVFYW-ALMEQRK-P-NDHSTC 3 FWYCILMVAGSTPHNQ-DE-KR

The clustered amino acids are shown by bold values

Table 3 The prediction performance of K-MID method for different vector sizes of reduced amino acids alphabets with K = 5

K = 5 Protein Blocks BLOSUM50 substitution matrix

Size 13 11 9 8 5 15 10 8 4 3

Sn(%) 85.32 85.32 84.92 85.71 82.14 84.92 86.11 82.14 75.00 76.98

Sp(%) 92.46 90.08 90.08 88.49 77.38 92.06 89.29 87.70 85.71 80.56

PPV(%) 91.88 89.58 89.54 88.16 78.41 91.45 88.93 86.97 84.00 79.84

Acc(%) 88.89 87.70 87.50 87.10 79.76 88.49 87.70 84.92 80.36 78.77

MCC 0.78 0.75 0.75 0.74 0.60 0.77 0.75 0.70 0.61 0.58

The bold values show the best results

Table 4 Comparisons of K-MID method with the SVM models for

secretory protein prediction

Features Sn(%) Sp(%) PPV(%) Acc(%) MCC

20 AAC (SVM) 78.97 92.40 – 85.66 0.72

20 AAC (K-MID, K = 5) 84.52 93.25 92.61 88.89 0.78

400 DPC (SVM) 24.21 99.60 – 61.75 0.36

400 DPC (K-MID, K = 5) 34.92 100.00 100.00 67.46 0.46

PSSM profiles (SVM) 82.94 99.21 – 91.07 0.83

Split amino acids (SVM) 58.73 99.60 – 79.00 0.64

Hydrophobic (SVM) 82.94 95.22 – 89.07 0.79

pI at 25�C (SVM) 82.54 94.44 – 88.49 0.78

13 AAC(K-MID, K = 5) 82.94 96.03 95.43 89.48 0.80

169 DPC (K-MID, K = 5) 81.75 99.60 99.52 90.67 0.83

10 AAC (K-MID, K = 5) 86.11 89.29 88.93 87.70 0.75

100 DPC (K-MID, K = 5) 79.76 100.00 100.00 89.88 0.81

The best results are shown by bold values
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Conclusion

For protein prediction and classification, most of the

existing methods are based on a group of features that

possess kinds of discriminative information from the pro-

tein sequence. In this study, the K-MID method is firstly

developed to predict secretory protein of malaria parasite.

The successful prediction performance indicates that amino

acid composition and ID combined with K-nearest neigh-

bor method are quite suitable to predict secretory protein.

The reduced amino acids alphabets can reduce the

dimension of inputting vector and improve the prediction

accuracy. The results obtained in our study have also

demonstrated that amino acid alphabet obtained from

Protein Blocks method has the ability of abstracting useful

functional and conservative information and it is suitable

for secretory protein prediction. When compared with the

work of Verma et al. (2008), the results show that the

sensitivity in our method is less than result in Verma et al.

(2008), but the specificity is higher in our results. More-

over, the overall accuracy is higher in our method than

results in the work of Verma et al. (2008). We hope this

algorithm will assist annotation of protein function and

help for drug and vaccine design against malaria caused by

P. falciparum.
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