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Abstract Apoptosis proteins have a central role in the

development and the homeostasis of an organism. These

proteins are very important for understanding the mecha-

nism of programmed cell death. The function of an

apoptosis protein is closely related to its subcellular loca-

tion. It is crucial to develop powerful tools to predict

apoptosis protein locations for rapidly increasing gap

between the number of known structural proteins and the

number of known sequences in protein databank. In this

study, amino acids pair compositions with different spaces

are used to construct feature sets for representing sample of

protein feature selection approach based on binary particle

swarm optimization, which is applied to extract effective

feature. Ensemble classifier is used as prediction engine, of

which the basic classifier is the fuzzy K-nearest neighbor.

Each basic classifier is trained with different feature sets.

Two datasets often used in prior works are selected to

validate the performance of proposed approach. The results

obtained by jackknife test are quite encouraging, indicating

that the proposed method might become a potentially

useful tool for subcellular location of apoptosis protein, or

at least can play a complimentary role to the existing

methods in the relevant areas. The supplement information

and software written in Matlab are available by contacting

the corresponding author.
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Introduction

Computational approaches, such as structural bioinfor-

matics (Argos et al. 1982; Chou 2004a, b, c, d, 2005a),

molecular docking (Chou et al. 2003; Gao et al. 2007; Li

et al. 2007; Wang et al. 2008; Zhang et al. 2006a, b, c;

Zheng et al. 2007), molecular packing (Chou et al. 1984,

1988), pharmacophore modeling (Chou et al. 2006; Sirois

et al. 2004), Mote Carlo simulated approach (Chou 1992),

diffusion-controlled reaction simulation (Chou and Jiang

1974; Chou and Zhou 1982; Li and Chou 1976), bio-

macromolecular internal collective motion simulation

(Chou 1988), QSAR (Dea-Ayuela et al. 2008; Du et al.

2005, 2008a, b; Gonzalez-Diaz et al. 2006, 2008; Prado-

Prado et al. 2008), protein subcellular location prediction

(Chou and Shen 2006a, b, 2007a, c, 2008a; Shi et al. 2008),

identification of membrane proteins and their types (Chou

and Shen 2007b), identification of enzymes and their

functional classes (Shen and Chou 2007a), identification of

GPCR and their types (Chou 2005b; Chou and Elrod 2002),

identification of proteases and their types (Chou and Shen

2008b), protein cleavage site prediction (Chou 1993, 1996;

Q. Gu � Y.-S. Ding (&)

College of Information Sciences and Technology,

Donghua University, 201620 Shanghai, China

e-mail: ysding@dhu.edu.cn

Y.-S. Ding

Engineering Research Center of Digitized Textile

& Fashion Technology, Ministry of Education,

201620 Shanghai, China

X.-Y. Jiang

School of Chemistry and Chemical Engineering,

Henan Institute of Science and Technology,

Xinxiang, 453003 Henan, China

T.-L. Zhang

Research Institute of Highway,

Research Institute of Highway Ministry of Communications,

100088 Beijing, China

123

Amino Acids (2010) 38:975–983

DOI 10.1007/s00726-008-0209-4



Shen and Chou 2008), and signal peptide prediction (Chou

and Shen 2007d; Shen and Chou 2007b) can timely provide

very useful information and insights for both basic research

and drug design and hence are widely welcome by science

community. The present study is attempted to develop a

computational approach for predicting the subcellular

localization of apoptosis proteins in hope to stimulate the

development of the relevant areas (Emanuelsson et al.

2007; Fauchere et al. 1988; Janin 1979; Janin and Wodak

1978).

Apoptosis is a form of cell death which plays a central

role in normal tissue homeostasis by regulating a balance

between cell proliferation and death (Chou et al. 1997,

1999, 2000; Chou 2004a, b, c, d, 2005a, b, c). Cells

undergoing apoptosis usually exhibit a characteristic mor-

phology, including fragmentation of the cell into

membrane-bound apoptotic bodies, nuclear and cytoplasm

condensation and hemolytic cleavage of the DNA into

small oligonucleosomal fragments (Kerr et al. 1972; Steller

1995). Unregulated excessive apoptosis may cause various

degenerative and autoimmune diseases. Conversely, an

inappropriately low rate of apoptosis may promotes sur-

vival and accumulation of abnormal cells that can give rise

to tumor formation and prolonged autoimmune stimulation

such as in cancers and Graves disease (Peter et al.

1997).The study on apoptosis proteins can help us to

understand the mechanism of apoptosis and provide many

targets for therapeutic intervention (Cosic 1994; Du and Li

2006; Hong et al. 1999; Hopp and Woods 1981; Huang and

Shi 2005; Chou 2000, Chou 2004a, b, c, d, 2005a, b, c).

The function of a protein is closely correlated with its

subcellular location (Cai and Chou 2003; Cai et al. 2003;

Chou 2002; Chou and Cai 2002, 2004, 2005; Chou and

Shen 2006a, b, c; Shen et al. 2007b; Shen et al. 2005; Shen

and Chou 2007; Chou and Elrod 1999; Chou 2000, 2001;

Feng 2002). Thus, the knowledge of apoptosis proteins

subcellular location will help to understand the apoptosis

mechanism and functions of proteins (Schulz et al. 1999;

Reed and Paternostro 1999). The knowledge of apoptosis

proteins function is very important for understanding the

mechanism of programmed cell death. The malfunction of

apoptosis or cell death will lead to some formidable dis-

eases, such as cancer (Adams and Cory 1998; Evan and

Littlewood 1998), autoimmune diseases, ischemic damage,

or neurodegenerative disease (Schulz et al. 1999). With the

rapid increasing of the number of unknown function pro-

tein sequences in protein databank, it is crucial to develop

fast and powerful computational tools and algorithms to

predict apoptosis proteins subcellular location directly

from their amino acid sequences.

Several prediction algorithms have been reported for

subcellular location of apoptosis protein. Zhou and Doctor

(2003) have predicted four kinds of subcellular locations

by using amino acid composition (AAC) representing

sample of protein, and covariant discriminate algorithm of

Chou (1995) as prediction engine. They obtained overall

accuracy 72.5% by jackknife test. Bulashevska and Eils

(2006) achieved accuracies 85.7 and 89.9% using single

Bayesian classifier and hierarchical ensemble classifier,

respectively. Zhang et al. (2006b) developed a new

encoding method with grouped weight for protein

sequence. Meanwhile, they constructed a larger dataset

with 225 apoptosis protein belonged to four subcellular

locations. A prediction algorithm of dual-layer support

vector machine has been developed (Zhou et al. 2008).

Chen and Li (2007a, b) have developed two prediction

approaches based on increment of diversity (ID) and

increment of diversity with support vector machine

(ID_SVM), which are validated on a new dataset covering

six subcellular compartments and 317 apoptosis proteins.

Compare to lots of research on protein subcellular

location (Chou and Shen 2007b), the studies on apoptosis

protein subcellular location are limited. It is mainly due to

the flexibility of the apoptosis proteins distribution and the

limited of apoptosis proteins annotated. In this study, we

propose a new prediction approach based on ensemble

classifier and feature selection for prediction of apoptosis

protein subcellular location based on the analysis above

mentioned. A new kind of ensemble classifier is introduced

as prediction engine. The methods of ensemble classifier,

which has the capability of reducing the variance caused by

the peculiarities of a single training set and hence be able to

learn a more expressive concept in classification than a

single classifier, are proposed in various attributes of pro-

tein science (Shen and Chou 2006a, b, 2007a; Shen et al.

2007a; Kedarisetti et al. 2006; Chou and Shen 2006a,

2006b, 2007a). The basic classifier is fuzzy K-nearest

neighbor (FKNN) (Keller et al. 1985) classifier, which is a

simple and powerful classifier often used in identifying

various protein attributes (Huang and Li 2004; Shen et al.

2006; Huang et al. 2006). For each basic classifier within

ensemble classifier, the input data is k-spaced amino acid

pair’s composition after feature selection. The test results

obtained by jackknife test indicate that the proposed

method might be a useful tool for subcellular location of

apoptosis protein, or at least can play a complimentary role

to the existing methods in the relevant areas.

Materials and methods

Datasets

Two datasets constructed by the previous investigators are

used to examine the power of the new method. The dataset

CL317 is a larger one with 317 apoptosis proteins
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constructed by Chen and Li (2007a), which has 112 cyto-

plasmic proteins, 55 membrane proteins, 34 mitochondrial

proteins, 17 secreted proteins, 52 nuclear proteins, and 47

endoplasmic reticulum proteins. The dataset ZW225 with

225 apoptosis proteins in the work (Zhang et al. 2006b)

includes four subcellular locations with 41 nuclear pro-

teins, 70 cytoplasmic proteins, 25 mitochondrial proteins,

and 89 membrane proteins.

K-spaced amino acid pairs

As mentioned in prior works, amino acids (AA) composition

vector of protein sequence is a simple sequence representa-

tion that is widely used in prediction of various structural

aspects. Given 20 alphabetically ordered (A, C,D, E, F, G, H,

I, K, L, M, N, P, Q, R, S, T, V, W, Y) AA, which are denoted as

A1, A2,…, A19, and A20, and the number of occurrences of Ai

in the sequence that is denoted as xi, the composition vector is

defined as (x1/L, x2/L,…, xi/L), where L is the length of the

sequence (Chen et al. 2006b, 2007b; Kawashima et al. 1999;

Nakashima and Nishikawa 1994; Park and Kanehisa 2003;

Pincus 1991; Richman and Moorman 2000; Shi et al. 2007;

Tanford 1962; Zimmerman et al. 1968). However, the

composition vector is insufficient to represent a sequence,

since it only counts the frequencies of individual AAs. At the

same time, frequencies of AA pairs (dipeptides) provide

more information since they reflect interaction between local

(with respect to the sequence) AA pairs. Based on the fre-

quency of collocation of AA pairs in the sequence, all

dipeptides in the sequence can be counted. Since there are

400 possible dipeptides (AA, AC, AD,…,YY), a feature vector

of that size is used to represent occurrence of these pairs in

the sequence. Each AA pairs occurrence rate is (n1/(L - 1),

n2/(L - 1),…, ni/(L - 1)). Since short-range interactions

between AAs, rather than only interactions between imme-

diately adjacent AAs, have impact of folding, the proposed

representation also considers collocated pairs of AAs, i.e.,

the AA pairs that are separated by p other AAs (e.g., the AA

pairs form is AA1A2…ApA, where A1A2…Ap are other AA).

In summary, these pairs can be understood as the dipeptides

with gaps. For each value of p, there are 400 corresponding

feature values. At the same time, each AA pairs occurrence

rate is reduced to (n1/(L - p - 1), n2/(L - p - 1),…, ni/

(L - p - 1)). Collocated pairs for p = 0, 1,…, 20 are con-

sidered for the reason that the distance of AA in motif

database PROSITE is up to 20 (Chen et al. 2007a; Falquet

et al. 2002). As a result, we propose representation that

includes total of 400(20 ? 1) ? 20 = 8,420 features.

Binary particle swarm optimization

Particle swarm optimization (PSO) is a population-based

stochastic optimization technique, which was developed by

Kennedy and Eberhart (1995). It is one of the evolutionary

optimization methods inspired by nature which include evo-

lutionary strategy, evolutionary programming, genetic

algorithm and genetic programming. PSO is distinctly dif-

ferent from other evolutionary-type methods in that it does not

use the filtering operation (such as crossover and/or mutation)

and the members of the entire population are maintained

through the search procedure (Kennedy et al. 2001).

In the PSO algorithm, every solution is a bird of the

flock and is referred to as a particle: in this framework the

birds, besides having individual intelligence, also develop

some social behavior and coordinate their movement

towards a destination.

Initially, the process starts from a swarm of particles, in

which each of them contains a solution to the hydraulic

problem that is generated randomly, and then one searches

the optimal solution by iteration. The ith particle is asso-

ciated with a position in an s-dimensional space, where M

is the number of variables involved in the problem; the

values of the M variables which determine the position of

the particle represent a possible solution of the optimiza-

tion problem. Each particle i is completely determined by

three vectors: its current position Xi, and its velocity Vi as

follows:

Current position Xi ¼ ðxi1; xi2; . . .; xiMÞ ð1Þ
Flight velocity Vi ¼ ðvi1; vi2; . . .; viMÞ ð2Þ

This algorithm simulates a flock of birds which

communicate during flight. Each bird looks at a specific

direction (its best ever attained position), and later, when

they communicate among themselves, the bird which is in

the best position is identified. With coordination, each bird

moves also towards the best bird using a velocity which

depends on its present velocity. Thus, each bird examines

the search space from its current local position, and this

process repeats until the bird possibly reaches the desired

position. Note that this process involves as much individual

intelligence as social interactivity; the birds learn through

their own experience (local search) and the experience of

their peers (global search).

In each cycle, one identifies the particle which has the

best instantaneous solution to the problem; the position of

this particle subsequently enters into the computation of the

new position for each of the particles in the flock. This

calculation is carried out according to

Xkþ1
id ¼ Xk

id þ Vkþ1
id ð3Þ

vkþ1
id ¼ vk

id þ C1 randðÞðpbestk
id � xk

idÞ
þ C2 randðÞðgbestk

d � xk
idÞ ð4Þ

Here, rand() represents a function which creates random

numbers between 0 and 1 (two independent random

numbers enter Eq. 4); pbestid
k represents the best position
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of each particle i reached in kth cycle whereas gbest

represents the best result of global search. C1 and C2 are

two positive constants which are called learning factors or

rates which are usually set to 2.

PSO was originally introduced as an optimization

technique for real-number spaces. However, many opti-

mization problems occur in a space featuring discrete,

qualitative distinctions between variables and between

levels of variables. Kennedy and Eberhart introduced bin-

ary PSO (BPSO), which can be applied to discrete binary

variables. In a binary space, a particle may move to near

corners of a hypercube by flipping various numbers of bits;

thus, the overall particle velocity may be described by the

number of bits changed per iteration (Kennedy and Eber-

hart 1997). In BPSO, each particle position Xi is set to 1 or

0, but the flight velocity Vi are not limited. In our paper,

BPSO is used as feature selection algorithm. All the AA

pairs feature of apoptosis proteins above mentioned com-

pose of particle space. If the ith feature is selected, then

Xi = 1; if not, Xi = 0. The fitness function of the feature

selection algorithm is formulated by Eq. 5.

fitness ¼ Ac� k � nNewFeature=nAllFeature ð5Þ

In Eq. 5, Ac represents the accuracy of Jackknife test

(Chou and Zhang 1995) on training dataset, nNewFeature

represents the number of newly features selected,

nAllFeature represents the number of all features, and k

is a parameter represents the fixed ratio of feature selected

in the algorithm. In our paper, k = 1.

Based on the velocity of particles in BPSO calculated by

Eq. 4, each particle’s new position Xid
k?1 can be get as

follows:

xkþ1
id ¼

R(0;1) [0:7 if vkþ1
id \2a=3

xk
id if 2a=3\ ¼ vkþ1

id \a

pbestðidÞ if a\ ¼ vkþ1
id \(1þ a)=2

gbest if (1þ a)=2\ ¼ vkþ1
id \1

8
>>>><

>>>>:

ð6Þ

where a is a parameter represents updating of particles, in

our research a = 1.

Ensemble classifier

The framework of the ensemble classifier is illustrated in

Fig. 1. The basic classifier is FKNN classifier which is

trained on the k-spaced amino acid pair’s composition after

feature selection. Combining a set of basic classifiers, the

ensemble classifier is formulated by

C ¼ C1fBiAACðp ¼ 0Þg � C2fBiAACðp ¼ 1Þg
� � � � � CnfBiAACðp ¼ nÞg ð7Þ

where C denotes the ensemble classifier, Ci{BiAAC(p = i)},

i = 0, 1, , n, represent the basic classifiers trained by

proteins based on the feature selection results of p-spaced

amino acid pairs composition. The symbol � is the

combination operator. Here, the basic classifier is the

FKNN classifier (Keller et al. 1985), which combines

the fuzzy set theory with KNN algorithm. The detailed

algorithm description of the FKNN can be found in the

work (Huang and Li 2004; Shen et al. 2006; Zheng et al.

2007). The output of each basic classifier is the fuzzy

membership value of subcellular location of apoptosis

protein. A fuzzy membership matrix can be formulated as

Eq. 8
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Fig. 1 The flowchart of

prediction approach and

framework of ensemble

classifier
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m1
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ð8Þ

where c is the number of subcellular location and n is the

number of k-spaced amino acid pair.

Through fusing the output of each basic classifier, the

fuzzy membership value of output of ensemble classifier

can be obtained.

f comb
i ðuiÞ ¼

1

n

Xn

j¼1

uiðjÞ ð9Þ

where ui = (mi
1(x), mi

2(x),…, mi
n(x)), i = 1, 2,…, c, ‘‘comb’’

express the rule of fusion. The final result is the maximum

of fi in Eq. 10.

predicted ¼ arg maxðfiÞ
i¼1;2;...;c

ð10Þ

Fuzzy K-nearest neighbor classifier

Combining the fuzzy set theory with KNN algorithm,

Keller has proposed a new method named as FKNN

classifier algorithm (Keller et al. 1985). The fuzzy

membership of a sample of protein is assigned to dif-

ferent subcellular location according to the formulation

as below:

uiðpÞ ¼
Pk

j¼1 ui pðjÞ
� �

p� pðjÞ
�
�

�
��2=ðm�1Þ� �

Pk
j¼1 p� pðjÞk k�2=ðm�1Þ
� � ; i ¼ 1; . . .; c

ð11Þ

where k is the number of nearest neighbors, ui(p) is the

membership value of a protein sample to structural class i.

m is the fuzzy parameter, which determines the weight of

distance of each neighbor to membership value. ||p - p(j)||

is the distance between the test protein sample and it

nearest neighbor samples, various distance functions can be

chosen, Here, we use Euclidean distance. ui(p
(j)) is the

membership value of the jth nearest neighbor to ith

subcellular location. It is assigned in crispest way, which

is illuminated as below.

ui pðjÞ
� �

¼ 1 if pðjÞ 2 Ci

0 otherwise

�

ð12Þ

When all memberships of each subcellular location are

calculated, the test protein sample is assigned to the class

with highest membership value. As the prior work we did,

it is a useful prediction engine (Zhang et al. 2006a, b, c,

2008). For the reason that p = 0, 1,…, 20 in feature

selection in our research, 21 FKNN are selected as basic

classifiers of ensemble classifier.

Performance measurement

To measure the quality of apoptosis protein subcellular

locations prediction, it is convenient to introduce an

accuracy matrix [Mii] of size c 9 c (c is the number of

compartments to be predicted). The element Mii of the

accuracy matrix is the number of proteins to be predicted in

subcellular location j, which are actually in subcellular

location i.

Three indexes are applied to evaluate the prediction

accuracy, which are sensitivity (Sn), specialty (Sp), and

Matthew’s correlation coefficients (MCC).

Sn ¼
Mii

Pc
j¼1 Mij

ð13Þ

Sp ¼
Mii

Pc
j¼1 Mji

ð14Þ

Ac ¼
Xc

i¼1

Mii

 !,
Xc

i¼1

Xc

j¼1

Mij

 !

ð16Þ

Sn represents the accuracy, and Sp represents the

reliability in prediction. MCC is a single parameter

characterizing the matching degree between the observed

and predicted structural classes.

Results and discussion

In statistical prediction, the following three cross-validation

tests are often used to examine the power of a predictor:

independent dataset test, sub-sampling (such fivefold or ten-

fold sub-sampling) test, and jackknife test (Chou and Zhang

MCC ¼
Mii

Pc
k 6¼i

Pc
j 6¼i Mjk

� �
�

Pc
j 6¼i Mij

� �
�

Pc
j 6¼i Mji

� �

Mii þ
Pc

j6¼i Mij

� �
Mii þ

Pc
j 6¼i Mji

� � Pc
k 6¼i

Pc
j6¼i Mjk þ

Pc
j6¼i Mji

� � Pc
k 6¼i

Pc
j 6¼i Mjk þ

Pc
j6¼i Mij

� �h i1=2
ð15Þ
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1995; Cai et al. 2001; Zhou and Assa-Munt 2001; Zhou

1998). Of these three, however, the jackknife test is thought

the most rigorous and objective that can always yield a unique

result for a given benchmark dataset, as elucidated in (Zhou

and Cai 2006; Chou and Shen 2008a) and demonstrated by

Eq. 50 of (Chou and Shen 2007c), and hence has been used

by more and more investigators (e.g., Chen et al. 2006a, b;

Gao et al. 2005a, b; Liu et al. 2005a; Liu et al. 2005b; Chou

and Shen 2006a, b, 2007a; Xiao et al. 2005; 2006a, b; Lin and

Li 2007a, b; Zhang et al. 2006a, b; Zheng et al. 2007) in

examining the power of various prediction methods.

Firstly, the dataset CL317 (Chen and Li 2007a) is

applied to validate our research approach. The dimension

of protein features and jackknife test result are showed in

Table 1.

From Table 1, we can see that the features dimension of

different k-space has been reduced, while the jackknife

accuracy of each basic classifier reasonably increases after

feature selection. The reason for that is using BPSO as the

feature selection method can reduce the redundancy fea-

tures efficiently.

After ensemble the 21 FKNN classifiers as prediction

engine, the jackknife results on CL137 dataset are listed in

Table 2.

As shown in Table 2, the overall accuracy of jackknife test

is 91.5% by using ensemble classifier with 21 trained FKNN

weak classifiers, 1–3% higher than using only one FKNN

classifier (Table 1). The reason is listed as follows: the

ensemble classifier, which has the capability of reducing the

imbalance caused by the peculiarities of a single training set

and hence be able to learn a more expressive concept in

classification than a single classifier, are proposed in various

attributes of protein science (Shen and Chou 2006a, b, 2007a).

From the Table 2 we also can find two results: firstly, the result

of our approach is obviously higher than ID (Chen and Li

2007a) and ID_SVM (Chen and Li 2007b) in the same dataset.

The reason is our protein features after feature selection are

more effective than that of two methods. From Table 2, we

can see the jackknife results are obviously higher in Cyto-

plasmic, Nuclear proteins and endoplasmic reticulum location

than ID and ID_SVM methods.

In order to validate the performance of the proposed

approach further, the dataset ZW225 (Zhang et al. 2006b)

is adopted. The jackknife results are shown in Table 3.

As shown in Table 3, the overall prediction accuracy

Ac(%) of this study is the highest both in total accuracy and

success rate in each subcellular compartment. What is more,

from the Tables 2 and 3 we can see the desirable values of Sn,

Sp, MCC, which also verify the objective of jackknife test.

Conclusions

In this paper, binary particle swarm optimization (BPSO)

is applied to extract effective feature, and AA pair

Table 1 The results of feature selection for different space in k-

spaced amino acid pairs

p = 0 p = 1 p = 2 … p = 21

Dimension

Before feature selection 400 400 400 … 400

After feature selection 79 164 131 … 104

Accuracies of Jackknife (%)

Before feature selection 85.8 87.5 83.5 … 85.8

After feature selection 87.7 89.6 89.0 … 88.3

Table 2 The results by jackknife test on the dataset CL317

Subcellular compartment This paper ID (Chen and Li 2007a) ID_SVM (Chen and Li 2007b)

Sn (%) Sp (%) MCC Sn (%) Sp (%) MCC Sn (%) Sp (%) MCC

Cytoplasmic 98.2 90.2 0.907 81.3 93.8 0.80 91.1 85.0 0.80

Membrane protein 83.6 97.9 0.887 81.8 81.8 0.77 89.1 84.5 0.83

Mitochondrial 79.4 100.0 0.880 85.3 70.7 0.74 79.4 79.4 0.77

Secreted proteins 82.4 100.0 0.902 88.2 55.6 0.68 58.8 76.9 0.65

Nuclear proteins 90.4 100.0 0.941 82.7 74.1 0.73 73.1 76.0 0.69

Endoplasmic reticulum 97.9 76.7 0.841 83.0 100 0.90 87.2 97.6 0.91

Ac (%) 91.5 – – 82.7 – – 84.2 – –

Table 3 The results by jackknife on the dataset ZW225

Subcellular

compartment

EBGW_SVM

(Zhang et al.

2006b)

ID_SVM

(Chen and

Li 2007b)

This paper

Accuracies (%) Sn (%) Sp (%) MCC

Nuclear proteins 63.4 73.2 80.5 82.5 0.830

Cytoplasmic 90.0 92.9 94.3 89.4 0.824

Membrane

protein

93.3 91.0 94.4 90.3 0.863

Mitochondrial 60.0 68.0 60.0 100 0.756

Ac(%) 83.1 85.8 88.0
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compositions with different spaces are used to construct

feature sets for protein feature selection. In order to

increase prediction accuracy, ensemble classifier is applied

as prediction engine, of 21 classifier is the FKNN (fuzzy K-

nearest neighbor) trained with different feature sets. Two

datasets CL317 and ZW225 are selected to validate the

performance of proposed approach, the jackknife result are

91.5 and 88.0%, respectively, which both are the better

than other methods. The results indicate that the proposed

method will be a potentially useful tool for subcellular

location of apoptosis protein.
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