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Abstract Structural class characterizes the overall fold-

ing type of a protein or its domain. Most of the existing

methods for determining the structural class of a protein are

based on a group of features that only possesses a kind of

discriminative information for the prediction of protein

structure class. However, different types of discriminative

information associated with primary sequence have been

completely missed, which undoubtedly has reduced the

success rate of prediction. We present a novel method for

the prediction of protein structure class by coupling the

improved genetic algorithm (GA) with the support vector

machine (SVM). This improved GA was applied to the

selection of an optimized feature subset and the optimi-

zation of SVM parameters. Jackknife tests on the working

datasets indicated that the prediction accuracies for the

different classes were in the range of 97.8–100% with an

overall accuracy of 99.5%. The results indicate that the

approach has a high potential to become a useful tool in

bioinformatics.

Keywords Feature selection � Genetic algorithm �
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Introduction

The concept of protein structure classes, which was intro-

duced by Levitt and Chothia in 1976, was initially based on

a visual inspection of polypeptide chain topologies in a

dataset of 31 globular proteins (Levitt and Chothia 1976).

According Levitt and Chothia’s definition (1976), a protein

of known structure can generally be categorized into one of

four structural classes: all-a, all-b, a/b, and a + b. Since

the implementation of this classification, the structural

class has become one of the most important features for

characterizing the overall folding type of a protein, and it

has played an important role in molecular biology, cell

biology, pharmacology, rational drug design, and many

other related fields (Chen et al. 2006a; Chou 1992, 2004;

Chou 2000; Feng et al. 2005; Kedariseti et al. 2006).

During the past three decades, many methods have been

proposed for predicting protein structure class, such as the

Mahalanobis distance approach (Chou 1995; Chou and

Zhang 1994), covariant discrimination approach (Chou and

Maggiora 1998), information theory (Jin et al. 2003), arti-

ficial neural network (Cai and Zhou 2000; Metfessel et al.

1993), fuzzy clustering (Shen et al. 2005), support vector

machine (SVM) (Cai et al. 2002, 2001; Chen et al. 2006a, b;

Sun and Huang 2006) and boosting (Cai et al. 2006; Feng

et al. 2005). The successes in predicting protein structural

classification have, in particular, greatly stimulated the

development of predicting other attributes of proteins

(Chou 2005), such as subcellular localization (Cedano et al.

1997; Chou and Elrod 1999; Chou and Shen 2007d, 2008),

among many others (Chou and Elrod 2002, 2003; Guo et al.

2006; Kuric 2007; Liu et al. 2005a; Shen and Chou 2007c;

Shen et al. 2007a, b; Wang et al. 2004, 2005b, 2006; Zhang

SW et al. 2006). Many predictors have been proposed to

predict protein structure classes with their amino acid

composition (Bahar et al. 1997; Chou 1995; Chou and

Zhang 1992; Zhang and Chou 1992; Zhang et al. 1995;

Zhou and Assa-Munt 2001; Zhou et al. 1992). However, one

of the reasons for the lower successful prediction rate may

be the complete lack of sequence-order effects in the
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primary sequence. To take into account the sequence-order

effects, a diverse set of descriptors were proposed for

enhancing the prediction quality; these include pair-coupled

amino acid composition (Chou 1999a), polypeptide com-

position (Luo et al. 2002), pseudo-amino acid composition

(Chen et al. 2006a, b; Chou 2001; Xiao et al. 2006b), var-

ious auto-correlation descriptors (Feng and Zhang 2000;

Lin and Pan 2001; Horne 1988), and other composition

factors (Du et al. 2003, 2006). Since the concept of Chou’s

pseudo-amino acid composition was introduced, various

pseudo-amino acid composition approaches have been

developed to deal with the varieties of problems

encountered in proteins and protein-related systems

(Aguero-Chapin et al. 2006; Caballero et al. 2007; Cai and

Chou 2006; Chen and Li 2007a, b; Chen et al. 2006a, b;

Chou and Shen 2008; Diao et al. 2007; Du and Li 2006;

Fang et al. 2008; Gao et al. 2005; Gonzalez-Diaz et al. 2006,

2007a, b, c; Kurgan et al. 2007; Li and Li 2007; Lin and

Li 2007a, b; Liu et al. 2005a, b; Mondal et al. 2006; Mundra

et al. 2007; Pan et al. 2003; Pu et al. 2007; Shen and Chou

2005a, b, 2006, 2007c; Shen et al. 2006, 2007a, b; Shi et al.

2007, 2008; Wang et al. 2004, 2006; Xiao et al. 2006a, b;

Zhang SW et al. 2006, 2007; Zhang TL et al. 2006; Zhang

and Ding 2007; Zhou et al. 2007; ). Due to its wide usage, a

very flexible pseudo-amino acid composition generator,

called ‘‘PseAAC’’ (Shen and Chou 2008), was recently

made available at the website http://chou.med.harvard.edu/

bioinf/PseAAC/, enabling users ton generate 63 different

kinds of PseAA composition. Chou and Cai (2002) pro-

posed a completely different approach, the so-called

functional domain composition, to incorporate the infor-

mation of various function types. The validity of their

approach has been tested by numerous previous investiga-

tions (Cai and Chou 2005a, b; Chou and Cai 2004).

Unfortunately, most of the existing methods are based on a

group of features that only possesses a kind of discrimina-

tive information for the prediction of protein structure class.

However, different types of discriminative information

associated with primary sequence have been completely

missed, which undoubtedly has reduced the success rate of

prediction. Empirical studies have demonstrated that the

merging of descriptors should increase the predictive

accuracy if the descriptors represent different types of dis-

criminative information. Alternatively, the merging of

descriptors will simultaneously increase the information

redundancy that could, in turn, decrease the predictive

accuracy (Kohavi and John 1997). Therefore, there is a need

to explore whether an effective combination of descriptors

could help to enhance predictive performance.

The SVM, firstly proposed by Cortes and Vapnik (1995),

is an excellent machine learning method. Compared with

other machine learning systems, SVM has many attractive

features, including the absence of local minima, speed and

scalability, and the ability to condense information con-

tained in the training set (Chen et al. 2006b). In recent years,

SVMs have performed well in predicting protein secondary

structure (Hua and Sum 2001), subcellular localization

(Chou and Cai 2002; Kim et al. 2006; Yu et al. 2006; Zhang

ZH et al. 2006), membrane protein types (Cai et al. 2004;

Wang et al. 2004), among others. When using a SVM for

predicting protein diverse attributes, two problems are

encountered, namely the choice of the optimal features

subset and the set of the kernel parameters. The choice of the

optimal features subset is how to choose the optimal feature

subset that is relevant to protein attributes. Large numbers of

features fed to SVM can increase computational complexity

and cost (Shen et al. 2007a, b), suffer from the curse of

dimensionality and the risk of overfitting and also impede

the identification of some biologically mechanism that

describe the relationship between the protein and its attri-

butes. In contrast, when a small feature set that is not

relevant to protein attributes is used, the result can be bad

generalization performance and accurateness. Conse-

quently, the selection of an optimized feature subset is

necessary to speed up computation and to improve the

generalization performance of the SVM. The choice of the

set of the kernel parameters involves how to set the kernel

parameters so that the performance of SVM can be brought

into full play. These parameters include the penalty constant

C and the parameters in the kernel function (width parameter

r of radial basis function, etc.), and they affect more or less

the performance of the SVM (Yuan and Chu 2007). Pro-

viding adequate solutions to these two problems is crucial

because the feature subset choice influences the appropriate

kernel parameters, and vice versa (Huang et al. 2008).

Unfortunately, SVMs do not offer the option of a free

choice of the optimal features subset and the set of the kernel

parameters. In practice, we usually choose a kernel function

and set the kernel parameters by experience when a SVM

system is constructed. Furthermore, the grid search algo-

rithm is often utilized to find the best kernel parameters when

the radial basis function is used; however, the algorithm is

time consuming and does not perform well (Hsu and Lin

2002; LaValle and Branicky 2002). The principal compo-

nent analysis (PCA) and t test are also applied when

choosing the optimal features subset when a SVM is used,

and although the efficiency of the filter approach of PCA and

the t test is high, the results of these methods are poor. In fact,

a number of different heuristic algorithms, such as the par-

ticle swarm optimization algorithm (Shen et al. 2007a, b),

ant colony optimization algorithm (Sivagaminathan and

Ramakrishnan 2007), artificial immunization algorithm

(Yuan and Chu 2007), and genetic algorithm (GA), have

been applied for feature selection. The basic idea of GA is to

imitate life evolution in nature according to Darwinian sur-

vival of the fittest principle (Jalali-Heravi and Kyani 2007;
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Lv et al. 2003). GA can effectively search the interesting

space and easily solve complex problems without requiring

a priori knowledge about the space and the problem. These

characteristics of GA make it possible to simultaneously

optimize the feature subset and the SVM parameters.

The objective of the research reported here was to

develop an effective approach by combining existing

descriptors for protein structure class prediction based on

an improved GA and SVM. The improved GA was used to

simultaneously optimize the kernel parameters of the SVM

and to determine the optimized features subset. The pre-

diction quality evaluated by the jackknife cross-validation

test exhibited a significant improvement compared to those

obtained with several published methods.

Materials and methods

Data sets

In order to facilitate the comparison, the dataset con-

structed by Chou (1999b) and other two datasets

constructed by Zhou (1998) were used as the working

dataset. The dataset constructed by Chou (1999b) contains

204 proteins, of which 52 are all-a, 61 are all-b, 45 are a/b,

and 46 are a + b. Of the two datasets constructed by Zhou,

one consists of 277 domains (70 all-a domains, 61 all-b
domains, 81 a/b domains, and 65 a + b domains); the

other consists of 498 domains (107 all-a domains, 126 all-b
domains, 136 a/b domains, and 129 a + b domains).

Protein primary sequence representation

An important issue in the prediction of protein structure

class is to represent the primary sequence of proteins with

certain encoding scheme. In this work, six feature groups

are composed of ten structural and physicochemical

features of proteins and peptides from amino acid

sequences, and 1447 features were used to represent the

protein samples. These features can be easily computed by

the PROFEAT web server (Li et al. 2006). PROFEAT is

accessible at http://jing.cz3.nus.edu.sg/cgi-bin/prof/prof.cgi

. The ten features are summarized in Table 1.

Couple the improved genetic algorithm with SVMs

The publicly available LIBSVM software (Chang and Lin

2001), which can be downloaded freely from http://www.

csie.ntu.edu.tw/*cjlin/libsvm, was used to process the

SVM classification. The radial basis function was selected

as the kernel function. Prediction of protein structure class

is a multi-class classification problem. In general, the most

commonly used approach for solving multi-class problems

is to reduce a single multi-class problem into multiple

binary problems known as the one-versus-one and one-

versus-rest. However, the one-versus-rest strategy has the

well-known ‘false positives’ problem (Ding and Dubchak

2001). Consequently, we adopt here the one-versus-one

method to transfer the multi-class problem into a two-class

problem. The GA based on chaos (Lv et al. 2003) was used

to simultaneously select the feature subset and optimize

kernel parameters. In the improved GA, the mutation

method based on the chaotic system is used to maintain the

population diversity and prevent the incest leading to

misleading local optima (Eshelmen and Schaffer 1991).

The chromosome representations, fitness function, selec-

tion, crossover and mutation operator are described in the

following sections.

Chromosome representation

There are three parts to the chromosome: C, c and the

features mask. The chromosome was represented as

the binary and decimal coding systems. The hybrid

Table 1 List of structural and

physicochemical features of

proteins and peptides

Feature group Feature

index

Features Number of

descriptor values

Amino acid, dipeptide

composition

F1 Amino acid composition 20

F2 Dipeptide composition 400

Autocorrelation 1 F3 Normalized Moreau-Broto

autocorrelation

240

Autocorrelation 2 F4 Moran autocorrelation 240

Autocorrelation 3 F5 Geary autocorrelation 240

Composition, transition

and distribution

F6 Composition 21

F7 Transition 21

F8 Distribution 105

Sequence order F9 Sequence-order-coupling number 60

F10 Quasi-sequence-order descriptors 100
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chromosome-encoding method is illustrated in Fig. 1. The

hybrid chromosome consists of 1447 binary genes for the

selection of features and two decimal genes, C and c, for the

optimization of parameters. If gn = 0, the feature with index

n is excluded from the given feature set. Otherwise, the

feature with index n is included.

Fitness function

A good fitness function is the key to assessing the perfor-

mance of each chromosome and to obtaining a high

classification accuracy. Two objectives must be considered

when designing the fitness function. One is to maximize the

classification accuracy of fivefold cross-validation, and

the other is to minimize the number of selected features.

The performances of these two objectives can be evaluated

by Eq. (1),

fitness ¼ SVM accuracy þ ð1� N=1447Þ ð1Þ

Where SVM_accuracy is the SVM classification accuracy

by fivefold cross-validation, and N is the number of

selected features.

Selection, crossover and mutation operator

Elitist strategy was used to select the operation. The elitist

model guarantees that the chromosome with the highest

fitness value is always replicated in the next generation of

chromosome. Hence, the function of maximal fitness ver-

sus the number of generated chromosome is a monotonous

increasing function (Handels et al. 1999). Once a pair of

chromosome has been selected for crossover, five random

selected positions are assigned to the crossover operator of

the binary coding part. The crossover operator was deter-

mined according to Eqs. (2) and (3) for the decimal coding

part, where p is the random number of (0, 1).

Child1 ¼ p� parent1 þ ð1� pÞ � parent2 ð2Þ
Child2 ¼ p� parent2 þ ð1� pÞ � parent1 ð3Þ

The GA based on the chaotic method was applied to the

mutation operator and to the part of decimal coding in the

chromosome. Mutation to the part of binary coding in

the chromosome is the same as traditional GA.

In the study described here, the population size of

improved GA was 30, and the termination condition was

that the generation number was 30,000. The whole proce-

dure of GA/SVM-coupled GA with SVM is illustrated in

Fig. 2, and the steps were as follows:

Step 1. Produce all of the initial chromosome of GA

randomly with an appropriate size of the population.

Step 2. Run SVM and calculate the fitness values of each

chromosome in the population using the fitness function.

If the generation number reaches 30,000, stop the process

with the output of results, otherwise, go to the next step.

Step 3. Select a given percentage of the fittest chromo-

somes from the current generation based on their fitness

value. The selected chromosomes as a part of the next

generation are used as parent chromosomes to produce

new chromosomes in the next step.

Step 4. Produce a given percentage of new chromosomes

of the next generation by the mating and mutating

operation based on the parents.

Step 5. Go back to the second step to run SVM and

calculate the fitness values of the renewed population.

Results and discussion

Analysis of the convergence processes for current

method

Figures 3 and 4 illustrate the convergence processes for the

improved GA to optimize kernel parameters and to select

the feature subset based on the working datasets

Fig. 1 The chromosome coding

Fig. 2 The chart of the improved genetic algorithm/support vector

machine (GA/SVM) scheme
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constructed by Chou (1999b). The better fitness value,

higher classification accuracy, and optimized features

subset can be obtained from about 15,000 generations,

8000 generations, and 15,000 generations, respectively.

Initially, improved GA selected approximate 700 features

into SVM and achieved a predictive accuracy about 90%,

which is a distinct symptom of overfitting. Along with the

implementation of the process, the number of selected

features gradually decreased while fitness value and clas-

sification accuracy were improved. Classification accuracy

was invariable when the number of generations gradually

increased from 7000 to 15,000. Fewer than 100 features

were fed to SVM at this time. The results indicate that our

method has the ability to overcome the overfitting problem

and to achieve a high success rate by searching the opti-

mized features subset and kernel parameters.

Analysis of the optimized features subset

The results of the best features subset are summarized in

Table 2. From Table 2 we can see that the optimized fea-

tures subset contains nine composition, transition, and

distribution descriptors; five sequence order descriptors;

three amino acid and dipeptide composition descriptors;

one autocorrelation descriptors. The results appear to

suggest that the order of these feature groups that con-

tributed to the prediction of protein structural class were:

composition, transition, and distribution [ sequence order

descriptors [ amino acid and dipeptide composi-

tion [ autocorrelation descriptors.

In fact, there are two compositions of polarity and

polarizability, one transition of charge, three distributions

of hydrophobicity, and three distributions of polarity,

polarizability, and charge in the group of composition,

transition, and distribution descriptors. The five sequence

order descriptors include two sequence-order-coupling

numbers based on Schneider–Wrede distance and three

sequence-order-coupling numbers based on normalized

Grantham chemical distance. The three amino acid and

dipeptide composition are alanine, leucine, and lysine–

arginine composition. One autocorrelation descriptor was

the Moran autocorrelation hydrophobicity scale. These

results suggest that factors such as hydrophobicity, polar-

izability, polarity, charge, and composition of alanine,

leucine, lysine–arginine are important to protein structure

class. We therefore expect that if a new encoding scheme

can integrate with (1) composition, transition, and distri-

bution, (2) sequence order, (3) amino acid and dipeptide

composition, and (4)autocorrelation information, it would

be of great significance in terms of predicting the attributes

of protein.

Comparison with different methods

In statistical prediction, the most widely used cross-vali-

dation methods for examining the accuracy of a predictor

are the sub-sampling test and jackknife test (Chou and

Shen 2008; Chou and Zhang 1995). However, as demon-

strated by Eq. 50 in a recent comprehensive review by

Chou and Shen (2007d), the sub-sampling (e.g., fivefold

Fig. 3 Convergence curves for improved GA/SVM. Curve 1 Fitness

value was obtained from the most fitted member of each generation,

curve 2 classification accuracy was obtained from the most fitted

member of each generation)

Fig. 4 The relationship between the number of features and the

number of generations using improved GA/SVM

Table 2 Results of the selection of the best features subset

Feature set ID (see Table 1) Total

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Features in

set

20 400 240 240 240 21 21 105 60 100 1447

Features

selected

2 1 0 1 0 2 1 6 5 0 18
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cross-validation) test cannot avoid arbitrariness even for a

very simple benchmark dataset. Accordingly, the jackknife

test has been increasingly and widely adopted by investi-

gators (Chen et al. 2006a, b, 2007; Chou and Shen 2006a,

b, 2007a, b, c, e; Diao et al. 2008; Ding et al. 2007; Du and

Li 2006; Fang et al. 2008; Gao et al. 2005; Guo et al. 2006;

Kedarisetti et al. 2006; Li and Li 2007; Lin and Li

2007a, b; Liu et al. 2007; Mondal et al. 2006; Niu et al.

2006; Shen and Chou 2007a, b, c, d; Shen et al. 2007a, b;

Shi et al. 2007, 2008; Sun and Huang 2006; Tan et al.

2007; Wang et al. 2005a; Wen et al. 2006; Xiao and Chou

2007; Xiao et al. 2005a, b, 2006a; Zhang and Ding 2007;

Zhang SW et al. 2006, 2007; Zhou 1998; Zhou and Doctor

2003; Zhou et al. 2007) to test the power of various pre-

dictors. To facilitate a comparison with previous studies for

the dataset constructed by Chou (1999b), the optimized

kernel parameters and features subsets were utilized to

perform jackknife cross-validation test. The success rates

by the jackknife test are listed in Table 3 and compared

with several published results for the same dataset.

The reliability of the optimized features subset was

further evaluated by the two datasets constructed by Zhou

(1998). We performed the jackknife cross-validation based

on the optimized features subset. Grid searches strategy

was adopted to find the best C and c for obtaining maximal

jackknife-tested overall rates. The success rates by the

jackknife cross-validation test are listed in Tables 4 and 5.

Table 3 shows that the overall rates by the current

approach were 99.5% with the one-versus-one method. The

results indicate that our method was about 24 and 14%

higher than other two SVMs, which were based on amino

acid composition and pseudo-amino acid composition

respectively. The results also reveal that our improvements

can be attributed to the adoption of the optimized features

subset and kernel parameters. It is worth noting that the

success rates were improved markedly to 100% for all-a,

all-b and—the most difficult case—a + b. Consequently,

our proposed method is superior to other methods in

identifying the structural classification for the Chou’s

(1999b) dataset. Table 4 shows that the overall success rate

by the our approach was 84.5% for the 277 dataset, which

is about 5% higher than that obtained with the SVM

method, which was performed with the conventional amino

acid composition as the input. In addition, the result is only

3% lower than the SVM fusion, which had the highest

overall predictive rate for the dataset. Table 5 shows that

the overall success rate by our method was 94.2% for the

498 dataset, which indicates that our method is superior to

other existing methods and comparable to LogitBoost.

Accordingly, it can be expected that the current method

and the SVM fusion or the LogitBoost, if complemented,

may further improve the overall rate for the 277 and 498

dataset, respectively. In short, based on both the rationality

of the testing procedure and the present success rates, as

shown here by our test results, we believe that the opti-

mized features subset may be used to explore the protein

folding mechanism by using abundant discriminative

information related to protein structure class.

Table 3 Comparison of

different methods by the

jackknife test for 204 proteins

Method Success rate (%)

All-a All-b a/b a + b Overall

Second-order component-coupled algorithm (Zhou 1998) N/A N/A N/A N/A 77

SVM (Cai et al. 2002) 75 90 64 64 74.5

Supervised fuzzy clustering (Shen et al. 2005) 73.1 90.2 62.2 63.1 73.5

LogitBoost (Cai et al. 2006) 90.4 88.5 80.0 73.9 83.8

Augmented covariant discriminant (Xiao et al. 2006b) 82.7 90.2 100 87.0 89.7

SVM (Chen et al. 2006a) 88.5 96.7 77.8 73.9 85.3

IDQD (Lin and Li 2007b) 90.4 93.4 100 89.1 93.1

Binary-tree SVM (Zhang and Ding 2007) 90.4 100 97.8 73.9 91.2

Fuzzy SVM Network (Ding et al. 2007) 92.3 100 93.3 82.6 92.6

Fuzzy k nearest neighbors (Zhang et al. 2008) 96.2 98.4 93.5 100 97.0

Our method 100 100 97.8 100 99.5

Table 4 Comparison of different methods by the jackknife test for

277 proteins

Method Success rate (%)

All-a All-b a/b a + b Overall

Component coupled (Zhou

1998)

84.3 82.0 81.5 67.7 79.1

Neural network (Cai and Zhou

2000)

68.6 85.2 86.4 56.9 74.7

SVM (Cai et al. 2001) 74.3 82.0 87.7 72.3 79.4

LogitBoost (Feng et al. 2005) 81.4 88.5 92.6 72.3 84.1

Rough sets (Cao et al. 2006) 77.1 77.0 93.8 66.2 79.4

SVM fusion (Chen et al. 2006b) 85.7 90.2 93.8 80.0 87.7

Our method 84.3 88.5 92.6 70.7 84.5
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Conclusion

We have proposed a strategy based on improved GA to

simultaneously select the feature subset and optimize the

parameters of SVM for predicting protein structure class.

The results indicate that the proposed method is very

effective for the optimal combination of different features.

Moreover, it can be anticipated that this method may also

have a great impact by improving the success rates for

many other protein attributes, such as subcellular locali-

zation, membrane types, enzymes family and subfamily

classes, and G-protein-coupled receptor classification.
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