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Abstract The focus of this work is the use of ensembles

of classifiers for predicting HIV protease cleavage sites in

proteins. Due to the complex relationships in the biological

data, several recent works show that often ensembles of

learning algorithms outperform stand-alone methods. We

show that the fusion of approaches based on different

encoding models can be useful for improving the perfor-

mance of this classification problem. In particular, in this

work four different feature encodings for peptides are

described and tested. An extensive evaluation on a large

dataset according to a blind testing protocol is reported

which demonstrates how different feature extraction

methods and classifiers can be combined for obtaining a

robust and reliable system. The comparison with other

stand-alone approaches allows quantifying the performance

improvement obtained by the ensembles proposed in this

work.

Keywords Machine learning � Ensembles of classifiers �
HIV-1 protease prediction

Introduction

During the last decade or so, the following two strategies

have been often adopted to find drugs against AIDS

(acquired immunodeficiency syndrome). One is to target

the HIV (human immunodeficiency virus) reverse trans-

criptase (Althaus et al. 1993a, b, c, 1994a, b, 1996; Chou

et al. 1994); the other is to design HIV protease inhibitors

(Chou 1993b, c, 1996; Poorman et al. 1991).

HIV-1 protease (Rögnvaldsson and You 2003; Chou

1993a, c, d) is one of the enzyme in the AIDS virus that is

essential to its replication. HIV-1 protease inhibitors are

small molecules that bind to the active site in HIV-1 pro-

tease and stay there (Chou 1996), so that the normal

functioning of the enzyme is prevented. Understanding and

predicting HIV-1 protease cleavage sites in proteins, i.e.,

knowing which amino acid sequences are cleaved by the

protease and which residues play important roles for the

cleavage, is therefore a major concern in medicine, since

the design of an efficient inhibitor requires good under-

standing of the HIV-1 protease cleavage site specificity.

Unfortunately, no perfect rule is yet known that determines

if and where a peptide will be cleaved by the HIV-1 pro-

tease and the experimental investigation of cleavability of

the patterns in the laboratory is a very expensive task, since

the number of candidate sequences is very high.

In order to reduce the number of pattern to be tested the

use of artificial intelligence to aid and speed up the spec-

ificity investigation is thus essential: what is need is a

classification model that, given a sequence of eight amino

acids (an octamer), can tell whether it will be cleaved by

the HIV-1 protease or not. In the past there have been

several attempts to develop various prediction methods for

the HIV protease cleavage sites in proteins based on

techniques from machine learning. In (Cai and Chou 1998;

Thompson et al. 1995) the authors trained a standard feed-

forward multilayer perceptron (MLP) to solve this problem

and this choice has also been validated in (Narayanan et al.

2002) by showing that a decision tree was not able to

predict the cleavage as well as MLP. Recently Support

Vector Machine (SVM) has been adopted (Cai et al. 2002)

to predict the cleavage, without significantly improving the

L. Nanni (&) � A. Lumini
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classification performance obtained by the neural network

presented previously. In (Rögnvaldsson and You 2003) the

authors showed that HIV-1 protease cleavage is a linear

problem and that the best classifier for this problem is the

Linear SVM. In various machine learning methods have

been extensively tested, and it is found that the combina-

tion of neural networks and decompositional approach can

generate a set of effective rules. Recently, a web-server

was established for predicting HIV protease cleavage sites

in proteins (Shen and Chou 2008).

The last trend in machine learning is adopting a multi-

classifier to better solve a complex classification problem;

both theoretical and empirical (Opitz and Maclin 1999;

Kittler 1998; Altıncay and Demirekler 2000; Breiman

1996, 2001) studies have demonstrated that a good

ensemble of classifiers can improve the performance of a

stand-alone classifier, in particular if the individual clas-

sifiers in the ensemble are both accurate and independent

(i.e., they make errors on different regions of the feature

space) (Whitaker and Kuncheva 2003; Zenobi and Cunn-

ingham 2001; Melville and Mooney 2003). In Nanni 2006

and in Nanni and Lumini 2006c several classifiers trained

with different amino-acid encoding models are combined

for HIV-1 Protease Cleavage Site: all the ensembles gained

an error reduction with respect to the performance of the

state-of-the-art stand-alone approaches. In (Nanni and

Lumini 2008a) the classification task is performed by a

multi-classifier system where each classifier is a trained

using feature extracted by different reduced alphabets.

Each alphabet is constructed by a Genetic Algorithm.

Ensemble of classifiers (Chou and Shen 2007e, 2008; Shen

and Chou 2007c; Shen et al. 2007) are also successfully

used in improving the protein fold pattern prediction (Shen

and Chou 2006), protein subcellular localization prediction

(Shen and Chou 2007a, b; Chou and Shen 2006a, b, 2007a,

b), membrane protein type prediction (Chou and Shen

2007c; Shen and Chou 2007e), and signal peptide predic-

tion (Chou and Shen 2007d).

Unfortunately, several methodologies for building an

ensemble of classifiers and several approaches based on

physicochemical properties selection (e.g., (Nanni and

Lumini 2006b)) need a training set for the parameter set-

ting (e.g., the physicochemical properties selection);

therefore if the dataset is not enough representative for the

given problem the discoveries are not completely true.

In 2007, it has been reported (Kontijevskis et al. 2007)

that the most used (in the last 10 years) dataset (Rögnv-

aldsson et al. 2007) for HIV-1 protease was not large

enough to obtain reliable conclusions. For example the best

physicochemical properties extracted by Nanni and Lumini

(2006a) from the old dataset are not completely represen-

tative for the new dataset, and that some findings of the

biologists on the most important peptides for the protease

classification were true only in the old dataset (Kontijevs-

kis et al. 2007).

In this paper, we propose four approaches based on

different features extraction for HIV-1 protease prediction.

The approaches are validated on the large HIV-protease

dataset proposed in (Kontijevskis et al. 2007) according to

a blind testing protocol. Our results are very encouraging;

since the proposed ensembles drastically outperform the

state-of-the-art stand alone method, which is based on the

standard orthonormal encoding. Information obtained from

computational approaches can timely provide very useful

insights for drug development (see, e.g., (Chou 2004; Chou

and Shen 2008; Chou et al. 2003; González-Dı́az et al.

2008; Lubec et al. 2005; Shen and Chou 2007c, d)).

Methods

In this work, four approaches based on different features

extraction have been proposed and tested for HIV-1 pro-

tease prediction. In each feature extraction method each

letter of the amino acid alphabet AA = {A,R,K,V} is

replaced by a given vector. Then a combination of the best

methods is evaluated in an ensemble based both on the

perturbation of the features (the classifiers are trained using

a different feature set) and on the perturbation of the

classifiers (different classifiers are combined). In the fol-

lowing subsections a description of the four new ensembles

proposed in this work is given, the details of the final

combination approach are given in the experimental

section.

Physicochemical encoding representation

In the standard orthonormal representation (O) (Rögnv-

aldsson and You 2003) each amino acid is represented by a

20 bit vector with 19 bit set to zero and one bit set to one,

and each amino acid vector is orthogonal to all other amino

acid vectors. In this first method, named PE, the feature

vectors used to describe the patterns are obtained by sep-

arately considering different physicochemical properties of

the amino-acids (Nanni and Lumini 2006a) obtained by the

Amino Acid index database1 (Kawashima and Kanehisa

2000), the database contains 494 indices and 83 substitu-

tion matrix. The physicochemical encoding representation

(Nanni and Lumini 2006a, c) is given by a 20-dimesional

real vector x[<20, with 19 values set to zero and the value

related to the position of the amino acid takes the value of

the considered physicochemical property pe (the physico-

chemical property index or the corresponding diagonal

1 Available at http://www.genome.jp/dbget/aaindex.html.
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entry of the substitution matrix). This encoding method is

described by Eq. (1):

AAi ! di1 � peð1Þ; . . .; diN � peðNÞð Þ ð1Þ

dij is the Kronecker delta symbol, N = 20, AAi is the ith

amino-acid letter.

Therefore each amino acid has a number P of physi-

cochemical encoding representations equal to number of

different physicochemical properties obtained by the

Amino Acid index database. In this work P = 577, since

494 indices and 83 substitution matrices have been enco-

ded. In order to reduce the number of features a Sequential

Forward Floating Selection (SFFS) (Pudil et al. 1994)

feature selection approach has been adopted (as in (Nanni

and Lumini 2006a)), where the objective function is the

maximization of the area under the ROC curve; in this way

the number of the features used for classification is reduced

to K (different values of K ranging from 1 to 10 have been

tested in the experiments). Finally the classification step is

performed by a pool of Linear SVM2 classifiers (Cristianini

and Shawe-Taylor 2000), each trained on a different

physicochemical property, which are finally combined by

the sum rule.

SVMs are widely considered as the state-of-the-art

among the machine learning classifiers. The goal of SVMs

is to establish the equation of a hyperplane that divides the

feature space, leaving all the points of the same class on the

same side, while maximizing the distance between the two

classes and the hyperplane.

Genetic programming (GP)3 for designing encoding

techniques

In the second method we use the Genetic Programming

(GP) (Bhanu and Lin 2004) to synthesize new encoding

amino acid models. Different running of GP are executed

in order to obtain evolved amino acid encoding models,

then a multi-classifier systems is built by combining Linear

SVM classifiers trained by the K resulting evolved amino

acid encoding models; finally, the K classifiers are com-

bined by the ‘‘sum’’ rule.

In this work the primitive features for GP are encoding

models randomly drawn, where each value is a random

number between -50 and 50, the representation structures

are binary trees and the primitive operators are the pool of

unary and binary operators detailed in Table 1. The

selection for the reproduction is obtained using the well-

know method named ‘roulette’. Moreover, the best

individual from both parents and children is kept for the

new population (after the reproduction), independently of

being a parent or a child. Children occupy the remaining

places in the new population only. We run each GP for 10

times using 200 individuals. We selected as evolved amino

acid encoding only the best individual of the last run of a

given GP.

This genetic approach is used to obtain evolved amino

acid encoding in two different ways:

• GP1, each executions of GP is independent from the

others executions. The fitness function of GP is given

by the area under the ROC curve obtained by the given

individual.

• GP2, in order to reduce the ‘‘correlation’’ among the

evolved amino acid encoding models, the results of all

the previous executions of GP are used to drive the

actual one. Therefore, the fitness function of the ith GP

is given by the area under ROC curve obtained by the

fusion with the ‘‘sum’’ rule of a given individual and

the evolved amino acid encodings created by the

previous 1,…,i-1 GPs.

Let us name as G the encoding amino acid models obtained

by GP, the amino-acid are codified as described by Eq. (2):

AAi ! di1 �Gð1Þ; . . .; diN �GðNÞð Þ ð2Þ

Quasi-residue couple method

The third method tested in this work, named QR, is based

on the Quasi-residue couple encoding method (proposed in

(Nanni 2006). This encoding technique combines the

amino-acid index together with the sequence order of the

amino-acids composition. This is achieved by replacing

each non-zero entry in a Residue couple model (order 3)

(Guo et al. 2005) by the corresponding value appeared in

Table 1 Primitive operators

Unary operators Binary operators

SQ: square SUM: sum

SQRT: square root SUB: subtraction

SIN: sin PROD: product

COS: cosine DIV: division

ASIN: arc sin

REC: reciprocal

ACOS: arc cosine

LOG: logarithm

TAN: tangent

ABS: absolute value

TANH: hyperbolic tangent

NEG: negative value

NO: nothing

2 Implemented as in OSU toolbox. http://www.ece.osu.edu/*maj/

osu_svm/.
3 Implemented as in GAOT (Genetic Algorithms for Optimization

Toolbox) http://www.ie.ncsu.edu/mirage/GAToolBox/gaot/.
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the amino-acid index. A residue-couple of rank k represents

the frequency with which a couple of amino acids at dis-

tance k are observed in a protein. The total number of

feature is P = 577, then the features are reduced to K by

SFFS using the same objective function of PE. This

encoding technique is coupled with Oja’s Subspace4 clas-

sifier where for each feature a subspace is computed for

each class exploiting at least a fraction 0.95 of the class

variance. Finally, the K classifiers are combined by the

‘‘sum’’ rule.

The Oja’s Subspace classifiers are based on the Karhunen-

Loeve (KL) feature transform (Franco et al. 2006). For each

class one KL subspace is created, with the aim of capturing

the intra-class variance. A map between the original space

and the reduced eigenspace is performed by means of the

operator of projection (Duda et al. 2000), the norm of the

projection of a pattern on each subspace is used as similarity

measure between the input vector and the class related to the

subspace. The input vector is then classified according to the

maximal similarity value.

The use of Oja’s Subspaces coupled with the Quasi-

residue encoding is motivated by some preliminary

experiments reported in (Nanni and Lumini 2008b) where

Oja’s Subspaces have proven to outperform SVM for this

encoding method.

Genetic approach for building different alphabets

The forth method is based on representing proteins by their

N-peptide compositions. In the N-peptide composition for

each value of N the corresponding feature vector contains

the fraction of each possible N-length substring in the

sequence (i.e., it corresponds to amino acid composition for

N = 1 and dipeptide composition for N = 2). In order to

limit the high number of dimensions (20N) required to the

formation of feature vectors, especially for large values of

N, the size of amino acid alphabet can be reduced from 20

to S using statistical techniques based on the information of

certain BLOSUM matrices and justified by well-known

biochemical amino acid groups (Murphy et al. 2000).

In (Nanni and Lumini 2008a), an alternative way for the

construction of reduced alphabets is studied, based on a

Genetic Algorithm for grouping amino-acids, whose

objective function is the maximization of the performance

of a given classification problem. K different alphabets are

created for different couples of the size S of the reduced

alphabets and the length N of the substrings. For details on

this last method, named AL, please read (Nanni and

Lumini 2008a). The classification step is performed by a

pool of Linear SVM classifiers combined by mean rule.

Results and discussion

The tests have been conducted on the UPPSALA dataset,

collected by the authors of (Kontijevskis et al. 2007), which

is the biggest dataset ever tested for the HIV protease prob-

lem. This dataset contains 1,625 octamer protein sequences

P = P4P3P2P1P10P20P30P40 that are classified as HIV

protease cleavable site (374) or uncleavable site (1,251).

The performance is evaluated using the area under the

Receiver Operating Characteristic (ROC) curve; the ROC

curve is a two-dimensional measure of classification per-

formance that plots the probability of classifying correctly

the positive examples against the rate of incorrectly clas-

sifying true negative examples. The Area Under the ROC

curve (AUC5) (Fawcett 2004) is a scalar measure to eval-

uate performance, which can be interpreted as the

probability that the classifier will assign a higher score to a

randomly picked genuine sample than to a randomly

picked impostor sample. We prefer AUC to accuracy (error

rate) as performance indicator since it has been shown (Qin

2006; Huang and Ling 2005) that AUC is empirically and

theoretically better than accuracy, due to the fact that

accuracy does not considered the scores of the classifiers, it

gives mere positive/negative classification results.

The results reported in Table 2 for all the methods

described in ‘‘Methods’’ (O stands for orthonormal encod-

ing, PE is physicochemical encoding representation, GP1

and GP2 are encoding techniques obtained by Genetic

Programming, QR is the Quasi-residue couple method, AL

is an encoding approach based on alphabets built by a

Genetic approach) have been obtained using the following

double cross-validation testing protocol. First, the dataset

has been randomly divided into ten equally sized subsets Di,

then, we generated ten new datasets (Ni) removing once one

of the Di subsets from the original set. In each of the Ni

datasets the ten-fold cross validation is used for finding the

parameters of our method, the subset Di is classified using

Ni. Notice that for each of the ten tests, the encoding amino-

acid models are built using only Ni.

Due to computation issue, for QR method only a subset of

Ni (a random subset of 20% of the patterns) is used for finding

the parameters (e.g., the encoding amino-acid models).

The results in Table 2 show that:

• all the proposed ensembles work well for this problem,

in fact, for all the methods the performance increases

with the number of fused classifiers K;

• all the proposed approaches with the exception of AL

outperform the orthonormal encoding O (which is

widely considered (Rögnvaldsson et al. 2007) the best

feature extractor for this problem);

4 Implemented as in PRtools 3.1.7 toolbox http://130.161.42.18/

prtools/. 5 AUC is implemented as in dd_tools 0.95 davidt@ph.tn.tudelft.nl.
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• it is interesting to note that the artificial methods for

building the amino-acid encoding (GP1 and GP2) gain

performance comparable with that obtained by PE

where the real physicochemical properties discovered

by scientists are considered;

• the encoding technique based on alphabets built by a

Genetic approach (AL) obtains the worst performance

in this problem; this is probably due to the fact that it is

based on the 2-g encoding which is not well suited

(Rögnvaldsson et al. 2007) for this classification

problem. In fact the AUC obtained by the standard

2-g is 0.9640 in this dataset, while the ensemble of

alphabets proposed in (Ogul and Mumcuoglu 2007), for

a protein classification problem, obtains an AUC of

0.9600.

The previous results are obtained selecting a different set of

properties for each validation set, in order to obtain a

unique list of selected properties we run some tests using a

different protocol: the properties are selected as those that

maximize the AUC on a first set of 10 experiments, in each

run 1,400 patterns have been used to build the training set,

the other patterns to the test set. Then, another set of 10

experiments is performed and the average results are

reported in Table 3. The results obtained with this protocol

confirm the outcomes listed above. The list of physico-

chemical encoding representations found using this

protocol for PE and QR is reported in Table 4.

It is well known in the literature that combining systems

based on different classifiers and different feature extrac-

tions allows for robust and reliable systems to be obtained.

In Table 5 we evaluate the performance of two multi-

classifiers obtained as the fusion6 by sum rule between QR

and PE (FUS1) and the fusion6 by sum rule among QR,

PE and AL (FUS2); the other methods reported in Table 5

are evaluated for K = 10. These tests demonstrate the

usefulness of combining different systems: the improving

in terms of AUC obtained by the two multi-classifiers is

very impressive.

In order to confirm the benefit of our method the DET

curve has been also considered. The DET curve (Martin

et al. 1997) is a two-dimensional measure of classification

performance that plots the probability of false positive

against the rate of false negative. In Fig. 1 the DET curves

obtained by the five method considered above is reported.

It is clear that the two multi-classifiers FUS1 and FUS2

obtain the best results.

As further experiment, we have run the Wilcoxon

Signed-Rank test (Demsar 2006) for comparing the results

(the AUC is used as performance indicator) of FUS1 and

FUS2 with O. The null hypothesis is that there is no dif-

ference between the AUC of the considered classifiers

(Demsar 2006). We reject the null hypothesis (level of

significance 0.05) and accept that in both cases the multi-

classifiers significantly improve the AUC of the stand-

alone approach.

Finally, we have investigated the relationship between

the different approaches combined in the methods FUS1

and FUS2 by evaluating the error independence by Q-

statistic (Kuncheva and Whitaker 2003). For two classifiers

Gi and Gj the Q-statistic a posteriori measure is defined as:

Qi;k ¼
N11N00 � N01N10

N11N00 þ N01N10

where Nab is the number of instances in the test set, clas-

sified correctly (a = 1) or incorrectly (a = 0) by the

classifier Gi, and correctly (b = 1) or incorrectly (b = 0)

by the classifier Gj. Q varies between -1 and 1; Qi,j = 0

for statistically independent classifiers. Classifiers that tend

to recognize the same patterns correctly will have Q [ 0,

and those, which commit errors on different patterns, will

have Q \ 0. Table 6 reports the Q-static among the

methods QR, PE and AL. These results partially motivate

the good result obtained by FUS1 and FUS2.

Conclusions

In this paper, we have presented methods based on

ensemble of classifiers for HIV-1 protease prediction. The

Table 2 AUC obtained by different methods, varying the value K of

combined classifiers

K 1 5 10

O 0.9859 (0.0081) – –

PE 0.9861 (0.0077) 0.9876 (0.0073) 0.9881 (0.0075)

GP1 0.9860 (0.0071) 0.9870 (0.0070) 0.9878 (0.0071)

GP2 0.9863 (0.0069) 0.9873 (0.0073) 0.9877 (0.0070)

QR 0.9850 (0.0070) 0.9880 (0.0065) 0.9895 (0.0070)

AL 0.9578 (0.0176) 0.9728 (0.0123) 0.9720 (0.0160)

The bold numbers are the higher performance for each column

Table 3 AUC obtained by different methods using the second pro-

tocol, varying the value K of combined classifiers

K 1 5 10

O 0.9813 (0.0119) – –

PE 0.9857 (0.0101) 0.9871 (0.0101) 0.9872 (0.0102)

GP1 0.9861 (0.0112) 0.9875 (0.0105) 0.9879 (0.0102)

GP2 0.9860 (0.0109) 0.9879 (0.0105) 0.9881 (0.0100)

QR 0.9696 (0.0125) 0.9856 (0.0110) 0.9870 (0.0105)

AL 0.9709 (0.0095) 0.9731 (0.0090) 0.9742 (0.0096)

The bold numbers are the higher performance for each column

6 Before the fusion the scores of the classifiers are normalized to

mean 0 and standard deviation 1.
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four ensembles described in this work are based on different

feature extractions from peptides: two based on the physi-

cochemical properties, another based on the generation of

artificial encodings by Genetic Programming, the last based

on different alphabets for the N-peptide composition. An

extensive evaluation on a large dataset according to a blind

testing protocol has demonstrated the superiority of these

four ensembles with respect to the stand-alone approaches.

The experiments demonstrated that all the approaches are

well-suited for this classification problem, and above all

some of them (in particular QR and PE) are quite ‘‘inde-

pendent’’ from each other, thus leading to a further

performance improvement if combined together.

Please note that all the reported results have been

obtained without any kind of parameter optimization for

the SVMs; other works (Rögnvaldsson et al. 2007) have

reported the possibility of obtaining performance

improvement by means of a fine parameter tuning.

Reproducible research

We try to explain in the better way our methods, anyway

we know that some errors in the explanations are always

possible, for this reason some Matlab code used for

obtaining the results reported in this paper are available at:

http://bias.csr.unibo.it/nanni/softwareHIV.rar
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