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Abstract The knowledge of subnuclear localization in

eukaryotic cells is essential for understanding the life

function of nucleus. Developing prediction methods and

tools for proteins subnuclear localization become important

research fields in protein science for special characteristics

in cell nuclear. In this study, a novel approach has been

proposed to predict protein subnuclear localization. Sample

of protein is represented by Pseudo Amino Acid (PseAA)

composition based on approximate entropy (ApEn) con-

cept, which reflects the complexity of time series. A novel

ensemble classifier is designed incorporating three Ada-

Boost classifiers. The base classifier algorithms in three

AdaBoost are decision stumps, fuzzy K nearest neighbors

classifier, and radial basis-support vector machines,

respectively. Different PseAA compositions are used as

input data of different AdaBoost classifier in ensemble.

Genetic algorithm is used to optimize the dimension and

weight factor of PseAA composition. Two datasets often

used in published works are used to validate the perfor-

mance of the proposed approach. The obtained results of

Jackknife cross-validation test are higher and more balance

than them of other methods on same datasets. The prom-

ising results indicate that the proposed approach is

effective and practical. It might become a useful tool in

protein subnuclear localization. The software in Matlab and

supplementary materials are available freely by contacting

the corresponding author.
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Introduction

In eukaryotic cells, the nucleus is the largest, most prom-

inent structure organelle. It organizes the assembly of

genes and the life processes of cell, such as directing cel-

lular reproduction and controlling cellular differentiation

during the development of the organism, etc. Compart-

mentalization of cell nucleus is closely related to several

nuclear processes, and has potential influence of cancer-

related alternations on gene express (Fraser and Bickmore

2007; Schneider and Grosschedl 2007). Mis-localized

nuclear proteins can lead to human genetic disease and

cancer (Sutherland et al. 2001; Zaidi et al. 2007). Thus, the

knowledge of proteins subnuclear localization is essential

for understanding cell life processes and genomic regula-

tion. Prediction of protein subnuclear location is thus an

important topic in bioinformatics. Although the protein

subnuclear localization can be determined by experiments

ways, it is time-consuming and costly. The gap between the

number of protein sequences and the number of identified

proteins is rapidly increasing. It is highly desired to

develop computational methods for fast identifying the

proteins’ subnuclear localization in cell nucleus.
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Various approaches for protein subcellular localization

prediction have been developed (Cai et al. 2002; Cai and

Chou 2003; Chou 2001; Chou and Cai 2002, 2004; Chou

and Shen 2006a, b, 2007a, 2008; Gao et al. 2005a, b; Park

and Kanehisa 2003; Shen and Chou 2006, 2007a, b, c, d;

Xiao et al. 2005, 2006; Zhang et al. 2006b, c, d, 2007; Chen

and Li 2007a, b; Zhou and Doctor 2003) [see Chou (2000),

Feng (2002) and Chou and Shen (2007b) for a compre-

hensive review in this area] since the algorithm proposed by

Nakashima and Nishikawa (1994). Many recent prediction

algorithms have been built as web servers freely available

for scientist. However, the prediction algorithms for pro-

teins subnuclear localization are far less than those for

subcellular localization. Yet, only few studies have been

carried out. Shen and Chou (2005) developed the first

algorithm for prediction of nine classes subnuclear com-

partments localization, of which protein sequence is

represented by Pseudo Amino Acid (PseAA) composition

(34-D) and Optimized Evidence-Theoretic KNN (OET-

KNN) is used as prediction engine. Lei and Dai (2005)

employ support vector machine (SVM) for prediction of six

classes subnuclear localization. Huang et al. (2007) devel-

oped algorithm named ProLoc using SVM with automatic

selection from physicochemical composition features.

Encouraged by the concept of PseAA discrete model

introduced by Chou (2001), three predicting approaches

based on PseAA composition have been proposed (Mundra

et al. 2007; Li and Li 2008; Shen and Chou 2007a, b, c, d, e).

Meanwhile, many Web-servers for predicting subcellular

localization of proteins in various organisms have been

established. Recently, two protocols with a step-by-step

guide were published (Chou and Shen 2008; Emanuelsson

et al. 2007; Shen and Chou 2007d) to help experimental

scientists how to use some important Web-servers to predict

the results they need. Three reasons are mainly responsible

for limited study in this field (Lei and Dai 2005; Mundra

et al. 2007): (1) proteins within the cell nucleus face no

apparent physical barrier like a membrane; (2) the nucleus

is far more compact and complicated in comparison with

other compartments in a cell; and (3) protein complexes

within the cell nucleus are not static.

Compared with the conventional amino acid composi-

tion (AAC), the PseAA as originally introduced by Chou

can incorporate much more information of a protein

sequence so as to remarkably enhance the power of using a

discrete model to predict various attributes of a protein.

Based on the concept of PseAA composition, a series of

follow-up studies have been made to predict protein sub-

cellular localization and other protein’s attributes (Chen

et al. 2006a, b; Chen and Li 2007a, b; Diao et al. 2008; Ding

et al. 2007; Du and Li 2006; Fang et al. 2008; Gao et al.

2005b; Kurgan et al. 2007; Li and Li 2008; Lin and Li

2007a, b; Mondal et al. 2006; Mundra et al. 2007; Pu et al.

2007; Shi et al. 2007; Xiao and Chou 2007; Xiao et al. 2006;

Zhang et al. 2006a, b, d, 2007, 2008; Zhang and Ding 2007;

Zhou et al. 2007a, b). The promising results obtained from

the approaches based on PseAA composition indicate that

the PseAA discrete model can represent protein sequence in

different subnuclear compartments effectively. In this

study, we propose a prediction system for prediction sub-

nuclear localization based on ensemble classifier, where

sample of protein is represented with PseAA characterized

by approximate entropy (ApEn). The ApEn is a non-nega-

tive number that denotes the complexity of time series

(Pincus 1991; Richman and Moorman 2000). When the

amino acids along a protein chain are replaced by a series of

numbers, the protein sequence can be imaged as a short time

series. Various studies based on ensemble classifier have

been executed in protein attributes (Chou and Shen

2006a, b, 2008; Shen and Chou 2006; Shen and Chou

2007a, b, c, d, e; Nanni and Lumini 2007; Kedarisetti et al.

2006). According to the concept of Chou’s PseAA discrete

model, the weight factor is essential for PseAA composi-

tion. Note that k is an uncertain parameter. Shen and Chou

(2006) used an ensemble approach by fusing PseAA com-

ponent with different k and it has been successfully used to

enhance the prediction quality in a number of relevant areas

(see, e.g., Chou and Shen 2007a; Chou and Shen 2007b).

The ensemble classifier is the ensemble of three AdaBoost

classifiers which is one of Boosting ensemble methods that

have the ability of generating a strong classifier from a weak

method (Freund and Schapire 1997) and it has been used in

predicting protein structural classes (Niu et al. 2006).

Materials and methods

Datasets

Two datasets often used in published works are adopted to

validate the performance of the proposed approach. The one

is the SNL9 (Shen and Chou 2005), which have 370 proteins

localized in 9 subnuclear compartments: 10 Cajal body, 59

chromation, 31 heterochromatin, 65 nuclear diffuse, 25

nuclear pore, 15 nuclear speckle, 115 nucleolus, 10 PcG

body and 40 PML body. Another is SNL6 (Lei and Dai 2005)

which contains 504 proteins localized in 6 subnuclear com-

partments: 38 PML body, 61 chromatin, 75 nuclear diffuse,

219 nucleolus, 56 nuclear speckle, and 55 nuclear lamina.

Representation of protein sequence

According to the concept of Chou’s PseAA (Chou 2001)

composition, a sample of protein sequence is a point in

(20 + k)-D space.
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where, the fi (1 B i B 20) in Eq. (2) is the occurrence

frequencies of 20 amino acids in sequence, i.e., the AAC

which was often used as representation of protein sequence

in early studies (Chou 1995; Zhang et al. 1995; Nakashima

and Nishikawa 1994; Shen et al. 2005). pi (21 B i B 20

+ k) is the additional factors that incorporate some sort of

sequence order information. The parameter w is weight

factors. Encouraged by our previous success in the design

of PseAA composition with ApEn for prediction of protein

structural classes (Zhang et al. 2008) and subcellular

localization (Zhang et al. 2006c), the ApEn values of

protein sequence still are adopted as additional factors in

PseAA composition. The ApEn values of a sample of

protein sample could be easily computed [see Eqs. (3)–(8)

in Zhang et al. (2008)].

Ensemble classifier prediction systems

It is well known that in many situations combining the

output of several classifiers leads to an improved classifi-

cation results (Opitz and Maclin 1999; Alexandre et al.

2001). The proposed prediction system consists of three

AdaBoost classifiers that are combined into an ensemble.

The AdaBoost is one of ensemble method that has the

ability of generating a strong classifier from a weak clas-

sifier (Freund and Schapire 1997). The architecture of

ensemble is illustrated in Fig. 1, where the weak classifiers

of three AdaBoost classifiers are decision trumps (Schapire

and Singer 1999), Fuzzy K-nearest neighbor classifier

(FKNN) (Keller et al. 1985; Huang and Li 2004; Shen et al.

2006 ), and radial basis-SVMs (Cristianini and Shawe-

Taylor 2000), respectively. The AdaBoost algorithm is

obtained from the classification toolbox in Matlab (Duda

et al. 2001). The description of AdaBoost algorithm is

illuminated in next section. The AdaBoost method usually

applies to two-class problems. For the current case of

multi-class problems, the ‘‘one-Vs-one’’ strategy is

adopted.

AdaBoost algorithm

Given one or more classification methods, one of the most

natural ways of obtaining more accurate classifiers is the

use of ensembles (Rodrı́guez and Maudes 2007). The

ensemble method of Boosting is one of most successful

methods. There are several variants, AdaBoost is the most

well known.

Given the input dataset S ¼ fðx1; y1Þ; . . .; ðxn; ynÞg
where xi 2 <m is the ith vector in m-D (dimensional) space,

and yi [ {-1,+1} is the binary label of xi. AdaBoost calls a

weak learning algorithm repeatedly in a series of time

intervals t = 1, 2,…, T. In the iteration t, a weight Dt(xi) is

associated to the training sample xi. The method generates

a base classifier ht, taking into account the weights distri-

bution. It is necessary to determine a real value at. It is the

weight associated to ht and it depends on the training error

of that classifier. The AdaBoost algorithm is illustrated in

Fig. 2.

Performance measurement

In statistical prediction, the following three cross-valida-

tion tests are often used to examine the power of a

predictor: sub-sampling (e.g., fivefold, sevenfold, etc.),

jackknife, and independent dataset tests. Sub-sampling test,

Nuclear Proteins 

AAC (20-D) ApEn(12-D)

Voting Via Weight

AdaBoost
Ensemble of

Decision strump

AdaBoost
Ensemble of

FKNN

AdaBoost
Ensemble of

RSVM

D-)(20 1λ+PseAA D-)(20 2λ+PseAA D-)(20 3λ+PseAA

Nuclear Proteins 

AAC (20-D) ApEn(12-D)

Voting Via Weight

AdaBoost
Ensemble of

Decision strump

AdaBoost
Ensemble of

FKNN

AdaBoost
Ensemble of

RSVM

D-)(20 1λ+PseAA D-)(20 1λ+PseAA D-)(20 2λ+PseAA D-)(20 2λ+PseAA D-)(20 3λ+PseAA D-)(20 3λ+PseAA

Fig. 1 The architectures of the ensemble of AdaBoost classifiers

Fig. 2 AdaBoost algorithm, reproduced from Rodrı́guez and Maudes

(2007) with permission
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such as fivefold approach as often used in literatures,

cannot avoid arbitrariness and yield a unique outcome even

for a same benchmark dataset as illustrated by Eq. 50 of

(Chou and Shen 2007a, b). Of these three, the jackknife test

is thought the most rigorous and objective one [see (Chou

and Zhang 1995) for a comprehensive review in this

regard], and hence has been used by more and more

investigators (see, e.g., Chen et al. 2007; Chou and Shen

2007b; Diao et al. 2007, 2008; Ding et al. 2007; Fang et al.

2008; Gao et al. 2005a, b; Guo et al. 2006; Li and Li 2008;

Liu et al. 2007; Niu et al. 2006; Shen and Chou 2007a, b, c;

Shi et al. 2007; Sun and Huang 2006; Tan et al. 2007;

Wang et al. 2005; Wen et al. 2006; Xiao and Chou 2007;

Xiao et al. 2005, 2006; Zhang et al. 2006a, b, c, d, 2008;

Zhang and Ding 2007; Zhou et al. 2007a) in examining the

power of various prediction methods.

In statistic prediction study, it is convenient to introduce

an accuracy matrix [Mij] of size c 9 c (c is the number of

compartments to be predicted). The element Mij of accu-

racy matrix is the number of proteins predicted to be in

subnuclear compartment j, which are actually in the com-

partment i.

Three indexes are applied to evaluate the prediction

accuracy, i.e., sensitivity (Sn), specificity (Sp), and Mat-

thew’s correlation coefficients (CC).

Sn ¼
MiiPc
j¼1 Mij

ð3Þ

Sp ¼
MiiPc
j¼1 Mji

ð4Þ

Ac ¼
Xc

i¼1

Mii

 !� Xc

i¼1

Xc

j¼1

Mij

 !

ð6Þ

Sn represents the accuracy, and Sp represents the reliability

in procedure of prediction. The CC is a single parameter

characterizing the matching extent between the observed

and predicted subnuclear compartments.

Results and discussion

According to the concept of Chou’s PseAA (Chou 2001),

the weight factor and the dimension of addiction feature are

essential parameter. In this study, genetic algorithm (GA)

toolbox in Matlab is used to optimize the weight factors

and lambda (k) in Eq. (2). The ranges of parameters

selection: weight factor w [ [0, 1] and the dimension of

ApEn k [ [1, 12], The overall accuracy value of jackknife

test with given classifier is used as the result of fitness

function in GA, where the give classifiers is three Ada-

Boost classifiers, respectively. The crossover rate Pc = 0.9

and mutation rate Pm = 0.2. When the weight factors (w)

and the dimension of ApEn (k) are determined using by the

three AdaBoost classifier, respectively, the input PseAA

compositions of each base classifier within ensemble are

also determined. The optimized parameters of three basic

classifiers are listed in Table 1.

Three Adaboost classifiers are trained with the opti-

mized parameters, dimension of ApEn (k), and weight

factors (w) in Eq. 2, respectively. The results of three

Adaboost classifiers are fusing through weight voting, of

which the voting weight is the success rate of each basic

classifier. The fusion scheme has been used in several

protein function prediction studies with ensemble classifier

(Shen and Chou 2006, 2007e). The final results are listed in

Table 2, where for facilitating comparison, the results by

other methods on the same dataset are also listed. The

overall accuracy (Ac) is 83.2%, distinctly higher than the

methods of SVM (Cai et al. 2002), OET-KNN (Shen and

Chou 2005), and PSSM (Mundra et al. 2007). The accu-

racies of each subnuclear compartment are higher or same

as them of the method of PSSM (Mundra et al. 2007).

In order to validate the performance of the approach

further, the dataset SNL 6 constructed by Lei and Dai

(2005) is also used, which is composed by 504 protein

sequences classified in 6 subnuclear compartments. Same

as the optimization process using by the dataset of SNL9,

the optimized results of three base classifiers trained by the

dataset of SNL6 are listed in Table 3. When the k and w are

determined, the PseAA composition as input data are also

determined. The results of jackknife cross-validation test

are deposited in Table 4. In order to compare with other

methods, the results of the prediction methods on the same

dataset are also listed in Table 4. The overall accuracy (Ac)

of proposed approach is 73.2%, higher than the methods of

Lei-SVM (Lei and Dai 2005) and ESVM (Huang et al.

2007). Comparing the accuracy (Sn) of subnuclear

CC ¼
Mii

Pc
k 6¼i

Pc
j 6¼i Mjk

� �
�

Pc
j 6¼i Mij

� �
�

Pc
j 6¼i Mji
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compartments in proposed approach with them in other

methods, the accuracies of PML body, chromatin, nuclear

speckles, and nuclear lamina, the four compartments with

less proteins number, are higher than them of other meth-

ods. We can see that the results of proposed approach are

more balance than that of the methods of Lei-SVM (Lei

and Dai 2005) and ESVM (Huang et al. 2006).

The results of Jackknife cross-validation test with two

datasets indicate that the proposed approach is effective

and practical. The PseAA composition based on ApEn

indeed reflects the core feature of proteins in different

subnuclear compartments. Comparing the results of base

classifier with that of ensemble, performance of ensemble

is stronger than that of base classifier. The ensemble of

three AdaBoost classifiers might become a useful tool in

prediction of protein subnuclear localization.

Conclusions

A novel approach for protein subnuclear localization is

proposed. Sample of protein sequence is represented by

PseAA based on ApEn. Ensemble classifier is used as

prediction engine. The ensemble classifier is combined

with three AdaBoost classifiers in which base classification

algorithms are decision stumps, FKNN, and RSVM,

respectively. The input data of AdaBoost classifier in

ensemble is PseAA composition, of which dimension (k)

and weight factor (w) are optimized by GA. Two datasets

often used in various methods of this area are used to

validate the performance of the novel approach. Promising

results obtained by jackknife cross-validation test indicate

that the proposed approach is effective and practical, and

might become a useful tool for prediction protein subnu-

clear localization.
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