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Summary. Identifying a protein’s subcellular localization is an important

step to understand its function. However, the involved experimental work

is usually laborious, time consuming and costly. Computational prediction

hence becomes valuable to reduce the inefficiency. Here we provide a

method to predict protein subcellular localization by using amino acid

composition and physicochemical properties. The method concatenates

the information extracted from a protein’s N-terminal, middle and full

sequence. Each part is represented by amino acid composition, weighted

amino acid composition, five-level grouping composition and five-level

dipeptide composition. We divided our dataset into training and testing set.

The training set is used to determine the best performing amino acid index

by using five-fold cross validation, whereas the testing set acts as the

independent dataset to evaluate the performance of our model. With the

novel representation method, we achieve an accuracy of approximately

75% on independent dataset. We conclude that this new representation

indeed performs well and is able to extract the protein sequence information.

We have developed a web server for predicting protein subcellular locali-

zation. The web server is available at http:==aaindexloc.bii.a-star.edu.sg.

Keywords: Subcellular localization – Support vector machine – Amino

acid indices

Introduction

Many novel bioinformatics applications rely on accurate

prediction of protein’s subcellular localization. The filter-

ing of putative protein-protein interactions is one of the

examples where false predictions are to be removed pro-

vided the two interacting partners are involved in differ-

ent subcellular compartments (Mahdavi and Lin, 2007).

Another example is the identification of serum biomar-

kers. Here selecting genes and gene products that possess

identical protein localization may serve as one of the

criteria (Klee et al., 2006). However, experimentally iden-

tifying the localization of a protein is usually a laborious,

time-consuming and costly process. Therefore, computa-

tional predictions are important to minimize the time and

cost in experimental work. Many efforts have been made

in this regard (Nakai and Kanehisa, 1992; Nakashima and

Nishikawa, 1994; Cedano et al., 1997; Chou and Elrod,

1998; 1999a, b; Nakai and Horton, 1999; Yuan, 1999;

Chou, 2000a, b, 2001; Emanuelsson et al., 2000; Murphy

et al., 2000; Nakai, 2000; Feng, 2001, 2002; Feng and

Zhang, 2001; Hua and Sun, 2001; Chou and Cai, 2002;

Gardy et al., 2003; Pan et al., 2003; Park and Kanehisa,

2003; Zhou and Doctor, 2003; Huang and Li, 2004; Gao

et al., 2005a, b; Garg et al., 2005; Lei and Dai, 2005;

Matsuda et al., 2005; Xiao et al., 2005, 2006a; Chou and

Shen, 2006c, 2007a; Guo et al., 2006a; Hoglund et al.,

2006; Lee et al., 2006; Xiao et al., 2006a; Chou and Shen,

2007a, b, d; Shi et al., 2007; Zhang and Ding, 2007). A

summary in this area was given in a recent review paper

(Chou and Shen, 2007d).

The approach for predicting protein subcellular locali-

zation can be divided into two steps, i.e., the representa-

tion and the classification one. The representation step is

the most challenging part to obtain high prediction accu-

racy. The step can be seen as a data mining process where,

for a protein in a given localization, information embed-

ded in the primary sequence is extracted so that a com-

puter program can discriminate the protein from proteins

in other localizations. There have been several ways to

extract the information from protein sequences, such as

using amino acid composition (Cedano et al., 1997), sig-

nal sequence (Nakai and Horton, 1999) or N-Terminal

sequence (Emanuelsson et al., 2000), n-peptide compo-

sition (Yu et al., 2004), pseudo-amino acid composition



(Chou, 2001), functional domain composition (Cai et al.,

2003), gene ontology (Chou and Cai, 2003), amino acid

property (Feng and Zhang, 2001; Sarda et al., 2005) and

homology (Bhasin and Raghava, 2004; Xie et al., 2005).

Amino acid composition was originally used to repre-

sent protein samples for predicting protein structural class

(Chou and Zhang, 1994, 1995; Zhou, 1998), indicating

that there is some correlation between AA composition

of a protein and its attributes (Chou, 2000c, 2002). Since

then, such a descriptor has been widely used to predict

protein subcellular localization (see, e.g., Cedano et al.,

1997; Chou and Elrod, 1999b; Hua and Sun, 2001; Zhou

and Doctor, 2003; Jin et al., 2005). The AA composition

does not contain any sequence order information. To

avoid completely losing the sequence order information,

the pseudo amino acid (PseAA) composition was intro-

duced (Chou, 2001, 2005). Since the introduction of

PseAA composition, it has been adopted to improve the

prediction quality of various protein attributes by many

investigators (Pan et al., 2003; Wang et al., 2004; Chou

and Cai, 2005; Gao et al., 2005b; Liu et al., 2005a, b;

Shen and Chou, 2005a, b; Du and Li, 2006; Mondal et al.,

2006; Shen and Chou, 2006; Shen et al., 2006; Wang et al.,

2006; Xiao et al., 2006a, b; Zhang et al., 2006a, b; Chen

and Li, 2007; Ding et al., 2007; Kurgan et al., 2007; Lin

and Li, 2007a, b; Mundra et al., 2007; Pu et al., 2007;

Shen and Chou, 2007c; Shen et al., 2007; Shi et al., 2007;

Zhang and Ding, 2007; Zhou et al., 2007). Because

PseAA composition has been widely used, recently a web-

server called PseAA was established at http:==chou.med.

harvard.edu=bioinf=PseAA=, by which users can generate

various different kinds of PseAA compositions for a given

protein sequence. ESLpred (Bhasin and Raghava, 2004)

has used amino acid composition, dipeptide composition,

physico-chemical properties and PSI-BLAST profiles to

predict protein subcellular localization. An alternative

method to extract protein localization information is to

use signal sequences. TargetP (Emanuelsson et al., 2000)

used the N-terminal sequence information only and was

shown to be able to discriminate the protein in four loca-

tions, i.e., mitochondrion, chloroplast, secretory pathway

and others. However, in the case where the signal region

is located at regions other than the N-terminus, there is

a risk of information loss if only the N-terminal sequence

is used. As a result, Matsuda et al. (2005) introduced

a representation method that uses different parts of a

protein’s sequence to predict its subcellular localization,

i.e., N-terminus, middle and C-Terminus. Recently, a

novel software, MultiLoc (Hoglund et al., 2006), also in-

corporated amino acid composition, N-terminus sequence

and sequence motifs to represent a protein. MultiLoc

has been shown to be an accurate protein localization

predictor.

The second step for the localization prediction problem

is the classification step. Once the protein is represented

with an appropriate encoding scheme, the remaining work

is to propose a robust classifier to predict the subcellular

localization. Many classification approaches have been

proposed lately, such as neural network (Reinhardt and

Hubbard, 1998), support vector machine (Hua and Sun,

2001; Chou and Cai, 2002; Park and Kanehisa, 2003;

Hoglund et al., 2006), Markov chain model (Yuan, 1999),

covariant discriminant algorithm (Chou and Elrod, 1998,

1999a, b), fuzzy k-NN method (Huang and Li, 2004) and

FDOD function (Jin et al., 2005).

AAIndexLoc is a new representation method for pre-

diction of protein subcellular localization. We hypothesize

that the physicochemical properties of amino acids play

an important role in determining a protein’s function

and therefore might be used to predict the protein’s local-

ization. Given the 55 amino acid indices collected by

ProtScale (http:==www.expasy.org=cgi-bin=protscale.pl),

we attempted to determine the optimum amino acid index

to characterize a specific subcellular localization.We in-

troduced the weighted amino acid (AA) composition, five-

group-AA composition and five-group dipeptide compo-

sition as the new encoding scheme to represent the protein

sequences. The rational of the weighted AA composition

is that some amino acids may be more important in terms

of protein translocation even if their frequency is relative-

ly low. Therefore, the weighted AA composition provides

a way to increase the contribution from the rare but cri-

tical amino acid residues. In addition to the weighted

AA composition, we also categorize amino acids into five

groups by using k-means clustering and calculate the

group composition of a protein. Proteins in a common

cellular location may share amino acids with similar phys-

icochemical properties. Group composition is meant to

extract such information. We have also considered the

five-level dipeptide composition which might detect some

features about the appearance of consecutive amino acids

with certain properties. On top of that, to avoid losing

global information, we divided protein sequences into

three parts, i.e., the N-terminus, middle and C-Terminus.

Information from the N-terminus, middle and full-

length protein is used to create input features for support

vector machine (SVM) classifier. To test our approach, the

localization data are divided into the training and the

independent testing set. The training set is used to find

the best performing AA index for individual localization

by using the five-fold cross validation method; then the

best performing model is used to predict the protein’s
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localization on the independent testing set. Our results

show that accurate prediction of a protein’s subcellular

localization can be obtained using both the local and glob-

al information of a protein sequence.

Materials and methods

Datasets

Dataset created by MultiLoc (Hoglund et al., 2006) were used in our

experiments. The MultiLoc datasets are categorized into animal (nine

locations), fungal (nine locations) and plant (ten locations). Table 2

shows the number of sequences in each location. Note that MultiLoc

data are not formed by three separate sets of animal, plants and fungal

sequences. Instead, there is only one set of cytoplasmic sequences

containing 1411 sequences. In Table 2, for example, one may find that

all three versions of the datasets, the animal, the plant and the fungal,

share the 1411 cytoplasmic sequences, but only plant version has the

449 chloroplast sequences.

Support vector machine

Support vector machine (SVM), first introduced by Vapnik in 1995

(Vapnik, 1995), is a learning algorithm for pattern recognition and regres-

sion. SVM has recently gained a lot of attention in biology (Brown et al.,

2000; Hua and Sun, 2001; Lee and Lee, 2003; Ward et al., 2003), particu-

larly for classification purposes. In those applications, an SVM classifier

is trained with a set of positively and negatively labelled samples. Once

trained, the classifier can be used to classify an unlabeled sample into the

positive or the negative class. In principle, SVM maps the input vector into

a high dimensional space and constructs an optimal hyperplane with the

maximum margin of separation between the hyperplane and the nearest

data points of each class in the space.

In building the SVM classifiers for protein subcellular localization, each

localization site is corresponded to a class. We used the scheme called

One-vs-All SVM. For example, to predict the mitochondria protein, the set

of mitochondria proteins are used as the positive samples and the proteins

in all the other compartments are used as the negative samples.

SVMlight is a software package that contains an implementation of

SVM in C language. The package is available from http:==svmlight.

joachims.org and was used throughout the work. The radial basis function

(RBF) kernel was adopted to train the SVM model.

Input features

Amino acid (AA) composition

Let the sequence of a protein P ¼ x1x2 � � � xN where xp 2 S; p ¼
1; 2; 3; � � � ;N. S is the set of the 20 amino acid (AA) alphabets, S ¼
fy1; y2; y3; � � � ; y20g. AA composition is defined as the percentage or

fraction of amino acid yi in P, where i ¼ 1; 2; 3; � � � ; 20. Therefore, the

composition CðyiÞ for amino acid yi is

CðyiÞ ¼
numðyiÞ

N
�100% ð1Þ

where numðyiÞ is the number of amino acid yi in protein P, N is the length

of protein P.

Weighted AA composition

Let A denote a specific amino acid index for the 20 amino acids,

A ¼ fa1; a2; � � � ; a20g where ai is the index value for the amino acid yi.

The weighted AA composition for amino acid yi is defined as:

WðyiÞ ¼ CðyiÞ�ai ð2Þ

Five-level grouping composition

Five-level grouping composition means that the amino acids are classified

into five groups based on their amino acid index values, i.e., the highest

(T), high (H), medium (M), low (L), and lowest (B) properties. After that,

the composition of each group is calculated. The method used for grouping

is k-means clustering (k¼ 5).

Let Gm denotes the set of amino acids in group m, Gm ¼
fg1; g2; � � � ; gNm

g where Nm is the number of amino acids in Gm. The

composition of Gm is

CMðGmÞ ¼
XNm

j¼1

CðgjÞ ð3Þ

Five-level dipeptide composition

As explained in the five-level grouping method, the 20 amino acids are

classified into five groups, the highest (T), high (H), medium (M), low (L)

and lowest (B) groups. The five-level dipeptide composition is defined as

the composition of the occurrence of two consecutive groups, for example:

TT, TH, TM, TL, TB, HT, HH, etc. There are 25 combinations of two

consecutive group altogether.

Features vector

A protein sequence is divided into three parts, i.e., the N-terminus, the

middle and the C-terminus. The feature vectors consist of the information

from the N-terminus, middle and the full-length protein. We ignore the C-

terminus because it does not give significant improvement to the predic-

tion of protein localizations.

Let L¼ length of the protein P, LN¼ length of the N-terminus,

LM¼ length of the middle part of the protein, and LC¼ length of the

C-terminus. In this work, the length of N-Terminus and C-terminus is

fixed while the length of middle part is varied depending on the length

of protein. To determine the length of middle sequence, we have three

conditions, i.e.:

1. If L>LNþLC, then LM¼L�LN�LC. Check LM: if LM<40, then

set LM¼L=3

2. If L>LN but L<LNþLC then LM¼L=3

3. If L � LN then LN¼L, LM¼L=3

The length of N-terminus and C-terminus is determined computational-

ly. We learned that the length of N-terminus is optimum at length 30 and

the length of C-terminus is 10. However, for chloroplast localization, the

length of N-terminus is different from that of other localizations.

Eventually we set the length of N-terminus to 100 when training chloro-

plast sequences, since it is believed that the chloroplast targeting signal is

at least 100 amino acids (Keegstra and Cline, 1999).

The feature vector representing a protein consists of the following

features: AA composition, weighted AA composition, five-level grouping

composition and five-level dipeptide composition from the N-terminus, the

middle part and the full-length protein. There are 20 input features for AA

composition. Weighted AA composition has 20 input features; five-level

grouping composition has five input features and five-level dipeptide

composition has 25 input features. Each region of a protein is thus repre-

sented by 70 input features altogether. To represent a protein, we have

70� 3¼ 210 input features, i.e., the length of the feature vector is 210.

Performance measurement

We use an independent dataset to test the SVM model we have built. The

model is trained using 60% of the dataset by using five-fold cross valida-

tion and is tested on 40% of the remaining dataset which has not been

touched. It should be noted that, however, among the independent dataset

test, sub-sampling (e.g., 5 or 10-fold cross-validation) test, and jackknife

test, which are often used for examining the accuracy of a statistical
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prediction method, the jackknife test was deemed the most rigorous and

objective (Chou and Zhang, 1995) as demonstrated by a incisive analysis

in a comprehensive recent review (Chou and Shen, 2007d) and has been

widely adopted by investigators to test the power of various prediction

methods (Zhou, 1998; Zhou and Assa-Munt, 2001; Zhou and Doctor,

2003; Gao et al., 2005b; Wang et al., 2005; Xiao et al., 2005; Chen et al.,

2006a, b; Chou and Shen, 2006a, b; Du and Li, 2006; Guo et al., 2006b;

Kedarisetti et al., 2006; Mondal et al., 2006; Niu et al., 2006; Sun and

Huang, 2006; Xiao et al., 2006a; Zhang et al., 2006a; Chen et al., 2007;

Chou and Shen, 2007a, b, c, e; Ding et al., 2007; Lin and Li, 2007a, Liu

et al., 2007; Shen and Chou, 2007b, c, d; Shen et al., 2007; Shi et al., 2007;

Wen et al., 2007; Zhang and Ding, 2007; Zhou et al., 2007).

The sensitivity, specificity, Matthews’ correlation coefficient (MCC)

(Matthews, 1975) and overall accuracy for each localization site is calcu-

lated to evaluate the prediction performance. The formula for each mea-

surement is given below:

Sensitivity ðiÞ ¼ TPðiÞ
TPðiÞ þ FNðiÞ ð4Þ

Specificity ðiÞ ¼ TPðiÞ
TPðiÞ þ FPðiÞ ð5Þ

MCC ðiÞ ¼ ðTPðiÞ�TNðiÞÞ � ðFPðiÞ�FNðiÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPðiÞ þ FNðiÞÞðTPðiÞ þ FPðiÞÞðTNðiÞ

þ FPðiÞÞðTNðiÞ þ FNðiÞÞ

s ð6Þ

Accuracy ¼ 1

Z
�
XZ
i¼1

TPðiÞ ð7Þ

where, TP¼ true positive, TN¼ true negative, FP¼ false positive, FN¼
false negative, MCC¼Matthews’ correlation coefficient, i¼ localization i,

and Z¼ number of localizations.

Experimental setup

Protein sequences are represented as described previously. The dataset is

randomly divided into the training and the independent testing set. The

training dataset contains 60% of the dataset, while the testing dataset

contains 40% of the dataset.

The training set is used to choose the best model for predicting protein

subcellular localization using five-fold cross validation. The best model

is then used to predict the localization of the independent dataset (testing

set) and the performance is calculated as described above (Performance

Measurement section). Figure 1 illustrates the workflow of the experiments.

Prediction system

We have provided a web server to predict the subcellular localization for

unknown proteins. It is available at http:==aaindexloc.bii.a-star.edu.sg. The

query protein sequence is first encoded by the best performing AA index

for each individual localization. Then the encoded sequence is sent to the

best classifier for each localization. The localization whose classifier gives

the highest score will be assigned to query sequence as the predicted

localization.

Results

Choosing the best performing amino acid index

We extracted 55 amino acid indices from the ProtScale.

For each AA index, proteins were encoded and trained

with SVM using the training set. The training perfor-

mance measurements were calculated using five-fold

cross validation. This process was repeated for all the

AA indices in the ProtScale list. The best performing

AA index is then reported for that particular localization

(see Table 1). The selection of the best performing AA

index is mainly based on MCC values. However, in addi-

tion to MCC, for localizations with fewer sequences, sen-

sitivity needs to be considered as well. This is to ensure

that the prediction does not bias towards high specificity

but low sensitivity performance.

Improvement by using information from different

parts of proteins

Table 2 presents the improvement in performance using

information from different parts of the protein sequences

(as shown under the results of full-length-only and AAIn-

dexLoc). Full-length-only is the method that used only the

full-length protein sequence information to predict protein

subcellular localization. On the other hand, AAIndexLoc

used the information from the N-terminus, the middle

part of protein sequences, and the full-length protein se-

quences to predict protein’s localization. The results indi-

cate that proteins contain information in different parts of

their sequences and hence using information from differ-

ent parts of proteins can increase the prediction accuracy

of their localization. The question is how to determine the

optimum number of amino acids for each of the three

parts. Based on our computational analysis, the optimalFig. 1. Experimental setup
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length of the N-terminus sequence is 30 amino acids,

except for the prediction of chloroplast localization where

the optimal length is 100. The length of C-terminal se-

quence is set to 10 amino acids.

Performance comparison

We compared the result from AAIndexLoc with MultiLoc

(see Table 2). Note that the performance of AAIndexLoc

is based on the independent testing dataset, which com-

prises 40% of all the sequences in MultiLoc data.

Discussion

Amino acid composition has been used to predict protein

subcellular localization since Cedano et al. (1997) showed

that there exists a statistically significant relationship be-

tween amino acid composition and cellular localization of

proteins. However, using amino acid composition alone

could misclassify proteins which have similar amino acid

compositions but are located in different cellular compart-

ment. In this study, in addition to amino acid composition,

we explored the possibility of incorporating features

based on amino acid’s physicochemical properties into a

computer classifier. These features include weighted AA

composition, five-level grouping composition and five-

level dipeptide composition. The weighted AA composi-

tion is proposed to capture the information contributed by

rare but critical amino acid residues. The five-level group-

ing composition is designed to increase the composition

bias for proteins in different localizations as the compo-

nent amino acid residues with similar physicochemical

property are now considered as one single residue. The

five-level dipeptide composition might detect some fea-

tures about the occurrences of consecutive amino acids

with certain properties. We have shown that better predic-

tion accuracy can be achieved by incorporating all those

features.

From the result in Table 1, it shows that the best per-

forming AAindex for each localization is dominated by

hydrophobicity and hydrophilicity types of properties. It

indicates that hydrophobicity and hydrophilicity are the

two important properties in protein translocation. More-

over, protein’s secondary structure may also play an im-

Table 1. Best performing AAindex for each localization

Dataset Localization AAindex Ref.

MultiLoc Cytop Proportion of residues 95% buried (in 12 proteins) Chothia (1976)

(Animal) ER Conformational parameter for beta-sheet Deleage and Roux (1987)

Extr Optimized matching hydrophobicity Sweet and Eisenberg (1983)

Golgi Hydrophilicity Hopp and Woods (1981)

Lyso Optimized matching hydrophobicity Sweet and Eisenberg (1983)

Mito Conformational parameter for beta-turn Deleage and Roux (1987)

Nuc Hydrophobicity scale based on free energy of transfer Guy (1985)

Pero Average area buried on transfer from standard state to folded protein Rose et al. (1985)

Plas Hydrophilicity Hopp and Woods (1981)

MultiLoc Cytop Hydrophilicity scale derived from HPLC peptide retention times Parker et al. (1986)

(Fungal) ER Average flexibility index Bhaskaran and Ponnuswamy (1988)

Extr Hydrophilicity Hopp and Woods (1981)

Golgi Hydrophilicity Hopp and Woods (1981)

Mito Free energy of transfer from inside to outside of a globular protein Janin (1979)

Nuc Conformational preference for parallel beta strand Lifson and Sander (1979)

Pero Refractivity Jones (1975)

Plas Hydrophobicity scale based on free energy of transfer Guy (1985)

Vacu Molar fraction (%) of 2001 buried residues Janin (1979)

MultiLoc Chlo Optimized matching hydrophobicity Sweet and Eisenberg (1983)

(Plant) Cytop Free energy of transfer from inside to outside of a globular protein Janin (1979)

ER Molecular weight of each amino acid Most textbooks

Extr Hydrophilicity Hopp and Woods (1981)

Golgi Conformational preference for parallel beta strand Lifson and Sander (1979)

Mito Free energy of transfer from inside to outside of a globular protein Janin (1979)

Nuc Conformational parameter for beta-sheet (computed from 29 proteins) Chou and Fasman (1978)

Pero Refractivity Jones (1975)

Plas Hydrophobicity scale based on free energy of transfer Guy (1985)

Vacu Molar fraction (%) of 2001 buried residues Janin (1979)

Reference comes from ProtScale
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portant role in determining its localization. For example,

some targeting sequences have the tendency to form a

particular secondary structure such as alpha helix or beta

sheet (Endo et al., 1989; Hammen et al., 1994). Further-

more, Clausmeyer et al. showed that there exists a high

specificity and evolutionary conservation within the signal

sequences. The conservation occurs at the level of the

biochemical properties of the amino acids (Clausmeyer

et al., 1993).

Prediction of protein subcellular localization has been

focused on using the full-length protein sequences or con-

sidering only the targeting sequences, such as TargetP.

However, using the full length protein sequence might

overlook some of the local information and hence shows

a poor performance in predicting certain localization

such as mitochondria. Using target sequence information

especially the N-terminal sequence may increase the pre-

diction performance for mitochondria localization. Never-

theless, there are cases which we do not know where the

targeting sequences are and therefore are unable to use

this information. In this study we found that splitting

protein sequences into three parts can effectively remedy

this problem.

Table 2 shows the improvement in prediction perfor-

mance using different parts of proteins as compared to

using the full-length protein sequence alone (shown under

Table 2. Performance of AAIndexLoc compared with MultiLoc for animal, fungal and plant dataset

MultiLoc Full-length-only (Independent

dataset)

AAIndexLoc (Independent

dataset)

Se Sp MCC Se Sp MCC Se Sp MCC

Animal dataset

Cytop (1411) 0.67 0.85 0.68 0.79 0.45 0.40 0.87 0.73 0.72

Er (198) 0.68 0.56 0.60 0.15 0.80 0.34 0.44 0.59 0.49

Extr (843) 0.79 0.83 0.77 0.61 0.61 0.54 0.78 0.75 0.72

Golgi (150) 0.71 0.43 0.53 0.00 0.00 0.00 0.60 0.69 0.63

Lyso (103) 0.69 0.36 0.48 0.00 0.00 0.00 0.33 0.64 0.45

Mito (510) 0.88 0.82 0.83 0.57 0.46 0.46 0.83 0.77 0.78

Nuc (837) 0.82 0.73 0.73 0.77 0.60 0.61 0.68 0.78 0.68

Pero (157) 0.71 0.31 0.44 0.00 0.00 0.00 0.25 0.70 0.41

Plas (1238) 0.73 0.90 0.76 0.88 0.63 0.66 0.75 0.80 0.71

Overall accuracy¼ 74.6% Overall accuracy¼ 67.6% Overall accuracy¼ 74.5%

Fungal dataset

Cytop (1411) 0.68 0.85 0.69 0.77 0.46 0.40 0.85 0.68 0.66

Er (198) 0.71 0.59 0.63 0.21 0.71 0.38 0.30 0.83 0.49

Extr (843) 0.73 0.81 0.73 0.55 0.58 0.49 0.79 0.75 0.73

Golgi (150) 0.71 0.53 0.60 0.00 0.00 0.00 0.58 0.73 0.64

Mito (510) 0.88 0.82 0.83 0.65 0.50 0.52 0.86 0.72 0.76

Nuc (837) 0.81 0.74 0.73 0.76 0.57 0.59 0.74 0.76 0.70

Pero (157) 0.68 0.30 0.43 0.00 0.00 0.00 0.36 0.41 0.37

Plas (1238) 0.76 0.89 0.78 0.88 0.63 0.65 0.84 0.79 0.76

Vacu (63) 0.76 0.24 0.42 0.00 0.00 0.00 0.22 0.35 0.27

Overall accuracy¼ 74.9% Overall accuracy¼ 67.5% Overall accuracy¼ 77.3%

Plant dataset

Chlo (449) 0.88 0.85 0.85 0.59 0.58 0.55 0.80 0.82 0.79

Cytop (1411) 0.68 0.85 0.70 0.75 0.45 0.40 0.83 0.72 0.69

Er (198) 0.72 0.54 0.61 0.02 0.67 0.11 0.47 0.58 0.51

Extr (843) 0.68 0.81 0.70 0.52 0.57 0.47 0.78 0.76 0.73

Golgi (150) 0.75 0.41 0.54 0.00 0.00 0.00 0.65 0.56 0.59

Mito (510) 0.85 0.81 0.81 0.58 0.46 0.46 0.78 0.76 0.75

Nuc (837) 0.82 0.75 0.75 0.73 0.59 0.59 0.70 0.74 0.67

Pero (157) 0.71 0.34 0.47 0.00 0.00 0.00 0.23 0.60 0.36

Plas (1238) 0.74 0.89 0.77 0.86 0.62 0.64 0.84 0.77 0.75

Vacu (63) 0.70 0.20 0.36 0.00 0.00 0.00 0.19 0.29 0.23

Overall accuracy¼ 74.6% Overall accuracy¼ 63.8% Overall accuracy¼ 76.0%

The number of sequences in each localization is given inside the parentheses. Best performing AAindex is chosen from 60% of the whole

dataset and the remaining 40% independent dataset is used to validate the performance of AAIndexLoc as well as the best performing

index
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the results of full-length-only and AAIndexLoc). We found

a considerable improvement of the prediction accuracy

using different parts of the proteins. This suggests that

different regions of a protein sequence may have different

contribution in protein’s translocation. This observation

can thus be used to improve the performance of protein

subcellular localization prediction. Matsuda et al. (2005)

have also used the different parts of protein sequences,

i.e., N-terminus, middle and C-terminus. Opposed to their

work, we do not use the C-terminus sequences because

the addition of C-terminus information into the SVM

training does not improve the prediction performance. In

fact, we noticed that N-terminus sequence plays the most

important role in determining the mitochondria localiza-

tion. Although incorporating N-terminus sequence indeed

improves the prediction performance for proteins in mito-

chondria, the improvement was not seen in predicting

other localizations.

We found that the middle part of a protein sequence

plays an important role in determining localizations ex-

cept mitochondria. As a result, we decided to include the

N-terminal and the middle sequences. To avoid losing in-

formation on the full-length sequence, we also incorporate

the information for the full-length protein sequence.

The optimal length of the N-terminal sequence is set

to 30 residues except for the chloroplast localization. We

found that the performance for chloroplast localization

using 30 residues in the N-terminus resulted in low pre-

diction accuracies. Since the length of chloroplast tar-

geting peptides is believed to be at most 100 residues

(Keegstra and Cline, 1999), we set the length of the N-

terminal residues for chloroplast to be 100 and obtained a

substantial increase in prediction accuracy of chloroplast

localization. The length of 100 residues in N-terminus

does not apply to other localization such as mitochondria.

This observation shows that care should be taken when

choosing the length of the N-terminus for localization

prediction.

Conclusions

We have introduced a novel bioinformatics application,

AAIndexLoc, for predicting protein subcellular localiza-

tion by using amino acid properties. Results show that the

incorporation of amino acid’s physicochemical properties

indeed improves the prediction performance. We also

found that both the local (N-terminal and middle se-

quence) and the global sequence information contribute

to accurate prediction of protein subcellular localization.

We have set up a web server for the prediction of pro-

tein subcellular localization. It is available at http:==

aaindexloc.bii.a-star.edu.sg.
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