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Summary. DNA-binding proteins play a pivotal role in gene regulation.

It is vitally important to develop an automated and efficient method for

timely identification of novel DNA-binding proteins. In this study, we

proposed a method based on alone the primary sequences of proteins to

predict the DNA-binding proteins. DNA-binding proteins were encoded

by autocross-covariance transform, pseudo-amino acid composition, di-

peptide composition, respectively and also the different combinations of

the three encoded methods; further, these feature matrices were applied to

support vector machine classifiers to predict the DNA-binding proteins.

All modules were trained and validated by the jackknife cross-validation

test. Through comparing the performance of these substituted modules, the

best result was obtained from pseudo-amino acid composition with the

overall accuracy of 96.6% and the sensitivity of 90.7%. The results suggest

that it can efficiently predict the novel DNA-binding proteins only using

the primary sequences.

Keywords: DNA-binding proteins – Autocross-covariance transform –

Pseudo-amino acid composition – Dipeptide composition – Support
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1. Introduction

DNA-binding proteins (DNA-BPs) play a key role in the

regulation of gene expression. It is estimated that in the

human genome the total number of transcription factors

alone can be as high as 3000 or about 10% of all protein-

coding genes (Lander et al., 2001). With increasing avail-

ability of protein sequence data, there is an urgent need

for computational tools that can rapidly and reliably iden-

tify DNA-BPs. Hence, there has been significant interest

in developing computational methods for identification of

amino acid residues that participate in protein-DNA inter-

actions based on the integrated information of sequence,

structure and evolution, and also the chemical or physical

properties of amino acids. Jones et al. (2003) analyzed

residue patches on the surface of DNA-BPs and used

electrostatic potentials of residues to predict DNA-bind-

ing sites. They further applied this method to identify

three specific classes of DNA-BPs, based on the pres-

ence of solvent accessible DNA-binding structure motifs

(Shanahan et al., 2004). As for the related work, Tsuchiya

et al. (2004) used a structure-based method to identify

DNA-BPs based on electrostatic potentials and surface

shape and Keil et al. (2004) trained a neural network

classifier to identify patches that likely to be DNA-bind-

ing motifs based on physical and chemical properties of

the patches. Neural network classifiers have also been

used to identify DNA-BPs based on a combination of

sequence neighbor and structure information (Ahmad

et al., 2004). Recently Ahmad and Sarai have proposed

a sequence-based method for predicting DNA-BPs. This

method incorporated sequence alignment profiles into the

input (Ahmad and Sarai, 2005). Kuznetsov et al. (2006)

predicted DNA-BPs based on evolutionary and structural

information of proteins and Bhardwaj et al. (2005) con-

structed a kernel-based machine learning protocol for

predicting DNA-binding proteins based on electrostatic

potentials and amino acid composition.

The aim of this paper is to develop a method that is

independent of any DNA-BPs prediction both at training

and predicting steps, but only the primary sequences. So a

new investigation of autocross-covariance (ACC) trans-

form, pseudo-amino acid composition and dipeptide

composition with Support Vector Machine (SVM) was

implemented to predict the DNA-BPs. First, the inquired

primary sequence was transformed to numeric series by

ACC transform, pseudo-amino acid composition and di-

peptide composition technology respectively; then we in-



tegrated the numeric series of the sequences of proteins;

finally, each of the numeric series was used as feature

matrices to construct SVM modules. The results indicate

that pseudo-amino acid composition substituted module

by jackknife testing performs better than other mod-

ules, and it also suggest that this method can efficiently

make predictions of DNA-BPs only using the primary

sequences.

2. Materials and methods

2.1 Data sets

A positive data set of 118 DNA-BPs was obtained from a union of datasets

used in previously reported studies (Jones et al., 2003; Stawiski et al.,

2003; Ahmad et al., 2004; Bhardwaj et al., 2005). The negative dataset of

231 non-DNA-BPs was also adopted from a union of datasets used in

earlier studies (Stawiski et al., 2003; Bhardwaj et al., 2005). These proteins

have less than 35% sequence identity between each pairs. A complete list

of all the PDB codes was list in Appendix A.

2.2 Autocross-covariance transform

ACC transform, a simplified approach of the covariant discriminant algo-

rithm (Chou and Maggiora, 1998; Liu and Chou, 1998; Zhou, 1998; Zhou

and Assa-Munt, 2001), has been applied in several studies (Wold et al.,

1993; Sj€oostr€oom et al., 1995; Edman et al., 1999; Du and Li, 2006; Guo

et al., 2006b). The sequences of DNA-BPs and non-DNA-BPs were

translated into numerical arrays by representing each amino acid with

three z-scales derived by Hellberg et al. (1987). The three descriptor scales

are the principal components of 29 physicochemical properties of amino

acids and represent hydrophobicity (z1), steric properties (z2) and elec-

tronic properties (z3) respectively. The details of 29 physicochemical

properties of amino acids were list in Table 1. The ACC terms were cal-

culated according to Eq. (1) with lags [-lg, lg]. The result is a new

multivariate data matrix with dimensionality m (the number of se-

quences) times (2� lgþ 1)�P2 (variables).

ACCxðj;kÞ;lag ¼
XNx�jlagj

i¼1
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Nx
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Here P is the number of descriptor scales and lg is the maximum lag

(lag¼ [�lg, lg]); indices j and k are used for the scales (j¼ 1, . . . ,P and

k¼ 1, . . . ,P); Nx is the length of the xth sequence (x¼ 1, . . . ,Nx); indice i is

the position of a given sequence of protein; xk(i) is the ith amino acid of a

given protein coded by the kth scale. Here the descriptor scales are the

three z-scales of 29 physicochemical properties of amino acids, so P

equals to 3 and according to the results of Sj€oostr€oom et al. (1995), lg equals

to 25. So the sequences of variable lengths are transformed into the 459

((2� 25þ 1)� 32)-length feature vectors in this way.

2.3 Pseudo-amino acid composition

To approximately incorporate the sequence-order effects (Chou, 2000a),

the concept of the pseudo-amino acid composition was proposed (Chou,

2000b, 2001, 2005a, b) and has been used via various approaches to en-

hance the prediction quality (Chou and Cai, 2003; Gao et al., 2005; Xiao

et al., 2005a, b, 2006a, b, c; Chou and Shen, 2006d). Recently, a very

powerful predictor based on pseudo-amino acid composition was devel-

oped to predict the protein–protein interaction (Chou and Cai, 2006). The

sequences of DNA-BPs and non-DNA-BPs were translated into numerical

order series by representing each amino acid with the first principal com-

ponent (z1) of 29 physicochemical properties of amino acids which repre-

sented hydrophobicity. Now following the same procedure as described

by Chou (2001, 2005b), a protein P can be expressed by a vector or a point

in a (20þ l)D space; that is

P ¼ ðP1;P2; . . . ;P20;P20þ1;P20þ2; . . . ;P20þlÞT ð2Þ

where T is the transpose operate, and

Pk ¼
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�j
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where fi is normalized occurrence frequency of the 20 amino acids in the

protein P, tj is the j-rank sequence coupling factor computed according to

Chou’s method (Chou, 2005a, b), and w is the weight factor for the

sequence-order effect. Here we chose w¼ 0.05. As we can see in Eqs. (2)

and (3), the first 20 components reflect the effect of amino acid composi-

tion, whereas the components from 20þ 1 to 20þ l reflect the effect of

sequence order.

For different datasets, lambda (l) usually has different optimal value

(Chou, 2001). The maximum l is chosen as 30, because the minimum

length of the sequences of proteins is 35 and the l should be less than

it. The results of different l to the performance were shown in the Fig. 1.

It shows that the results are influenced greatly when l is between 1 and

10 and hardly influenced when l is between 10 and 30. So the l can be

chosen a number between 10 and 30. For the current study, the optimal

value of l was chosen as 20. Given a protein, the (20þ 20)¼ 40 pseudo-

Table 1. The variables of 29 physicochemical properties of amino acids

(Hellberg et al., 1987)

Variable

no.

Property

1 molecular weight

2 pKCOOH (COOH on Ca)

3 pKNH2
(NH2 on Ca)

4 pI, pH at the isoelectric point

5 substituent van der waals volume

6 1H NMR for Ca–H (cation)

7 1H NMR for Ca–H (dipolar)

8 1H NMR for Ca–H (anion)

9 13C NMR for C¼O

10 13C NMR for Ca–H

11 13C NMR for C¼O in tetrapeptide

12 13C NMR for Ca–H in tetrapeptide

13 Rf for 1-N-(4-nitrobenzofurazono)amino acids in

ethyl acetate=pyridine=water

14 slope of plot 1=(Rf-1) vs. mol% H2O in paper chromatography

15 dG of transfer of amino acids from organic solvent to water

16 hydration potential or free energy of transfer from vapor

phase to water

17 Rf, salt chromatography

18 log P, partition coefficient for amino acids in octanol=water

19 log D, partition coefficient at pH 7.1 for acetylamide

derivatives of amino acids in octanol water

20 dG¼RT ln f; f¼ fraction of buried=accessible amino acids

in 22 proteins

21–29 HPLC retention times for nine combinations of three

different pH and three eluent mixtures
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amino acid components can be easily derived by following the procedures

given by Chou and Cai (2006). A brief and clear description for how to use

pseudo-amino acid composition has been given by Chou and Cai (2005).

Because the pseudo amino acid composition discrete model has been wide-

ly used, recently a Web-server called PseAA was established at http:==

chou.med.harvard.edu=bioinf=PseAA=. Using the Web-server, one can eas-

ily generate the pseudo amino acid components for any given protein

sequence.

2.4 Dipeptide composition

The dipeptide composition (Liu and Chou, 1998) has been successfully

used to predict protein secondary structure contents and mitochondria

proteins (Tan et al., 2006). The dipeptide composition used as input can

provide global information on protein features in the form of fixed-length

vector. It is calculated as follow for each protein.

FdipðiÞ ¼ total number of dipðiÞ
total number of all dipeptides

ð4Þ

where Fdip(i) is the fraction of dip(i) that the ith dipeptide out of 400

dipeptides.

Compared with native-amino acid composition (the fraction of each

native amino acid in a protein), the advantage of dipeptide composition is

that it incorporates some sequence-order information. With dipeptide com-

position coding scheme, each protein was represented as a fixed pattern

length of 400 (20� 20) elements.

2.5 Support vector machine

Support vector machine is a kind of learning machine based on statistical

learning theory presented by Vapnik (1998). A brief and clear description

for how to use SVM to do classification has been given by Chou and Cai

(2002) and Cai et al. (2003). In this particular work, the DNA-BPs were

defined as one class (labeled as þ1) and the non- DNA-BPs were de-

fined the other one (labeled as �1). The SVMs were implemented in

MATLAB7.0. Radial basic function (RBF) was chosen as the kernel

function and quadratic programming (QP) method was introduced to solve

the optimization problem. All the parameters were kept constant except

for C (regulatory parameter) and s (the kernel width parameter). In the

training process, C and s were optimized.

2.6 Performance evaluation

The jackknife (leave-one-out) test has been considered as one of the most

objective and rigorous test procedure in examining the power of a predic-

tion method, as illustrated in a comprehensive review article (Chou and

Zhang, 1995). It has been increasingly utilized by leading investigators to

examine the quality of various prediction methods (see, e.g., Zhou, 1998;

Du et al., 2003; Zhou and Doctor, 2003; Wang et al., 2004, 2006; Chou

and Cai, 2005; Shen and Chou, 2005a, b, 2006, 2007a, b, c, d; Chou and

Shen, 2006a, b, c, d, 2007a, b, c; Chen et al., 2006; Du and Li, 2006; Du

et al., 2006; Gao and Wang, 2006; Guo et al., 2006a; Mondal et al., 2006;

Shen et al., 2006, 2007; Xiao et al., 2006a, b; Zhang et al., 2006; Lin and

Li, 2007; Liu et al., 2007a, b). In this paper, a jackknife procedure was

carried out. All the protein sequences in the datasets were in turn singled

out as a ‘testing set’ and all the remaining proteins as the ‘training set’.

Five parameters were employed to evaluate the performance of each

module, including Acc, Sen, Sp, MCC and R. Details of these indices

are listed in Table 2 (Liu et al., 2006).

3. Results and discussion

3.1 Prediction results

The performance of all modules developed in this study

is shown in Table 3. The performance of all modules was

evaluated by jackknife testing. The pseudo-amino acid

composition based SVM module yielded 96.6% overall

accuracy and 90.7% sensitivity. The performance of di-

peptide composition based SVM module was satisfactory

but gave with the relatively lower overall accuracy

(85.4%) and sensitivity (68.6%) in comparison with the

pseudo-amino acid composition based module. In the case

of the ACC based module, the overall accuracy was nearly

25% lower than the pseudo-amino acid composition based

module and nearly 10% lower than the dipeptide compo-

Table 2. Indices introduced to evaluate the DNA-binding protein based

on support vector machine method

Index Definition and formula

Acc ðTPþ TNÞ=ðTPþ TN þ FPþ FNÞ
Sen TP=ðTPþ FNÞ
Sp TP=ðTPþ FPÞ
R 2ðTP=ðTPþ FNÞ � FP=ðTN þ FPÞÞ

1 þ absðTP=ðTPþ FNÞ � FP=ðTN þ FPÞÞ
MCC TP � TN � FN � FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FNÞ � ðTPþ FPÞ � ðTN þ FNÞ � ðTN þ FPÞ
p

TP (true positive) The number of observed positive samples, predicted

positive samples

TN (true negative) The number of observed negative samples, predicted

negative samples

FP (false positive) The number of observed negative samples, predicted

positive samples

FN (false negative) The number of observed positive samples, predicted

negative samples

Acc Overall accuracy; Sen sensitivity; Sp specificity; R reliability; MCC

Matthews’s correlation coefficient

Fig. 1. The performance based on the pseudo-amino acid composition

was influenced at different lambda. The abscissa represents the perfor-

mance of overall accuracy, sensitivity and specificity and the ordinate

represents the different lambda
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sition based module. A module based on the native-amino

acid composition was also constructed. The performance of

this module was not good (Table 3) compared to the pseu-

do-amino acid composition based module and the dipeptide

composition based module but a little better than the ACC

based module. Thus, pseudo-amino acid composition,

which provided information about amino acid composition

as well as local order of amino acids, is a better feature for

predicting DNA-binding proteins. This observation is con-

sistent with the suggestion that DNA-binding residues are

likely to be conserved (because of their function).

To further study the three encoding methods, hybrid

modules on the basis of various features of proteins were

constructed. The first hybrid module (hybrid1) was devel-

oped on the basis of pseudo-amino acid composition and

dipeptide composition of proteins. The prediction overall

accuracy and sensitivity of hybrid1 module was 89.7 and

88.1%, respectively, which was better than the dipeptide

composition based module but worse than the pseudo-

amino acid composition based module. The other three

hybrid modules (hybrid2, hybrid3, hybrid) containing

ACC substituted matrices were shown the same per-

formance as the ACC based module alone through the

jackknife testing. These three hybrid modules were re-

spectively developed on basis of pseudo-amino acid com-

position and ACC (hybrid2), dipeptide composition and

ACC (hybrid3), pseudo-amino acid composition, dipep-

tide composition and ACC (hybrid), as shown in Table 3.

These hybrid approaches have no any improvements in

identifying the DNA-binding proteins. The reason may be

that the three descriptor scales of the principal compo-

nents of 29 physicochemical properties of amino acids

can not exactly represent the sequences of proteins and

these feature vectors can not be concatenated in this sim-

ple way. Comparing the eight substituted modules, the

best prediction performance was the module on the basis

of the pseudo-amino acid composition. So in this study,

the pseudo-amino acid composition module was applied

for differentiating the DNA-binding proteins from the

non-DNA-binding proteins.

3.2 Comparison with other prediction methods

The performance of the pseudo-amino acid composition

module developed in this study was compared with exist-

ing methods that were also developed from the same data-

set. The performance of the previously reported studies

are Bhardwaj et al. (2005), with sensitivity of 80.6%, Jones

et al. (2003) with sensitivity of 67.8% and Kuznetsov

et al. (2006), with sensitivity of 79.2%. These previous

approaches in the classification of DNA-BPs mainly based

on the structure factors such as overall charge, electrostat-

ic calculations etc. The results demonstrated that the per-

formance of pseudo-amino acid composition module is

superior to those previous studies.

4. Conclusions

In this work, we compared several different substituted

modules in differentiating the DNA-BPs from non-DNA-

BPs based on the primary sequences of proteins. The

classifier of pseudo-amino acid composition with SVM

offers the best performance for identifying DNA-BPs

from other proteins. The module based on the pseudo-

amino acid composition gives the overall accuracy of

96.6% and sensitivity of 90.7%. The good result indicates

that this method may be helpful to further study the details

of the specific interactions of the DNA-BPs on the base of

pseudo-amino acid composition. We can draw a conclusion

that it is reasonable and feasible to develop a successful

method only using the primary sequences of proteins to

predict the DNA-BPs, which is helpful for annotating the

DNA-binding proteins in the absence of experiment data.

Such methods can be a supplement to biochemical experi-

ments and help to provide insight in finding the targets of

proteins for drug discovery. Further works on samples

collection for DNA-binding proteins, refined negative

samples selection, and feature vector selection will further

improve the performance of the machine learning meth-

ods for predicting the DNA-protein interaction sites.
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Table 3. The performance of the methods based on different substituted

models in identifying DNA-binding proteins by jackknife testing

Approach Acc Sen Sp MCC R

PseAA-based(A) 0.966 0.907 0.996 0.924 0.949

dp based(B) 0.854 0.686 0.939 0.664 0.769

ACC based(C) 0.756 0.280 1.00 0.452 0.438

NAA-based 0.799 0.483 0.961 0.536 0.615

Hybrid1(AþB) 0.897 0.881 0.905 0.774 0.880

Hybrid2(AþC) 0.756 0.280 1.00 0.452 0.438

Hybrid3(BþC) 0.756 0.280 1.00 0.452 0.438

Hybrid(AþBþC) 0.756 0.280 1.00 0.452 0.438

PseAA Pseudo-amino acid composition; dp dipeptide composition; ACC

autocross-covariance transform; NAA native amino acid composition
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Appendix A

Complete list of proteins with less than 35% identity used for this study
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