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Summary. Transmembrane (TM) proteins represent about 20–30% of the

protein sequences in higher eukaryotes, playing important roles across a

range of cellular functions. Moreover, knowledge about topology of these

proteins often provides crucial hints toward their function. Due to the

difficulties in experimental structure determinations of TM protein, theo-

retical prediction methods are highly preferred in identifying the topology

of newly found ones according to their primary sequences, useful in both

basic research and drug discovery. In this paper, based on the concept of

pseudo amino acid composition (PseAA) that can incorporate sequence-

order information of a protein sequence so as to remarkably enhance the

power of discrete models (Chou, K. C., Proteins: Structure, Function, and

Genetics, 2001, 43: 246–255), cellular automata and Lempel-Ziv com-

plexity are introduced to predict the TM regions of integral membrane

proteins including both a-helical and b-barrel membrane proteins, vali-

dated by jackknife test. The result thus obtained is quite promising, which

indicates that the current approach might be a quite potential high through-

put tool in the post-genomic era. The source code and dataset are available

for academic users at liml@scu.edu.cn.
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1. Introduction

Membrane proteins are found mostly in the cell mem-

branes of both prokaryotic and eukaryotic organisms, per-

forming a variety of biologically important functions such

as ion tunnel, nutrient transportation, membrane adhesion,

catalytic activity, and receptors of signal molecules in-

cluding neurotransmitters, peptide hormones, chemokines

and cytokines, etc. However, they usually form stable nat-

ural conformation with bio-membrane, which makes it

difficult to determine their 3D structure with X-ray crys-

tallography or nuclear magnetic resonance spectroscopy.

Practically, among tens of thousands of proteins with

known 3D structure, membrane proteins constitute only

a trivial proportion (Kuhlbrandt and Wang, 1994). As

knowledge of topology structure of membrane proteins has

important significance in both basic research and drug

discovery, people have enormous interest in obtaining

structure information of membrane proteins from their

primary sequences through theoretical prediction.

Research shows that the structure of membrane proteins

can be predicted according to the hydrophobicity of their

primary sequence. Kyte and Doolittle (1982) computed

the hydrophobicity scales of 20 amino acids, transformed

the test sequence into hydrophobicity profile through slid-

ing windows of fixed size, set appropriate threshold and

predicted possible TM regions. von Heijine (1986) pro-

posed the so-called ‘‘positive inside rule’’, providing

further instructs to membrane protein structure prediction

methods. In recent years, along with the increase of new-

found membrane proteins with determined structure, sev-

eral statistical prediction methods had been proposed,

using artificial neural network (Cao et al., 2006; Chen

and Rost, 2002; Rost et al., 1996), hidden Markov model

(Tusnady and Simon, 1998; Zhou and Zhou, 2003) and

support vector machine (Zheng and John, 2004). Despite

preferable prediction accuracy, they had shortcomings

such as requiring users to specify the length range of TM

segments so as to adjust the size of scanning window,

could not recognize b-barrel TM proteins, which limited

their application in some cases.

The present study is to develop an integrative method

for predicting the topology of TM proteins on the base of

PseAA (Chou, 2001). First, scanning the requested protein



sequence with a fixed-size window of 20 amino acids

residues; then, the segments thus obtained are transformed

into binary sequences by an encoding procedure, upon

which the cellular automata are applied to derive PseAA

components; finally, the augmented covariant-discrimi-

nant algorithm (Chou, 2000a) is used to predict the topol-

ogy of requested protein. The result suggests this method

is an effective tool for the prediction of both a-helical and

b-barrel proteins with high accuracy, validated by jack-

knife cross-validation test. Moreover, based solely on the

amino acid sequence, this method does not require any

other annotations or sequence alignment information.

2. Materials and methods

2.1 Data sets

The UniProt=Swiss-Prot at www.ebi.ac.uk=swissprot (Release 46.6) and

PDB at www.rcsb.org=pdb were used to construct the dataset used in

this study. All sequences with ambiguous words, such as POTENTIAL,

PUTATIVE, or HYPOTHETICAL and fragments having less than 50

amino acid residues were excluded. Some sequences with high identity

of 90% were not removed in order to provide a wide range prediction,

while most sequences were clustered lower than 25% identity using

Clustal W program (Thompson et al., 1994). The final dataset consisted

of 146 entries that appeared as whole sequences and had reliable experi-

mental annotations for TM regions, the accession numbers of which were

given in the supplementary materials.

2.2 Digital coding for amino acid

For the existent 20 native amino acids, a set of digital codes are introduced

to represent them (Table 1), which is capable of reflecting the chemical

physical properties of amino acids and their degeneracy as well, by means

of the similarity rule, complementarity rule and molecular recognition

theory (Kuric, 2007; Xiao et al., 2005a, b, 2006a).

2.3 Cellular automata

According to the self-production principle of biological domain, von

Neumann (1966) proposed the concept and model of cellular automaton,

which was a dynamical system discrete in both time and spatial. Spread in

regular lattice, each cell adopted finite discrete state and updated synchro-

nously according to explicit local rule. The evolution of entire dynamical

system was implemented through simple and exact interactions between

those cells, the characteristic of which was discrete in time, spatial and

state, every variable only adopted finite state, and the state transforming

rule was local both in time and spatial.

Cellular automata can be used to study many universal phenomena, in-

cluding communication, information processing, computation, conforma-

tion, growth, replication, competition and evolution, etc. Meanwhile, they

are effective and powerful modeling tools for investigating system emer-

gent behaviors and complex phenomena in dynamical system theory, such

as order, chaos, turbulence, non-symmetry and fractal, etc (Wolfram, 1984,

1986; Martin et al., 1984).

Generally, cellular automata can be formulated as

A ¼ ðLd ; S;N; f ;BÞ ð1Þ

where 1) A represents cellular automata; 2) Ld is the cellular space, d is a

positive integer, standing for the dimension of cellular space; 3) S is a

finite state set; 4) N represents local neighborhood, which can be denoted

as a vector comprising n different cell states:

N ¼ ðs1; s2; . . . ; snÞ; si 2 S; i2 f1; 2; . . . ; ng ð2Þ

where n is the number of the central cell’s neighbor, including itself.

5) f is state transfer function that defines how the state changes from one

time to the next. For example, elementary cellular automaton that we

adopt in this study is a one-dimensional cellular automaton with its state

set S comprising only two states f0; 1g and neighbor radius r¼ 1, whose

local transfer function f is

Siðt þ 1Þ ¼ f ðSi�1ðtÞ; SiðtÞ; Siþ1ðtÞÞ; i2 f1; 2; . . . ; ng ð3Þ

Considering Si as the current cell, Si(t) is its state at time step t; Si-1(t) and

Siþ 1(t) represent the state of its two neighbors at time step t; Si (tþ 1) is its

state at the next time step (tþ 1). Moreover, to any i and t, Si (t) 2 f0; 1g.

In general, if there are K states and if each cell is taken to have N

neighbors (including itself), then there should be KN possible neighbor-

hood configurations and KKN

different local rules. Consequently, for ele-

mentary cellular automata, there should be 223 ¼ 256 different rules that

can be easily encoded from binary byte into decimal numbers between 0

and 255. For example, rule number 84 that we adopt in this study corre-

sponds to Fig. 1, where this local function is applied simultaneously to all

lattice sites.

6) B represents boundary condition, which could be classified into four

types named fixed, random, circulating and reflecting boundary condition,

respectively. Considering the characteristic of most proteins is self-con-

sistency and self-organization, we adopt the reflecting boundary condition

in this study with the iterative formula given by:

S1ðt þ 1Þ ¼ f ðS2ðtÞ; S1ðtÞ; S2ðtÞÞ ð4Þ

Snðt þ 1Þ ¼ f ðSn�1ðtÞ; SnðtÞ; Sn�1ðtÞÞ ð5Þ

where symbols denote the same as in Eq. (3).

2.4 Lempel-Ziv complexity

There are several complexity measures to test the randomness of a se-

quence. Linear complexity, for example, is one of these measures. Being

an important measure used in cryptography, Lempel-Ziv (LZ) complexity

of a sequence is measured by the minimal number of steps required for its

synthesis in a certain process (Lempel and Ziv, 1976). For each step only

two operations are allowed in the process: either generating an additional

symbol which ensures the uniqueness of each component or copying the

longest fragment from the part of a synthesized sequence.

Suppose a string S expressed by S1S2 . . .Sn, its substring is expressed by

S½i : j� ¼ SiSiþ1Siþ2 � � �Sj ð1� i� j�NÞ ð6Þ

Table 1. Digital codes of 20 native amino acids

Amino acid P L Q H R S F Y W C

Binary notation 00001 00011 00100 00101 00110 01001 01011 01100 01110 01111

Amino acid T I M K N A V D E G

Binary notation 10000 10010 10011 10100 10101 11001 11010 11100 11101 11110

112 Y. Diao et al.



The complexity measure, CLS (S), of string S is the minimal number of steps

that are needed to synthesized S according to the following procedure.

HðSÞ ¼ S½1 : i1�S½i1 þ 1 : i2� � � � S½ik�1 þ 1 : ik� � � �S½in�1 þ 1 : N� ð7Þ

where the uniqueness of every substring is generated by adding an

additional symbol to the existent substring. For instance the LZ com-

plexity of string 0100011011000001010011 is 10, because 10 is the

minimal number of steps required to synthesize this binary sequence as

0j1j00j01j10j11j000j001j010j011.

2.5 Pseudo amino acid composition

To avoid completely losing the sequence-order information as representing

a protein by its amino acid composition, Chou (2001) proposed PseAA

that could partially reflect the sequence-order information through a set of

correlation factors. Introducing the concept of PseAA has stimulated many

follow-up studies for improving the prediction quality in various areas as

reflected by a series of recent publications (Chen et al., 2006a, b; Du and

Li, 2006; Gao et al., 2005; Liu et al., 2005; Mondal et al., 2006; Pan et al.,

2003; Shen and Chou, 2005a, b, 2006a, b, 2007; Shen et al., 2006; Wang

et al., 2004, 2006; Xiao et al., 2006a, b; Zhang et al., 2006a).

In this study, LZ complexity factor is used to serve as PseAA compo-

nents, which could also partially reflect sequence effect and length infor-

mation of proteins. However, N complexity factors can be derived from

the requested protein sequence after N-times cellular automata evolution,

the first 26 of which are adopted in this study by the reasons given in the

discussion section. Accordingly, by following the procedure defined by

Eqs. (8) and (9), a protein can be expressed by a vector or a point in 46-

dimensional space:

X ¼ ðx1; x2; x3; . . . ; x46ÞT ð8Þ

xk ¼

fkP20
i¼1 fi þ w

P26
j¼1 pj

ð1�k�20Þ

wpðk�20ÞP20
i¼1 fi þ w

P26
j¼1 pj

ð21�k�46Þ

8>>><
>>>:

ð9Þ

where fi ði ¼ 1; 2; . . . ; 20Þ are the occurrence frequencies of the 20 amino

acids in the requested sequence, arranged alphabetically according to their

single letter codes, pj ( j¼ 1, 2, . . ., 26) are the complexity factors of the

transformed sequence, and w the weight factor. According to previous

publications (Chou, 2000a, 2001, 2005a; Chou and Cai, 2003a, b; Xiao

et al., 2006b) and several condition tests, we finally chose w¼ 1=600 to

make the results of Eq. (9) within the range easier to be handled.

Now the augmented covariant-discriminant algorithm (Chou, 2000a,

2001) is used to perform the prediction, which is a combination of

Mahalanobis distance and Chou’s invariance theorem for treating degener-

ative space (Chou, 1995; Chou et al., 1998; Chou and Zhang, 1994; Zhou,

1998; Zhou and Assa-Munt, 2001; Zhou and Doctor, 2003). It should be

noticed that owing to the normalization condition imposed by Eq. (9), a

dimension-reduced operation by leaving out one of the 46 components and

making the rest completely independent is needed before utilizing this

predicting algorithm. Otherwise, the covariant matrix in the covariant-

discriminant algorithm would be divergent (Chou and Zhang, 1994). How-

ever, which one of the 46 components should be removed? According to

Chou’s invariance theorem (Chou, 1995), the values of the covariant-

discriminant function will remain the same regardless of which one of

the 46 components is left out.

3. Results and discussions

As is known, integral membrane proteins are divided into

two distinct structural classes, the a-helical membrane pro-

teins and the b-barrel membrane proteins. While the former

class is more abundant and well studied, members of the

latter class escape attention of most researchers, which are

located in the outer membrane of Gram-negative bacteria,

presumably in the outer membrane of chloroplasts and mi-

tochondria. These proteins have membrane spanning seg-

ments formed by antiparallel b-strands, creating a chan-

nel in the form of a barrel that spans the outer membrane

(Chou et al., 1990; Pautsch and Schultz, 1998).

As far as a-helical membrane proteins are considered,

20 amino acids residues, on average, are needed to span

the bilayer lipid membrane. However, as for b-barrel ones,

10 amino acids residues are enough to do the same job

because b-sheet is theoretically more stretched than a-

helix, since its lower compression ratio. Fortunately, there

exists another secondary structure named b-turn (Chou,

2000c), constituted by four to five amino acids residues,

between these concatenated b-strands. Consequently, a

compound structure constituted by a b-strand and two

b-turns on its both ends now becomes our target of pattern

recognition, whose total length is averagely 18–20 amino

acids residues. Considering the above-mentioned reasons,

the size of sliding window in this study is fixed at 20 res-

idues. Therefore, we can obtain n� 20 þ 1 segments from

the sample sequence, which is supposed to have n amino

acids residues in total.

Through the encoding rule given in Table 1, these pro-

tein segments are transformed to a serial of binary se-

quences with a length of 100. Under the evolution rule of

84th and reflecting boundary condition defined by Eqs. (4)

and (5), every binary sequence is transformed by a two-

state, one-dimensional cellular automaton into a 2D ma-

trix with its data in each row derived from its previous,

starting from the second. But how many iterative steps

will be adequate in this study? The clue lies in the above-

mentioned compound structure, namely a b-sheet and two

b-turns on its both ends.

Fig. 1. Illustration of a one-dimensional, two-state, nearest-neighbor

(r¼ 1) cellular automaton. Both the lattice and the rule table for updating

the lattice are illustrated. The configuration of the cellular automaton is

shown at two successive time steps, under reflecting boundary condi-

tions: the left neighbor of the leftmost cell is its right neighbor and vice

versa, as if a mirror were placed on the boundary of the lattice
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As is mentioned above, the amino acids residues that

make up of a b-strand could fill only half of the sliding

window, which makes its lateral b-turns of critical impor-

tance in recognizing its exact position. Considering the

encoding procedure, the 5 amino acids residues in a b-

turn are transformed into binary sequence of length 25. At

each iteration, considering the localization characteristic

of cellular automata, the information contained in the left

flank can only diffuse one grid to the right, while that in

the right flank diffusing one grid to the left. After 25 times

of iteration, the flows of information from both ends con-

verge at the center. At the next step, the flows overlap and

that is the least iterative time needed to cover our request.

Computing the LZ complexity of the 26 rows of the 2D

matrix generated by the above-mentioned cellular auto-

mata, plus the amino acids composition of the same win-

dow, we obtain the PseAA needed in augmented covar-

iant-discriminant algorithm, which is then used to predict

which class this segment should belong to, a-helix, b-

strands or non-TM region. Particularly, as for the first

window, an additional prediction is made to determine the

N-terminal of the requested protein is located in which

side of the membrane, providing more details for the

topology structure prediction. Suppose the N-terminal is

located inside the cell or organelle, all the singular TM

segments should span the membrane from inside to out-

side and even TM segments from outside to inside.

In the prediction of TM regions, if the amino acids

composition of the sliding window is completely uniform,

or the probability of each amino acid equals to 1=20, the

LZ complexity factor gets its maximum; if the sliding

window only contains one kind of amino acid, the LZ

complexity factor gets its minimum. So, the magnitude

of LZ complexity factor partially reflects the deviation

extent between the sliding window and average expecta-

tion of all proteins in the training set. The permutation of

LZ complexity factors generated from TM region, includ-

ing its lateral 40 amino acids residues, 20 at each side,

could provide crucial clue to its exact location in the re-

quested proteins.

Table 2 shows the prediction result of this method in

recognizing 8 TM segments of Outer membrane protein A

(OmpA), whose 3D structure is also shown in Fig 2. While

the predictor HMMTOP (Tusnady and Simon, 1998) and

TMpred (Hofmann and Stoffel, 1993) fail the test, the

current method obtains preferable results compared with

another predictor named PRED-TMBB (Bagos et al.,

2004), which is specialized in recognizing b-barrel pro-

teins.

Upon all the 914 TM segments of 146 TM proteins in

our data set, the prediction result of the current method is

compared with those of three other algorithms (Table 3),

using the jackknife cross-validation test. As is known, this

test has been considered as one of the most objective and

rigorous test methods in examining the power of a pre-

diction method (Chou and Zhang, 1995).

In the process of predicting, only primary sequence

of the test protein is inputted, without any other param-

eters, annotations or sequence alignment information.

Although prediction accuracy may decrease by doing

so, experiment result becomes more consistent and repli-

cable. Moreover, because of the suppleness of biological

molecules and practical limits of experiments, margins

often exist when defining the ends of TM segments.

Accordingly, in this study, we define no more than 5

residues deviation, in each end, is acceptable. The un-

derlying physical significance of this is that every 20-

residue segment comprising more than 5 consecutive

Table 2. Comparing prediction results of the current method with those of

three other algorithms in recognizing 8 TM segments of Outer membrane

protein A (OmpA)

Observed This

paper

HMMTOP TMpred PRED-

TMBB

TM1 6–16 5–17 – – 7–15

TM2 34–45 32–62 – – 43–51

TM3 49–60 – – – 55–63

TM4 75–86 72–84 – – 77–85

TM5 91–103 93–105 – – 91–101

TM6 121–130 118–128 – – 119–129

TM7 135–143 133–143 – – 133–143

TM8 161–170 159–169 – – 160–170

Fig. 2. Ribbon drawing to show the structure of protein OmpA
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residues that belong to TM regions, should be identified

as a TM comprising segment out of a background noise

of 205 ¼ 320,000 segments.

To show more details, we list the prediction result of a-

helical and b-barrel proteins separately. From Table 3 we

can summarize that 1) in the prediction of a-helical pro-

teins, the current method obtains a jackknife success rate

slightly higher than that of HMMTOP and obviously

higher than that of TMpred, while PRED-TMBB fails this

test; 2) in the prediction of b-barrel proteins, the current

method obtains a jackknife success rate mildly less than

that of PRED-TMBB, while the other two predictors al-

most fail the test. However, upon all the proteins in the

data set, the current method obtains an overall success rate

considerably higher than the other three predictors.

4. Conclusions

Having the dynamical characteristics of decentralized

decision-making and highly parallel information proces-

sing, cellular automata has been the subject of interest

from the computer scientists for many years, especially

in the domain of artificial intelligence and artificial life.

However, it is also an intriguing and promising approach

especially useful for investigating complicated biological

sequences. It is demonstrated in this study that using cel-

lular automata to derive PseAA components can effec-

tively reflect the overall sequence-order feature of a pro-

tein, useful for the prediction of TM regions in proteins.

Meanwhile, it does not escape our attention that the pos-

sible usage of this method on improving the prediction

quality for a series of other protein attributes, such as

subcellular localization (Cai and Chou, 2004a, b; Chou,

2000b; Chou and Cai, 2002, 2003b, 2004b, c, 2005; Chou

and Elrod, 1999; Chou and Shen, 2006a, b, c; Zhang et al.,

2006b), enzyme family classes (Cai et al., 2005), G pro-

tein coupled receptor classification (Chou, 2005b; Wen

et al., 2006), and protein quaternary structure types (Chou

and Cai, 2004a), among many others.
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