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Summary. Despite the wide interest in using modified amino acids as

putative biomarkers of oxidative stress, many issues remain as to their

overall reliability for early detection and diagnosis of diseases. In contrast

to conventional single biomarker studies, comprehensive analysis of bio-

markers offers an unbiased strategy for global assessment of modified

amino acid metabolism due to reactive oxygen and nitrogen species. This

review examines recent analytical techniques amenable for analysis of

modified amino acids in biological samples reported during 2003–2007.

Particular attention is devoted to the need for validated methods applicable

to high-throughput analysis of multiple amino acid biomarkers, as well as

consideration of sample pretreatment protocols on artifact formation for

improved clinical relevance.

Keywords: Oxidative stress – Modified amino acids – Analytical tech-
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Introduction

Oxidative stress has long been hypothesized as an under-

lying mechanism associated in normal ageing processes,

as well as implicated in the etiology of many diseases

(Mak and Newton, 2001; Markesbery, 1997). Since reac-

tive oxygen and nitrogen species (e.g., hydroxyl radical,

peroxynitrite) are intrinsic by-products of aerobic metab-

olism and immune defense, living organisms have devel-

oped natural mechanisms for neutralizing reactive inter-

mediates and repairing oxidative damage while maintain-

ing cellular redox balance. Oxidative damage is attributed

to deficiencies in enzymatic or non-enzymatic antioxidant

cellular defenses coupled with increased exposure to re-

active oxygen=nitrogen species (i.e., ROS=RNS) derived

from endogenous and exogenous sources (Valko et al.,

2007). Chronic oxidative stress can induce irreversible

changes in normal cellular metabolism, which has been

implicated in the pathogenesis of cardiovascular (Brennan

and Hazen, 2003; Ceriello and Motz, 2004) and neuro-

degenerative disorders (Markesbery and Lovell, 2006;

Sultana et al., 2006).

The identification, quantification and validation of pu-

tative biomarkers indicative of oxidative stress remain

an on-going challenge in analytical chemistry. An ideal

biomarker represents a stable product of oxidative=

nitrosative stress, which is present at low but quantifiable

concentrations in cells or biofluids from healthy patients

(Dalle-Donne et al., 2006). Moreover, a biomarker that is

indicative of a specific disorder and useful for early detec-

tion, progression or intervention of disease is highly desir-

able in a clinical setting. Numerous biomarkers of lipid,

fatty acid, DNA and protein oxidative=nitrosative damage

have been examined, including F2-isoprostanes (Basu,

2004), modified nucleosides (Orhan et al., 2004), alde-

hyde protein adducts (Carini et al., 2004) and carbon-

ylated proteins (Dalle-Donne et al., 2003), respectively.

In general, biomarkers derived from protein modifications

have been most extensively reported as they represent

the major biopolymer constituent and functional compo-

nent of cells. In this case, analytical methods are required

to quantify modified amino acids present in intact pro-

tein (Shishehbor et al., 2003a). This is important for

understanding of the specificity of amino acid oxidation

and its impact on protein conformational stability, activity



or function. Alternatively, analysis is performed by com-

parison of the relative amounts of free and total modified

amino acids present before and after protein hydrolysis,

respectively (Mita et al., 2004). This option is often used

as a general strategy to assess oxidative stress status for

global changes in amino acid metabolism. However, the

clinical significance of such an analysis will ultimately

depend on the type of sample (e.g., cell, plasma, urine),

requirement of sample pretreatment (e.g., proteolysis,

chemical derivatization), performance of analytical tech-

nique (e.g., selectivity, sensitivity) and method to nor-

malize measured amino acid concentration levels among

different biological samples (e.g., total protein mass, un-

modified amino acid). These factors are relevant to ensure

reliable quantification of low levels of modified amino

acids in complex and variable samples.

Oxidation=nitrosation processes occur primarily with

reactive amino acid side chains within protein or free

amino acid pools. The mechanism and relative reactivity

of specific amino acids with different ROS=RNS have

been discussed in detail in recent reviews (Alvarez and

Radi, 2003; Davies, 2005; Marnett et al., 2003; Stadtman

and Levine, 2003). In general, most ROS=RNS are elec-

trophilic species and thus undergo preferential reactions

with electron-rich amino acids, including Tyr, Phe, Trp,

His, Cys and Met. Indeed, these reactive amino acid

classes (e.g., thiols, indoles, etc.) also serve as functional

antioxidants present at physiologically relevant concen-

trations in biofluids or cells with activity comparable to

classic antioxidants, such as ascorbic acid (Herraiz and

Galisteo, 2004; Meucci and Mele, 1994). There is in-

creased recognition that oxidative damage to proteins

may contribute to the development and=or progression of

various diseases as a result of protein misfolding, aggre-

gation and inactivation (Dalle-Donne et al., 2006; Valko

et al., 2007). However, a direct causal relationship be-

tween a specific diseased state and ROS=RNS has yet to

be conclusively demonstrated in vivo. This is primarily

due to the lack of a suitable biomarker whose concentra-

tion change can be directly correlated to disease within a

heterogeneous population. The difficulty in establishing

such a link is only compounded by the complexity of

human diseases and the analytical challenges facing cur-

rent biomarker analysis. To date, the majority of studies

have focused on the analysis of a single modified amino

acid as a biomarker for oxidative stress. New strategies

are urgently needed for simultaneous analysis of multiple

amino acid biomarkers as a way to enhance specificity,

accuracy and reliability when assessing disregulated metab-

olism in a clinical setting.

Extensive reviews of redox proteomics related to amino

acid modifications have described the current challenges

in assessing biomarkers of oxidative stress (Dalle-Donne

et al., 2005). The aim of this review is to provide an

overview of analytical techniques suitable for modified

amino acid analysis reported during 2003-early 2007. Par-

ticular attention is devoted to strategies that permit com-

prehensive and high-throughput analysis of amino acid

biomarkers associated with oxidative=nitrosative stress

with minimal sample pretreatment. Similar to emerging

metabolomic initiatives (Ryan and Robards, 2006), un-

biased analysis of global amino acid metabolism in bio-

logical samples involving known and unidentified bio-

markers of oxidative stress offers a promising framework

for future studies.

Amino acid side chain oxidation===nitrosation

Tyr is one the most reactive targets involved in oxidative

stress generating several clinically relevant modified

amino acid biomarkers. Nitration of tyrosine to produce

3-nitrotyrosine (3-NO2-Tyr) represents the most widely

quantified amino acid modification. Indeed, 3-NO2-Tyr

has been utilized as a putative biomarker for a diverse

spectrum of chronic disorders, ranging from asthma, car-

diovascular disease, cystic fibrosis, diabetes to Parkinson’s

disease (Table 1). 3-NO2-Tyr may be generated by differ-

ent reactive pathways and oxidants, including peroxy-

nitrite (ONOO�), myleoperoxidase (MPO) and other

metalloproteins (Dalle-Donne et al., 2005; Duncan,

2003; Mohiuddin et al., 2006; Pietraforte et al., 2003). Once

formed in vivo, 3-NO2-Tyr is metabolized to 3-nitro-4-

hydrophenylacetate (NHPA) prior to urinary excretion.

However, NHPA is not a useful indicator of 3-NO2-Tyr

formation as it is also produced by in vivo nitration of ex-

cess p-hydroxyphenylacetic acid (Halliwell and Whiteman,

2004) or via increased dietary nitrate intake (Vliet, 2006).

Although 3-NO2-Tyr formation has been linked to pro-

tein modification, it has also been detected in apparently

healthy individuals. This provides evidence that low level

tyrosine nitration may not only be involved in patho-

logical processes due to RNS, but may also play an en-

dogenous role in cell signal transduction pathways (Dalle-

Donne et al., 2005).

3,30-Dityrosine (Di-Tyr) is a Tyr oxidation product

produced by coupling of two Tyr radicals and represents

a selective biomarker of oxidatively-modified proteins

in vivo. Hydroxyl radicals (OH�), ONOO�, UV=g-irradia-

tion, MPO=H2O2-Tyr systems and other oxidant stressors

may all result in Di-Tyr production (Brennan and Hazen,
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2003; Giulivi et al., 2003). Indeed, Di-Tyr formation

within oxidatively-modified intracellular protein is con-

sidered an endogenous marker for selective proteolysis

(Giulivi and Davies, 1993). The reaction mechanism

and formation rates of Di-Tyr have been recently reviewed

(Malencik and Anderson, 2003). Since the 3-30 chemical

bond of Di-Tyr is resistant to hydrolysis once liberated

from degraded protein, it is excreted in nearly quantitative

yields in urine (Dalle-Donne et al., 2005). Halogenated

Tyr metabolites, such as 3-chlorotyrosine (3-Cl-Tyr) and

3-bromotyrosine (3-Br-Tyr), have also been proposed as

putative oxidative stress biomarkers of human disease

(Mohiuddin et al., 2006). 3-Cl-Tyr and 3-Br-Tyr are pro-

duced from the reaction with hypochlorous acid (HOCl)

and hypobromous acid (HOBr), respectively, although a

defined mechanism remains unclear (Hawkins et al., 2003).

3-Cl-Tyr is considered a specific biomarker of MPO-cata-

lyzed halogenation (Brennan and Hazen, 2003). The in vivo

metabolism of these halogenated biomarkers is currently

unknown although detoxification by dehalogenase en-

zymes and glutathione-S-transferase has been proposed

(Dalle-Donne et al., 2006).

Another important oxidized Tyr biomarker is 3,4-dihy-

droxytyrosine (L-DOPA), which may be produced in vivo

by radical oxidation and=or via enzymatic transformation

by tyrosine hydroylase during catecholamine biosynthesis

(Molnar et al., 2005a). A variety of other oxidized Tyr

derivatives including dopamine, dopamine quinine, 5,6-

hydroxyindol, 5,6-hydroxy-3-oxoindol have also been ex-

amined (Giulivi et al., 2003). The quantification of these

metabolites is particularly relevant in Parkinson’s disease

patients receiving Levodopa (L-DOPA) therapy. Long-

term treatments with L-DOPA have been demonstrated

to induce neurotoxicity in patients receiving this therapy

since it can undergo autooxidation to generate ROSs, as

well as be incorporated as a Tyr substitute during protein

biosynthesis (Valko et al., 2007). Thus, dietary and phar-

maceutical intervention can play important roles in mod-

ulating oxidative stress associated with amino acid metab-

olism and protein biosynthesis.

The electron-rich aromatic amino acids, Phe and Trp

are also important targets for ROS=RNS. Phe can under-

go oxidation in vivo to form two major positional isomers

of Tyr, namely ortho- and meta-Tyr. These stable Tyr

isomers have been used as an indirect measure of the

extent of OH� radical formation (Molnar et al., 2005a)

which have been associated with ageing, as well as dif-

ferent chronic diseases (Gurer-Orhan et al., 2006). Several

in vivo and in vitro oxidized=nitrosated Trp metabolites

have also been quantified as described in recent reviews

(Dalle-Donne et al., 2005; Yamakura and Ikeda, 2006).

In vitro nitrosation of Trp residues in proteins by ONOO�

and peroxidase=H2O2=nitrate resulted in the production of

1-, 4-, 5-, 6- and 7-NO2-Trp isomers (Yamakura and

Ikeda, 2006). The highest yielding isomer, 6-NO2-Trp,

is stable to acid hydrolysis and represents a potential bio-

marker for in vivo studies, although its biological role

remains unclear (Yamakura and Ikeda, 2006). In addition,

oxidants including HOCl and UV radiation may oxidize

Trp to kynurenine (KYN) and N-formyl-L-kynurenine

(NFK) (Hawkins et al., 2003). The KYN metabolic path-

way has important implications in neurological disorders,

including Parkinson’s and Alzheimer’s disease (Mackay

et al., 2006; Stoy et al., 2005). Quantification of hydrox-

ylated Trp metabolites 5-hydroxy-tryptophan (5-OH-Trp)

and 5-hydroxy-indoleacetic acid can provide insight

into the efficacy of Trp loading diets as treatments for

neurological disorders, such as Huntington’s disease

(Christofides et al., 2006).

Met protein residues are also readily modified to pro-

duce two major oxidized species, methionine sulfoxide

(MetSOx) and methionine sulfone (MetSOn). The mech-

anism, rates of formation and diseases associated with

elevated levels of these products has been reviewed else-

where (Davies, 2005; Schoneich, 2005). Met oxidation to

MetSOx is reversible since methionine sulfoxide reduc-

tase A and B (MsrA=MsrB) selectively reduces free

MSOx. (Galeva et al., 2005). The reversible nature of this

oxidation has led researchers to postulate that Met oxida-

tion acts as a redox switch involved in protein function

and repair (Davies, 2005; Marnett et al., 2003). Ageing

processes have recently been reviewed in this context

(Friguet, 2006). Much attention is currently focused on

identifying the specific sites of Met oxidation in proteins

using MS based proteomic assays (Choi et al., 2006). In

contrast, few publications have focused on quantifying the

relative levels of free and protein bound Met oxidation

products. The conflicting opinions on the usefulness of

measuring modified Met biomarkers for oxidative stress

(Davies, 2005; Halliwell and Whiteman, 2004) may be

partially responsible for this trend. Table 1 summarizes

major modified amino acids that have reported as putative

biomarkers of oxidative stress in association with differ-

ent disease from 2003 to early 2007, which also highlights

the selection of analytical technique, sample type and sam-

ple pretreatment. Interestingly, only about 30% of these

studies have utilized more than one single modified amino

acid as a biomarker for clinical investigation with far fewer

using more than three biomarkers, which are summarized

separately in Table 2.

Strategies for comprehensive analysis of amino acid biomarkers 7
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In vivo protein biosynthesis with oxidized

amino acids

Free circulating levels of modified amino acids are likely

the result of protein oxidation and degradation with sub-

sequent release of stable oxidized metabolites. However,

there is growing evidence that free oxidized amino acids

may also be incorporated into newly synthesized proteins

in place of their unmodified precursors. Acid hydrolysis

and LC–MS=MS analysis of Chinese hamster ovary cells

incubated with meta-[14C]-Tyr in the presence of physio-

logical concentrations of Phe and Tyr demonstrated mod-

ified amino acid uptake and incorporation into cellular

protein (Gurer-Orhan et al., 2006). Ozawa et al. showed

that E. coli bacterial growth on a DOPA-rich, Tyr-free

medium had over a 90% uptake of DOPA at each Tyr site

based on MS and 15N-HSQ-NMR characterization (Ozawa

et al., 2005). In a rigorous study, Rodgers et al. (2006)

demonstrated L-DOPA derived protein biosynthesis in

Parkinson’s disease patients. Blood was separated into

erythrocyte, lymphocyte and protein fractions and ana-

lyzed for L-DOPA content. The lymphocyte fraction

showed elevated levels of L-DOPA being incorporated

into protein. In contrast, erythrocytes which cannot syn-

thesize new protein showed no appreciable increase in

L-DOPA content. The concentration of meta-Tyr, a bio-

marker used to assess oxidative damage, remained con-

stant between diseased and healthy patients in all frac-

tions. This work presented the first direct evidence of

L-DOPA protein biosynthesis in Parkinson’s disease patients

receiving this therapy (Rodgers et al., 2006). Together,

these studies offer an alternative explanation for genera-

tion of protein-bound modified amino acids as opposed

to direct modification of reactive amino acids within sus-

ceptible long-lived protein exposed to ROS=RNS. Further

studies are needed to better distinguish the source and fate

of modified amino acid metabolites in cells.

Quantitative analysis of oxidized===nitrosated

amino acids

The challenges in performing reliable analysis of dif-

ferent classes of oxidized=nitrosated amino acids are

immense. It has been suggested that determination of

oxidative protein modifications are an order of magnitude

more difficult than analyzing DNA damage (Halliwell and

Whiteman, 2004). In general, analytical techniques re-

quire excellent sensitivity and selectivity for quantifying

nanomolar levels of modified amino acids in complex bio-

logical samples. This often necessitates off-line sample

pretreatment steps prior to analysis to enhance concen-L
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tration sensitivity while minimizing interferences, such as

solid-phase extraction (SPE) and chemical derivatization.

Several studies have demonstrated that bias is a major

concern since 3-NO2-Tyr, 3-Cl-Tyr and 3-Br-Tyr may be

generated as artifacts during protein acid hydrolysis and=

or chemical derivatization steps (Dalle-Donne et al.,

2006; Halliwell and Whiteman, 2004). Removing minor

amounts of oxidizing or nitrating agents (e.g., NO2
�) by

desalting prior to hydrolysis (Baraldi et al., 2006) or

employing alkaline conditions to hydrolyze protein can

minimize this effect (Pannala et al., 2003). This latter

precaution apparently has not been adopted in many stud-

ies as summarized in Table 1. Also, protein digests per-

formed under anaerobic conditions in the gas phase using

mercaptoacetic acid and hydrochloric acid (Rodgers et al.,

2006) has also been reported to prevent undesired mod-

ifications. Moreover, the types of equipment used to per-

form acid hydrolysis can also impact the extent of nitra-

tion with Eppendorf+ more suitable than borosilicate or

polypropylene tubes in this regard (Morton et al., 2003).

Recently, it has been reported that repeated freezing and

thawing samples containing phosphate or nitrate can also

contribute to Tyr nitration (Halliwell and Whiteman, 2004).

Thus, all sources of artifacts must be considered when

validating an analytical method to reliably quantify amino

acid biomarkers of oxidative stress.

Rigorous assessment of artifact generation during sam-

ple handling can readily be assessed by using deuterated

amino acid analogues with MS characterization. Baraldi

et al. used both 3-NO2-[13C6]-Tyr and d3-Tyr as inter-

nal standards in their LC–MS analysis of 3-NO2Tyr in

asthmatic and healthy children (Baraldi et al., 2006).

The use of an isotopomer as internal standard allowed

for 3-NO2-Tyr artifacts to be assessed by monitoring

the d3-3-NO2-Tyr signal, while 3-NO2-[13C6]-Tyr was

used to improve method precision. Alternatively, con-

version of 3-NO2-Tyr to N-acetyl-3-amino-Tyr prior to

acid hydrolysis allows endogenous 3-NO2-Tyr to be se-

lectively extracted from complex matrices (Duncan,

2003). In a GC-negative-ion chemical ionization (NICI)-

MS analysis of 3-NO2-Tyr in human plasma, Soderling

et al. (2003) employed a complex sample pretreatment

protocol where 3-NO2-Tyr was initially reduced with

dithionite to 3-amino-Tyr and then derivatized with hepta-

fluorobutyric acid and trimethylsilyldiazomethane to pro-

duce the corresponding di-O-methyldi-N-fluorobutyryl

Tyr derivative. In vitro generation of 3-NO2-Tyr during

sample handling=derivatization resulted in the formation

of a di-O-methylmono-N-fluorobutyryl Tyr derivative.

GC–NICI–MS analysis of the two different heptafluo-

robutyric acid=trimethylsilyldiazomethane adducts per-

mitted selective identification of both in vivo and in vitro

Fig. 1. Chemical structures of some major modified amino acids used as biomarkers of oxidative stress: 1, 3-NO2-Tyr; 2, 3-Cl-Tyr; 3, 3-Br-Tyr; 4, L-

DOPA; 5, Di-Tyr; 6, ortho-Tyr; 7, meta-Tyr; 8, 5-OH-Trp; 9, KYN; 10, 5-OH-KYN; 11, MetSOx and 12, MetSOn

10 A. S. Ptolemy et al.



production of 3-NO2-Tyr, while also improving overall

detector response.

Analysis of multiple amino acid biomarkers

of oxidative stress

To date, there have been numerous reports and reviews of

methods used for targeted analysis of single biomarkers

based on modified amino acids, (Brennan and Hazen,

2003; Giulivi et al., 2003; Hawkins et al., 2003; Malencik

and Anderson, 2003; Pietraforte et al., 2003; Stadtman

and Levine, 2003) as summarized in Table 1. However,

with the emergence of metabolomics (Ryan and Robards,

2006) as a new paradigm in disease prognosis and drug

development, analytical techniques amenable to compre-

hensive analysis of modified amino acid metabolism are

needed. In general, hyphenated separation techniques

coupled to MS offer unsurpassed selectivity for multiple

modified amino acid analysis relative to detection meth-

ods based on electrochemical, UV absorbance and fluo-

rescence (Giulivi et al., 2003; Malencik and Anderson,

2003). Immunoassay techniques based on ELISA (Troxler

et al., 2004) offer excellent sensitivity and selectivity for

trace analysis, but are difficult to independently validate

due to changes in the heterogeneity and cross-reactivity of

antibodies derived from different sources. A review of

different analytical techniques suitable for the analysis

of multiple amino acid biomarkers of oxidative stress

is discussed below. Methods that offer rapid and high-

throughput analysis of small amounts of sample with

minimal off-line sample pretreatment are highly desirable

in clinical applications.

GC–MS

GC–MS is one of the most widely reported techniques for

modified amino acid analysis due to its high separation

efficiency, extensive MS database and long history of reli-

able and validated use. However, the polar nature and low

volatility of amino acids requires their chemical deri-

vation prior to separation. Perfluronated and silynated

derivatization agents are routinely employed to overcome

these limitations, but often require high temperatures and

long reaction times that are not compatible with ther-

mally-labile species. Moreover, chemical derivatization

can also result in incomplete or multiple labeling of

amino acids, which complicates MS interpretation. The

problem of artifact generation of oxidized amino acids

during sample pretreatment is also a significant concern.

The quantification of free and protein-bound 3-Cl-Tyr

and 3-Br-Tyr in acid hydrolysates of urine and plasma

of asthmatic patients using GC–NICI–MS (Mita et al.,

2004) highlights these issues. The metabolites were

initially converted to their heptafluorobutyryl deriva-

tives, extracted in ethyl acetate and further derivatized

to their corresponding tert-butyldimethylsilyl deriva-

tives prior to NICI with methane gas. After extensive

sample pretreatment steps, the technique possessed a

30-fold linear dynamic range (1.2–36 ng �mL�1) with

no apparent artifact formation of 3-Cl-Tyr or 3-Br-Tyr.

The same technique was successfully applied to quan-

tify urinary free 3-Cl-Tyr and 3-Br-Tyr in patients

afflicted with Churg-Strauss syndrome (Higashi et al.,

2004). The n-propyl heptafluorobutyryl derivatives of

free meta- and ortho-Tyr in the cerebrospinal fluid of

newborn infants with hypoxic ischemic encephalopathy

was also reported by isotope dilution GC–NICI–MS

using a similar sample preparation procedure (Ogihara

et al., 2003). Selected ion monitoring (SIM) at 417.1

and 595.1 Da allowed both singly and doubly labeled

n-propyl heptafluorobutyryl derivatives of each Tyr iso-

mer to be quantified (Ogihara et al., 2003). These studies

demonstrate that GC–NICI–MS in the SIM mode can be

used to quantify specific isomeric biomarkers with low

detection limits.

Shishehbor et al. (2003b) quantified protein-bound levels

of 3-Cl-Tyr, Di-Tyr and ortho-Tyr by GC–NICI–MS

after conversion of metabolites to their n-propyl, perhep-

tafluorylbutyryl derivatives. Gas-phase methane sulfonic

acid hydrolysis of the precipitated protein and isotopic

[13C6]- and [13C12]-internal standards was used to gen-

erate and validate free oxidized amino acids. Potential

interfering species were removed from acid hydrolysate

by solid-phase extraction prior to analyte derivatization.

Pennathur et al. employed a similar sample preparation

for analysis ortho-Tyr, meta-Tyr, 3-NO2-Tyr and Di-Tyr

in proteins derived from the retina tissue of hyperglycemic

rats (Pennathur et al., 2005). The formation of 3-Cl-

[12C9,15N]-Tyr, ortho-[12C9,15N]-Tyr and Di-[12C18,
15N2]-

Tyr was found to be negligible during sample preparation

and analyte labeling (Shishehbor et al., 2003b). The inclu-

sion of multiple internal standard isotopomers is particu-

larly necessary for GC–MS analyses of hydrolyzed pro-

teins as discussed previously. The application of GC–MS

with negative-ion electron capture (NIEC) detection with

perfluoronated derivatization agents can increase method

sensitivity as illustrated in the simultaneous analysis of

3-Cl-Tyr, Di-Tyr and ortho-Tyr derived from the hippo-

campus of Alzheimer’s patients brains (Green et al., 2004).

After tissue preparation and acid hydrolysis, amino acids

Strategies for comprehensive analysis of amino acid biomarkers 11



were extracted using anion-exchange chromatography and

converted to their n-propyl, perheptafluorobutyryl deriva-

tives. A LOD of 1 fmol for 3-Cl-Tyr was reported for the

optimized GC–NIEC–MS method (Green et al., 2004).

LC based methods

Unlike GC, reverse-phase (Ahmed et al., 2005) and anion-

exchange (Yamaguchi et al., 2005) LC allows tuning of

the selectivity of the separation by varying the composi-

tion of the mobile phase. Moreover, chemical derivatiza-

tion of amino acids is not required, which allows their

rapid analysis using different detector formats, including

native fluorescence (Chen et al., 2006), ECD (Yamaguchi

et al., 2006) and ESI-MS (Marvin et al., 2003).

LC–FL

Tyrosine and tryptophan metabolites possess significant

intrinsic fluorescence properties when using UV excita-

tion. However, high efficiency separation of minor mod-

ified amino acids in complex samples is critical to reduce

interference of co-eluting species when using native FL

detection. The analysis of free urinary meta- and ortho-

Tyr metabolites derived from diabetes mellitus and renal

failure patients highlights this problem (Molnar et al.,

2005a). For instance, meta-Tyr was not quantified in

samples due to co-elution with an unknown metabolite

and=or presence at concentration levels below the limit

of detection (LOD) of the method. In a similar study,

meta-, ortho-Tyr and L-DOPA were analyzed by LC–FL

from acid hydrolysates of protein derived from cataract

lenses of diabetic mellitus (DM) and non-DM patients.

The isocratic LC separation employed did not permit

baseline resolution of all sample components. After cor-

recting for total protein content, the reported meta-Tyr

concentration was approximately 14-times lower than

ortho-Tyr in DM patients (Molnar et al., 2005a). Chen

et al. used LC–FL to determine free meta- and ortho-Tyr

in the saliva of subjects who chewed two major types of

Areca quid (Chen et al., 2006). Adequate resolution

achieved in this study allowed for nanomolar concentra-

tion levels to be determined in saliva. It is important to

note that in vitro and in vivo oxidative processes can

influence the relative amounts of each Tyr isomer derived

from Phe oxidation. Nearly equimolar concentrations of

meta- and ortho-Tyr are produced in vitro while more

than a 10-fold difference has been reported after in vivo

oxidation (Davies, 2005; Halliwell and Whiteman, 2004;

Molnar et al., 2005a). These studies illustrate the need for

careful experimental design with particular attention to

chromatographic conditions used to separate and quantify

multiple amino acid biomarkers by LC–FL.

LC–ECD

LC coupled to electrochemical detection (ECD) offers

good selectivity and sensitivity for the determination of

oxidized=nitrosated amino acid biomarkers. However, the

Fig. 2. Representative LC–ECD chromato-

grams of meta-, ortho- and para-Tyr as A

1mM standard solutions, B rat cardiac efflu-

ent prior to the induction of 30 min total

global ischemia; C 40 s after ischemic reper-

fusion and D 5 min after ischemic reperfu-

sion. Reprinted from Biondi et al. (2006),

Hydroxylation of D-phenylalanine as a novel

approach to detect hydroxyl radicals: applica-

tion to cardiac pathophysiology. Cardiovasc

Res 71: 322–330; with permission from the

European Society of Cardiology
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use of ECD requires careful control of detection condi-

tions. 3-NO2-Tyr and 3-Cl-Tyr have been determined in

low-density lipoproteins (LDL) from plasma after acid

hydrolysis using anion-exchange LC with ECD detection

(Yamaguchi et al., 2005, 2006). Accurate quantification of

elevated levels of these biomarkers, along with other non-

protein oxidative biomarkers, allowed the researchers to

conclude that oxidative and nitrosative stress was asso-

ciated with disease progression. The selective hydroxyla-

tion of Phe was investigated in the cardiac effluent of rats

before and after total global ischemia by LC–ECD

(Biondi et al., 2006). The reported detection limits under

10 fmol for meta- and ortho-Tyr allowed researchers to

demonstrate that Phe hydroxylation can be utilized to

assess oxidative stress triggered by the onset of cardiac

ischemia, as depicted in Fig. 2. However, care must be

taken to ensure the assay is free from interference of co-

eluting metabolites. Dysregulated Trp metabolism via the

kynurenine pathway in patients with chronic brain injury

and Huntington’s disease has also been examined by ana-

lysis of 3-hydroxytryptophan, xanthurenic acid and 3-

hydroxyanthranillic acid by LC–ECD (Forrest et al.,

2004; Mackay et al., 2006; Stoy et al., 2005). These stu-

dies demonstrated the relevance of the oxidative kynure-

nine metabolism and the role of its toxic metabolites in

progression of various neurological disorders.

LC–MS

LC–MS offers distinct advantages compared to photo-

metric and electrochemical detection formats in terms of

selectivity required for oxidative=nitrosative amino acid

biomarker analyses in complex biological samples. LC

coupled with ion-trap (IT) (Munson et al., 2005), triple-

quadrupole (TQ) (Baraldi et al., 2006) and time-of-flight

(TOF) (Marvin et al., 2003) mass analyzers have been

reported primarily when using ESI interfaces. Each mass

analyzer offers MS=MS capabilities with low detection

limits when operated in selective ion and=or multiple re-

action monitoring (SIM=MRM) modes. Baseline resolu-

tion is only required for analytes possessing very similar

MS or MS=MS properties, such as isobaric and isomeric

species. The inclusion of isotopically labeled amino acids

allows in vitro production of oxidized=nitrosated amino

acids during sample handling to be accurately quantified

using isotope-dilution. The advantages of LC–MS=MS

for targeted analysis of oxidative stress biomarkers,

including oxidatively modified free and protein-derived

amino acids has been recently reviewed (Watson et al.,

2003).

Off-line sample preparation is often reduced using LC–

MS=MS as chemical labeling is often not required. How-

ever, LC–MS analysis of multiple modified amino acids

from complex samples is challenging due to high back-

ground noise and ion-suppression. To reduce these dele-

terious effects, chemical labeling may be employed prior

to chromatography. Marvin et al. developed an LC–ESI–

MS=MS technique with isotope dilution in MRM mode

for the quantitation of 3-NO2-Tyr and Di-Tyr in cat

urine (Marvin et al., 2003). To circumvent the high back-

ground noise with the urine sample, 3-NO2-Tyr was buty-

lated prior to analysis, resulting in a 6-fold increase in

3-NO2-Tyr MS response. However, Di-Tyr was analyzed

in its native state as doubly- and triply-butylated deriva-

tives resulting in a lower MS response. The limit of quan-

titation (LOQ) for 3-NO2-Tyr and Di-Tyr derived from

protein acid hydrolysates were reported as 14.5 and

140 nM, respectively. The authors compared data derived

from both Q-TOF and TQ mass spectrometers and showed

the Q-TOF was advantageous in terms of its increased

mass accuracy, reduced ion suppression and ability to per-

form full scan product ion mode analyses. Thornalley et al.

(2003) quantified multiple advance glycation endproducts

(AGEs), including 3-NO2-Tyr and MetSOx, in rats with

induced diabetes and healthy humans by LC–ESI–MS=

MS using a TQ mass analyzer operated in MRM mode.

The free metabolites were analyzed in their native form

and as N-acetyl conjugates in human plasma and urine,

respectively. A gradient elution with two reverse phase

columns in series was used to aid in the separation of

the more hydrophobic AGE metabolites prior to ESI ioni-

zation. The extensive chromatography and inclusion of

isotopically labeled standards allowed LODs of 0.022

and 0.15 pmol and recoveries of 88 and 102% to be real-

ized for 3-NO2-Tyr and MetSOx, respectively. This same

technique was used for the selective determination of free

MetSOx, NO2-Tyr and Di-Tyr in the plasma of diabetic

(Ahmed et al., 2005) and Alzheimer’s (Ahmed et al.,

2006) patients. Figure 3 illustrates the use of isotopically

labeled internal standards in these studies for peak identi-

fication and assessment of artifact nitration during sample

preparation.

An attractive alternative to off-line chemical labeling

for background matrix reduction is the use of solid-phase

extraction (SPE) prior to LC–MS=MS analysis. SPE

simultaneously preconcentrates the oxidized=nitrosated

amino acids of interest while reducing the extent of

in vitro modification during labeling. This protocol was

used in the quantification of protein-bound 3-NO2-Tyr,

3-Cl-Tyr, 3-Br-Tyr, Di-Tyr, ortho-Tyr and meta-Tyr in
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superoxide dismutase (MnSOD) using stable isotope di-

lution LC–ESI–MS (Comhair et al., 2005). Isotopically

labeled amino acids were added to the protein sample

which was then delipidated, desalted and hydrolyzed

under argon with methanesulfonic acid. SPE was per-

formed to isolate and pre-concentrate the hydrolyzed oxi-

dative=nitrosative products prior to LC–MS=MS analysis.

This sample pretreatment allowed for all six biomarkers

to be quantified in MnSOD isolated from epithelial cell

brushings of mild asthmatic patients.

Recently, Piraud et al. (2005a, b) reported the develop-

ment of a reverse-phase ion-pair LC–ESI–MS=MS tech-

nique capable of the simultaneous analysis of 76 amino

acids related to inherited amino acid metabolic disorders

without off-line preconcentration or chemical derivatiza-

tion. Prior to injection the free amino acids within healthy

human plasma or urine are simply mixed with an aliquot of

the mobile phase an injecting onto the column for analysis.

An optimized gradient elution consisting of acetonitrile and

the ion-pair reagent tridecafluoroheptanoic acid (TDFHA)

with an octadecyl-bonded reverse phase column success-

fully resolved all amino acids from known interfering com-

pounds. The perfluorinated carboxylic acid ion-pair reagent

used in this procedure is compatible to ESI–MS due to its

high volatility. Under optimal conditions, deuterated amino

acids were used for the quantification of both their un-

labelled analogues and analytes with a similar structure

or retention time (Piraud et al., 2005a). This approach

allowed for quantitative analysis of DOPA, KYN and

3-hydroxy-kynurenine using labeled Met, Lys and Lys,

respectively. Thus, LC–ESI–MS=MS permits quantitative

analysis of multiple modified amino acid biomarkers in

complex human biofluids with minimal sample pretreatment

and ionization suppression effects.

CE based methods

CE has not been routinely reported for modified amino

acid analysis despite its high separation efficiency, mini-

mal sample consumption and direct compatibility for

polar=charged metabolite analysis. Recently, Tilley et al.

developed a rapid procedure for the separation of 3-Br-

Tyr and Di-Tyr by CE with UV detection (Tilley et al.,

2006). The separation was achieved using a 100 mM imi-

nodiacetic acid isoelectric buffer containing the zwitter-

ionic surfactant lauryl sulfate and hydroxyproyl methyl-

cellulose, however the method was limited by poor con-

centration sensitivity. Large volume sample stacking with

CE–UV was reported to enhance concentration sensitivity

over two orders of magnitude for trace analysis of minor

modified amino acids (Tabi et al., 2005). This method was

optimized for high efficiency separations of multiple mod-

ified amino acid analysis with nanomolar detection limits

using an alkaline borate separation buffer with spermine

as an electroosomotic flow modifier. However, application

of these methods to real biological samples is constrained

by significant interferences due to the limited selectivity

of UV absorbance detection.

CE–ESI–MS is a promising platform for amino acid

analysis (Saito et al., 2006; Soga et al., 2004) in terms of

sensitivity, selectivity and qualitative information pro-

vided by MS experiments. Similar to LC–MS, there is

Fig. 3. Representative LC–MS chromatograms

demonstrating the use of isotopically labeled inter-

nal standards for peak identification, where (A) is

enzymatic CSF protein hydrolysate and (B) with

5 pmol 3-NO2�[2H3]-Tyr internal standard added.

Reprinted from Ahmed et al. (2006), Protein gly-

cation, oxidation and nitration adduct residues and

free adducts of cerebrospinal fluid in Alzheimer’s

disease and link to cognitive impairment. J Neuro

Chem, 92: 255–263; with permission from Black-

well Publishing Ltd
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typically no requirement for chemical derivatization, thus

reducing the potential of in vitro artifact formation. A com-

parison of the performance of CE–MS relative to GC–MS

for amino acid profiling in plant extracts was recently

examined by Williams et al. (2007), which demonstrated

significant advantages in terms of reduced total analysis

times, ease of sample handling and lower cost per sample

due to the inexpensive use of fused-silica capillaries and

lack of labeling procedures. In addition, off-line sample

pretreatment can be further reduced by coupling on-line

sample preconcentration and desalting steps directly in-

capillary during separation without ionization suppression.

Recently, Lee et al. introduced an integrative metabolo-

mic strategy by CE–ESI–MS for unknown low abundance

metabolite analysis with nanomolar detection limits (Lee

et al., 2007). Computer simulations of amino acid migra-

tion behavior were also performed as qualitative tool to

support MS for de novo identification of unknown meta-

bolites (Lee et al., 2007). The latter strategy is important

for discovery of biologically relevant oxidative stress bio-

markers via global analysis of metabolic profiles. Figure 4

depicts an overlay of extracted ion electropherograms using

CE–ESI–MS for the analysis of sub-micromolar levels

of multiple modified amino acids, including 3-Cl-Tyr,

meta-Tyr, ortho-Tyr, 5-hydroxytryptophan, MetSOn and

L-DOPA in the presence of their unmodifed amino acid

precursor (unpublished data). This method also highlights

the analysis of reduced:oxidized glutathione (GSH:GSSG)

ratio as an independent indicator of oxidative stress

(Rossi et al., 2006; Shaik and Mehvar, 2006). Note that

CE separations also provide baseline resolution of all

three isobaric Tyr positional isomers. Further work is

needed to better validate CE-MS as a high-throughput

platform for modified amino acid biomarker analysis

where sample pretreatment is integrated with chemical

analysis in a single-step unlike conventional LC and GC

based methods.

Conclusion

The large number of review articles published in 2003–

2007 illustrate the growing interest of modified amino

acids as putative biomarkers of oxidative stress. However,

careful validation of instrumental techniques and sample

pretreatment protocols are essential for reliable clinical

applications. High-throughput methods amenable for mul-

tiple amino acid biomarker analysis are also required for

improved specificity in disease diagnosis. Future direc-

tions include the development of metabolomic strategies

along with multivariate data analyses for unbiased assess-

ment of the impact of oxidative=nitrosative processes on

global amino acid metabolism among different biological

samples.
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Fig. 4. Simultaneous analysis of multiple

amino acid biomarkers of oxidative stress

using on-line sample preconcentration with

CE–ESI–MS. Overlay extracted ion electro-

pherograms depict 0.1–0.5 mM of modified

amino acids in the presence of their natural

analogues (unpublished data). Analyte peak

numbering corresponds to: 1, Met; 2, ortho-

Tyr; 3, Trp; 4, Phe; 5, 5-OH-Trp; 6, Tyr;

7, meta-Tyr; 8, L-DOPA; 9, 3-Cl-Tyr; 10,

MetSOn; 11, GSSG; 12, 3-NO2-Tyr; 13,

GSH. (for a color reproduction of this figure,

the reader is referred to the online version of

this paper)
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