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Summary. With the avalanche of newly-found protein sequences emerg-

ing in the post genomic era, it is highly desirable to develop an automated

method for fast and reliably identifying their subcellular locations because

knowledge thus obtained can provide key clues for revealing their func-

tions and understanding how they interact with each other in cellular

networking. However, predicting subcellular location of eukaryotic pro-

teins is a challenging problem, particularly when unknown query proteins

do not have significant homology to proteins of known subcellular lo-

cations and when more locations need to be covered. To cope with the

challenge, protein samples are formulated by hybridizing the information

derived from the gene ontology database and amphiphilic pseudo amino

acid composition. Based on such a representation, a novel ensemble

hybridization classifier was developed by fusing many basic individual

classifiers through a voting system. Each of these basic classifiers was

engineered by the KNN (K-Nearest Neighbor) principle. As a demonstra-

tion, a new benchmark dataset was constructed that covers the following

18 localizations: (1) cell wall, (2) centriole, (3) chloroplast, (4) cyanelle,

(5) cytoplasm, (6) cytoskeleton, (7) endoplasmic reticulum, (8) extracell,

(9) Golgi apparatus, (10) hydrogenosome, (11) lysosome, (12) mitochon-

dria, (13) nucleus, (14) peroxisome, (15) plasma membrane, (16) plastid,

(17) spindle pole body, and (18) vacuole. To avoid the homology bias,

none of the proteins included has �25% sequence identity to any other in

a same subcellular location. The overall success rates thus obtained via the

5-fold and jackknife cross-validation tests were 81.6 and 80.3%, respec-

tively, which were 40–50% higher than those performed by the other

existing methods on the same strict dataset. The powerful predictor, named

‘‘Euk-PLoc’’, is available as a web-server at http:==202.120.37.186=

bioinf=euk. Furthermore, to support the need of people working in the

relevant areas, a downloadable file will be provided at the same website to

list the results predicted by Euk-PLoc for all eukaryotic protein entries

(excluding fragments) in Swiss-Prot database that do not have subcellular

location annotations or are annotated as being uncertain. The large-scale

results will be updated twice a year to include the new entries of eukary-

otic proteins and reflect the continuous development of Euk-PLoc.
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1. Introduction

The cell is the basic structural and functional unit of all

living organisms that is able to grow and reproduce inde-

pendently. An adult human being is made up of approxi-

mately 100,000 billion (1014) cells (Radford, 2003). Every

cell contains approximately one billion (109) protein

molecules that are located in many different compart-

ments or organelles (Fig. 1), and perform a wide variety

of activities in the cell. The organelles are specialized to

carry out different tasks. For instance: the cell nucleus

contains the genetic material (DNA) and thus governs

all functions of the cell; cell membrane functions as a

boundary layer to contain the cytoplasm, while cell wall

provides protection from physical injury; the cytoplasm, a

jelly-like material, fills the cell and serves as a ‘‘molecular

soup’’ in which all of the cell’s organelles are suspended;

chloroplast is the site of photosynthesis; centriole forms

spindle fibres to separate chromosomes during cell di-

vision; cytoskeleton is responsible for establishing cell

shape, providing mechanical strength, locomotion, and

intracellular transport of organelles; endoplasmic reticu-

lum transports chemicals between cells and within cells;

Golgi apparatus modifies chemicals to make them func-

tional; lysosome breaks large molecules into small mole-

cules by inserting a molecule of water into the chemical

bond; mitochondrion is the ‘‘power plant’’ producing

energy needed by the cell, and endoplasmic reticulum

� Electronic supplementary material: Supplementary material is available

in the online version of this article at 10.1007=s00726-006-0478-8 and is

accessible for authorised users.



is, together with the ribosome, responsible for synthesiz-

ing proteins; and peroxisome breaks down excess fatty

acids and hydrogen peroxide (H2O2), a potentially danger-

ous product of fatty-acid oxidation. Most of these func-

tions, which are critical to the cell’s survival, are per-

formed by the proteins in a cell. One of the fundamental

goals in cell biology and proteomics is to identify the

functions of proteins in the context of compartments that

organize them in the cellular environment. Accordingly,

the significance to identify the subcellular localization of

an uncharacterized protein has become self-evident.

Although the information about protein subcellular

localization can be determined by conducting various ex-

periments, that is both time-consuming and costly. Parti-

cularly, the number of newly-found protein sequences

has increased explosively in the post genomic era. For

instance, according to the Swiss-Prot database (Bairoch

and Apweiler, 2000) version 50.0 released on 30-May-

2006 the number of total eukaryotic protein entries is

95,502. After excluding those annotated as ‘‘fragment’’

or containing less than 50 amino acid residues, the

number is reduced to 48,341, of which 21,275 are with

subcellular location annotations (Item 1 of Table 1).

However, of the 21,275 proteins, 6,704 are annotated with

experimental observations (Item 2 of Table 1) and 14,571

annotated with uncertain labels such as ‘‘probable’’,

‘‘potential’’, ‘‘perhaps’’, and ‘‘by similarity’’ (Item 3 of

Table 1). The uncertain annotations cannot be used as

robust data for training a solid predictor. Actually, pro-

teins with uncertain annotations also belong to the targets

of identification either by newly developed predictors or

by further experiments.

A similar gap also exists in the gene ontology (GO)

database (Ashburner et al., 2000), which was established

according to molecular function, biological process, and

cellular component. As shown in Item 5 of Table 1, of the

48,341 eukaryotic proteins, only 26,000 have GO annota-

tions to indicate their subcellular components. Moreover,

it is instructive to point out that the GO database was de-

rived from various other databases, including Swiss-Prot

database. Therefore, the GO annotations might be con-

taminated by the uncertain information from the 14,571

entries as indicated in Item 3 of Table 1.

Therefore, the number of eukaryotic proteins that have

reliable subcellular location annotations is 6,704 (Item 2

of Table 1), which is about 14% of all the eukaryotic

Fig. 1. Schematic illustration to show the 18 subcellular locations

of eukaryotic proteins: (1) cell wall, (2) centriole, (3) chloroplast, (4)

cyanelle, (5) cytoplasm, (6) cytoskeleton, (7) endoplasmic reticulum, (8)

extracell, (9) Golgi apparatus, (10) hydrogenosome, (11) lysosome, (12)

mitochondria, (13) nucleus, (14) peroxisome, (15) plasma membrane,

(16) plastid, (17) spindle pole body, and (18) vacuole

Table 1. Breakdown of the 48,341a eukaryotic protein entries from Swiss-Prot database (version 50.0, released 30-May-2006) according to the nature

of their subcellular location annotation and their expression in GO database (released on 4-March-2006)

Item Description Number Percentage

1 Proteins with subcellular location annotations in Swiss-Prot database 21,275
21275

48341
¼ 44:0%

2 Proteins in Item 1 with experimentally observed subcellular locations 6,704
6704

48341
¼ 13:9%

3 Proteins in Item 1 with uncertain terms, such as ‘‘potential’’, ‘‘probable’’, and ‘‘by similarity’’ 14,571
14571

48341
¼ 30:1%

4 Proteins that can be represented in the GO space (cf. Eq. 3) 44,274
44274

48341
¼ 91:6%

5 Proteins with subcellular component annotations in GO database 26,000
26000

48341
¼ 53:8%

a The original eukaryotic protein entries was 95,502, of which 47,161 were either annotated as ‘‘fragment’’ or with less than 50 amino acid residues, and

hence were removed for further consideration
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protein entries concerned. In other words, there are

(48,341–6,704)¼ 41,637 eukaryotic proteins for which

the subcellular localization needs to be identified or

further confirmed.

With the rapidly increase of gene products in the post-

genomic era, it is expected that the gap between the

newly-found protein sequences and the knowledge of

their subcellular localization will be continuously en-

larged. To timely use these new proteins for basic re-

search and drug discovery (Chou, 2004; Lubec et al.,

2005), it is highly desired to develop an effective method

to bridge such gap, and the present study was initiated in

an attempt to address the challenge with a focus on eukar-

yotic proteins.

Actually, many methods have been developed in this

regard (Cedano et al., 1997; Chou, 2000a; Chou and Cai,

2002; Chou and Elrod, 1999; Chou and Shen, 2006; Feng,

2001, 2002; Gao et al., 2005a, b; Garg et al., 2005; Guo

et al., 2006a; Matsuda et al., 2005; Nakai, 2000; Nakai

and Horton, 1999; Nakashima and Nishikawa, 1994;

Reinhardt and Hubbard, 1998; Xiao et al., 2005; Zhou

and Doctor, 2003). However, the datasets used to train

these predictors cover very limited subcellular locations.

For instance, the datasets in Nakashima and Nishikawa

(1994) only cover two locations; those in Cedano et al.

(1997), 5 locations; those in Garg et al. (2005), 4 loca-

tions; and those in Matsuda et al. (2005), 4 locations.

Although the datasets in Chou and Elrod (1999) and Park

and Kanehisa (2003) expanded the coverage to 12 subcel-

lular locations, they were constructed with a very tolerant

criterion that allowed inclusion of those proteins with

sequence identity up to 80% to each other. This will cer-

tainly result in overestimating a predictor due to the

homology bias.

To enlarge the coverage scope and avoid the homology

bias, a much more extensive and stringent dataset is

needed. To realize this, a new dataset was constructed

that covers 18 subcellular locations, with a stringent cri-

terion that none of proteins included has �25% sequence

identity to any other within a same subcellular location.

As is well known, the more stringent criterion is imposed

to exclude homologous proteins from a benchmark data-

set, the more difficult would be to get a higher success

rate. Also, the more the number of subcellular locations

covered, the lower the odds are in getting a successful

prediction. To enhance the success rate under such two

strict conditions, here a new approach, which is comple-

tely different from the aforementioned methods, is intro-

duced. Below, let us first construct the new benchmark

datasets.

2. Materials and methods

Protein sequences

Protein sequences were collected from the Swiss-Prot database release

50.0 (30-May-2006) at http:==www.ebi.ac.uk=swissprot= for eukary-

Table 2. Keywords used to search the Swiss-Prot database for known

subcellular locations

Subcellular location Keywords

cell wall cell wall

centriole centriole; centrosome; centromer

chloroplast chloroplast

cyanelle cyanelle

cytoplasm cytoplasm; cytoplasmic

cytoskeleton cytoskeleton; filament; microtubule

endoplasmic reticulum endoplasmic reticulum

extracell extracell; extracellular; secreted

Golgi apparatus Golgi

hydrogenosome hydrogenosome

lysosome lysosome; lysosomal

mitochondrion mitochondrion; mitochondria;

mitochondrial

nucleus nucleus; nuclear

peroxisome peroxisome; peroxisomal; microsome;

glyoxysomal; glycosomal

plasma membrane plasma membrane; integral membrane

plastid plastid

spindle pole body spindle pole; spindle pole body

vacuole vacuole; vacuolar

Table 3. Number of proteins in each of the 18 subcellular locations

(Fig. 1) constructed in this paper

Subcellular location Number of proteins

(1) cell wall 25

(2) centriole 21

(3) chloroplast 258

(4) cyanelle 97

(5) cytoplasm 718

(6) cytoskeleton 25

(7) endoplasmic reticulum 113

(8) extracell 806

(9) Golgi apparatus 85

(10) hydrogenosome 10

(11) lysosome 46

(12) mitochondrion 228

(13) nucleus 1169

(14) peroxisome 64

(15) plasma membrane 413

(16) plastid 38

(17) spindle pole body 15

(18) vacuole 44

Total 4175

None of the proteins included in the current benchmark dataset has �25%

sequence identity to any of the proteins in the same subset. The corre-

sponding accession numbers and sequences are given in the ‘‘Electronic

Supplementary Material’’ of this paper (see http:==dx.doi.org=10.1007=

s00726-006-0478-8)
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otic proteins according to their experimentally annotated subcellular

locations. In order to obtain high-quality, well-defined working data-

sets, the data were collected strictly according to the following proce-

dures: (a) To deal with the situation that a same location might be

annotated with different terms, the keywords listed in Table 2 were

used to search against the categorization of subcellular locations. (b)

Sequences annotated with ambiguous or uncertain words, such as

‘‘potential’’, ‘‘probable’’, ‘‘probably’’’, ‘‘maybe’’, or ‘‘by similarity’’,

were excluded. (c) Sequences annotated by two or more locations were

not included because of lack of the uniqueness; also, sequences anno-

tated with ‘‘prokaryotic’’ were excluded because this study was

focused on eukaryotic proteins only. (d) Proteins annotated with ‘‘frag-

ment’’ were excluded; also, sequences with less than 50 amino acid

residues were removed because they might just be fragments. (e) To

avoid any homologous bias, a redundancy cutoff was operated by a

culling program (Wang and Dunbrack Jr., 2003) to exclude those

sequences which have �25% sequence identity to any other in a same

subcellular location. (f) Those subcellular locations (subsets) which

contain less than 10 protein sequences were left out because of lacking

statistical significance.

After strictly following the above procedures, we finally obtained 4,175

protein sequences classified into the following 18 subcellular locations:

cell wall, centriole, chloroplast, cyanelle, cytoplasm, cytoskeleton, endo-

plasmic reticulum, extracell, Golgi apparatus, hydrogenosome, lysosome,

mitochondria, nucleus, peroxisome, plasma membrane, plastid, spindle

pole body, and vacuole (Fig. 1). The number of proteins thus obtained

for each of the 18 subcellular locations is given in Table 3. The accession

numbers and sequences for the 4,175 proteins are given in the Online

Supporting Information A.

Prediction method

The key to enhance the prediction quality for protein subcellular location

is to grip the core features of a protein that are intimately related to its

localization in a cell. Accordingly, the source of gene ontology (GO)

consortium (Ashburner et al., 2000) can be used as a vehicle to formulate

the prediction algorithm.

However, how to effectively use the GO database to improve the

prediction quality for protein subcellular location is by no means a

trivial problem (Camon et al., 2004; Lee et al., 2005). The reasons are

as follows: (a) For those proteins with ‘‘subcellular location unknown’’

annotation in Swiss-Prot database, most (more than 99%) of their

corresponding GO numbers in GO database are also annotated with

‘‘cellular component unknown’’ (see, e.g, the protein with accession

number O22892 and O00093 in Table 4). (b) Even for those proteins

whose subcellular locations are clearly annotated in Swiss-Prot data-

base, their corresponding GO numbers in GO database are not always

directly indicating their corresponding subcellular locations; in some

cases they are even annotated with ‘‘cellular component unknown’’.

For example, for the protein with accession number O43303 in Table 4,

its subcellular location is annotated with ‘‘centriole’’ in Swiss-Prot

database, but none of its GO numbers indicates its subcellular location.

Similar situations occur for the proteins with accession numbers

P19877, Q29593, and Q9UIV8 as well (Table 4). (c) More important,

it should be emphasized that during the cross-validation test for the

current approach, only the GO numbers of a query protein but not its

GO annotations are used, just like the case in testing all the previous

predictors that only the sequence of a query protein but not its Swiss-

Prot annotation is used; otherwise, the results obtained by the cross-

validation test would not represent any prediction potential at all.

Table 4. Examples to show the subcellular location annotations for some proteins in the Swiss-Prot database and the annotations for the

corresponding GO numbers in the GO database

Swiss-Prot database GO database

Accession number Swiss-Prot annotation GO number GO annotation

O22892 No subcellular location annotated GO:0000004 Biological process unknown

GO:0005554 Molecular function unknown

GO:0008372 Cellular component unknown

O00093 No subcellular location annotated GO:0003993 Acid phosphatase activity

GO:0016158 3-phytase activity

GO:0016787 Hydrolase activity

O43303 Centriole GO:0000004 Biological process unknown

GO:0005554 Molecular function unknown

GO:0008372 Cellular component unknown

P19877 Extracellular GO:0006935 Chemotaxis

GO:0008009 Chemokine activity

GO:0008083 Growth factor activity

GO:0008372 Cellular component unknown

Q29593 Cytoplasm GO:0004801 Transaldolase activity

GO:0005975 Carbohydrate metabolism

GO:0006098 Pentose-phosphate shunt

GO:0008372 Cellular component unknown

GO:0016740 Transferase activity

Q9UIV8 Cytoplasm GO:0004866 Endopeptidase inhibitor activity

GO:0004867 Serine-type endopeptidase inhibitor activity

GO:0008372 Cellular component unknown

GO:0009411 Response to UV

GO:0030162 Regulation of proteolysis
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(d) As mentioned above, the GO database was derived from other

databases including the Swiss-Prot database, and the annotations in

GO might be contaminated by the uncertain annotations from Swiss-

Prot (Item 3 of Table 1). Therefore, the subcellular component annota-

tions from GO cannot be directly used to form a solid training dataset.

It must be formed from the 6,704 eukaryotic protein sequences in

Swiss-Prot database that are annotated with experimentally observed

subcellular locations (see Item 2 of Table 1).

The information that may be useful for predicting subcellular locations

of proteins are actually ‘‘buried’’ into a series of tedious GO numbers, just

like they are ‘‘buried’’ into a pile of complicated amino acid sequences,

although the manner and the ‘‘depth’’ they are ‘‘buried’’ are quite differ-

ent. In view of this, the key problem is how to represent protein samples

thru the tedious GO numbers, just like the efforts by many previous

investigators in extracting various features from the complicated se-

quences to represent protein samples. The following approach was devel-

oped for such a purpose that is very important for effectively using

complicated and tedious data to derive the desired results.

Mapping UniProtKB=Swiss-Prot protein entries (Apweiler et al., 2004)

to the GO database, one can get a list of data called ‘‘gene_association.

goa_uniprot’’, where each UniProtKB=Swiss-Port protein entry corre-

sponds to one or several GO numbers. In this study, such a data file was

directly downloaded from ftp:==ftp.ebi.ac.uk=pub=databases=GO=goa=

UNIPROT= (released on 30-May-2006). The relationships between the

UniProtKB=Swiss-Port protein entries and the GO numbers may be one-

to-many, ‘‘reflecting the biological reality that a particular protein may

function in several processes, contain domains that carry out diverse

molecular functions, and participate in multiple alternative interactions

with other proteins, organelles or locations in the cell’’ (Ashburner et al.,

2000), as exemplified in Table 3. On the other hand, because the current

GO database is not complete yet, some protein entries (such as ‘‘P54661’’,

‘‘Q9I969’’, and ‘‘Q09874’’) have no corresponding GO numbers, i.e., no

mapping records at all in the GO database, and hence are not included in

the data list of gene_association.goa_uniprot.

The GO numbers do not increase successively and orderly. For easier

handling, some reorganization and compression procedure was taken

to renumber them. For example, after such a procedure, the original

GO numbers GO:0000001, GO:0000002, GO:0000003, GO:0000004,

GO:0000006, . . . ,GO:0051990 would become GO_compress:0000001,

GO_compress:0000002, GO_compress:0000003, GO_compress:0000004,

GO_compress:0000005, . . . , and GO_compress:0010173, respectively.

The GO database thus obtained is called GO_compress database, whose

dimensions were reduced from 51,990 in the original GO database to

10,173. Each of the 10,173 entities in the GO_compress database served

as a base to define a protein sample. Unfortunately, the current GO

numbers failed to give a complete coverage in the sense that some proteins

might not belong to any of the GO numbers as mentioned above. Although

the problem will gradually become trivial or eventually be solved with the

GO database developing, to tackle such a problem right now, a hybridiza-

tion approach was introduced by fusing the GO approach and the amphi-

philic pseudo amino acid composition (PseAA) approach (Chou, 2005), as

described below.

(1) Search a protein sample in the GO_compress database, if there

is a hit corresponding to the ith GO_compress number, then the ith

component of the protein in the 10173-D (dimensional) GO_com-

press space is assigned 1; otherwise, 0. Thus, the protein can be

formulated as:

P ¼

g1

g2

..

.

gi

..

.

g10173

2
666666664

3
777777775

ð1Þ

where

gi ¼
1; hit found in GO�compress

0; otherwise

�
ð2Þ

(2) If no hit (i.e., no record in the GO_compress database) is found at

all, then the protein should be defined in the 20 þ 2l-D amphiphilic

PseAA space, as given below

P ¼

p1

..

.

p20

p20þ1

..

.

p20þ2l

2
666666664

3
777777775
¼

p1

..

.

p20

p20þ1

..

.

p�

2
666666664

3
777777775
; ð� ¼ 20 þ 2lÞ ð3Þ

where p1; p2; . . . ; p20 are associated with the amino acid composition

reflecting the occurrence frequencies of the 20 native amino acids in

the protein (Chou and Zhang, 1994; Nakashima et al., 1986), and

p20þ1; p20þ2; . . . ; p20þ2l are the 2l correlation factors that reflect its

sequence-order pattern through the amphiphilic feature (Chou and Cai,

2005; Chou et al., 1997). The protein representation as defined by Eq. (3)

is called the ‘‘amphiphilic pseudo amino acid composition’’, which is one

kind of the pseudo amino acid composition (PseAA) originally introduced

by Chou (Chou, 2001) and has the same form as the conventional amino

acid composition but contains more components and sequence informa-

tion. For a given protein sequence and the value of l, the 20 þ 2l
elements in Eq. (3) can be easily computed by following Eqs. (2–6) of

Chou (2005).

Suppose there are N proteins ðP1;P2; . . . ;PNÞ which have been classi-

fied into 18 subsets (subcellular locations). Now, for a query protein P, how

can we identify which subset it belongs to? Below we shall use the

K-Nearest Neighbor (KNN) rule (Cover and Hart, 1967; Denoeux, 1995;

Keller et al., 1985) to deal with this problem. According to the KNN rule,

the query protein should be assigned to the subset represented by a majority

of its K nearest neighbors. Owing to its good performance and simple-to-

use feature, the KNN rule, also named as ‘‘voting KNN rule’’, is quite

popular in pattern recognition community. There are many different defini-

tions to measure the ‘‘nearness’’ for the KNN classifier, such as Euclidean

distance, Hamming distance (Mardia et al., 1979), and Mahalanobis dis-

tance (Chou, 1995; Mahalanobis, 1936; Pillai, 1985). Here, we use the

following equation to measure the nearness between protein P and Pi

DðP;PiÞ ¼ 1 � P � Pi

kPkkPik
ð4Þ

where P � Pi is the dot product of the two vectors, and kPk and kPik their

modulus, respectively. According to Eq. (4), when P � Pi we have

DðP;PiÞ ¼ 0, indicating the ‘‘distance’’ between these two proteins is

zero and hence they have perfect or 100% similarity.

In using the KNN rule, the predicted result will depend on the selection

of the parameter K, the number of the nearest neighbors to the query

protein P. If K¼ 1, the protein P will be predicted belonging to the same

subcellular location of the protein in the training dataset that has the

shortest ‘‘distance’’ to P as defined by Eq. (4). If there are two and more

proteins in the training dataset ðP1;P2; . . . ;PNÞ that have exactly the

same shortest distance to P, the query protein will be randomly assigned

to one of their subcellular locations although this kind of tie case rarely

happens. When K>1, the subcellular location of the query protein P will

be determined by the majority of its K nearest neighbors through a vote. If

there is a tie for the voting results, the query protein will be randomly

assigned to one of the locations associated with the tie case. Generally

speaking, the greater the K (the number of the nearest neighbors consid-

ered), the less likely the tie case occurs. In the current study, no tie case

was observed when K � 7.

Because the predicted results by the KNN algorithm (Cover and Hart,

1967; Denoeux, 1995; Keller et al., 1985) depend on the selection of
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parameter K, hereafter we shall use NN(K) to represent the symbol of

KNN, implying that the predicted result is the function of K, the number

of the nearest neighbors concerned for the query protein P.

During the course of prediction, the following self-consistency principle

should be followed. If a query protein could be defined in the 10173-D

GO_compress space (Eq. 1), then the prediction should be carried out

based on those proteins in the training dataset that could be defined in the

same 10173-D space. If the query protein in the 10173-D GO_compress

space was a naught vector and hence must be defined instead in the

ð20 þ 2lÞ-D or �-D PseAA space (Eq. 3), then the prediction should be

conducted according to the principle that all the proteins in the training

dataset be defined in the same �-D space as well. Accordingly, the current

hybridization predictor actually consists of two subpredictors: (a) the

NN(K)-GO predictor that operates in the 10173-D GO_compress space,

and (b) the NN(K,�)-PseAA predictor that operates in the �-D amphi-

philic PseAA space. The predicted results by the latter also depend on �,

the dimension of the PseAA (see Eqs. 3–4). Therefore, even for exactly

the same training dataset and same fixed value of K, using different values

of � will yield different results. Generally speaking, the more components

the PseAA contains, the more information it carries. However, it will

reduce the cluster-tolerant capacity if the PseAA contains too many com-

ponents, so as to lower down the success rate of cross validation. To get

the optimal result, two different ensemble classifiers were introduced for

NN(K)-GO predictor and NN(K,�)-PseAA predictor, respectively, as for-

mulated below.

For the NN(K)-GO predictor, the ensemble classifier was formed by

fusing many single classifiers each having a different specified value for K,

as described below.

Preliminary tests indicated that the success rates obtained by the

NN(K)-GO predictor were lower when K¼ 1, 2, or >10, and hence these

numbers can be ignored. Let us suppose

fKg ¼ f3; 4; . . . ; 10g ð5Þ

represent a set of possible numbers for K, then we have a set of corre-

sponding classifiers as formulated by

fNNðKÞg ¼ fNNð3Þ;NNð4Þ; . . . ;NNð10Þg ð6Þ

where NN(3) is the NN classifier trained with 3 nearest neighbors in the

10173-D GO_compress space, NN(4) is the one trained with 4 nearest

neighbors, and so forth. The ensemble classifier formed by fusing such a

set of 8 individual classifiers is formulated by

CGO ¼ NNð3Þ � NNð4Þ � � � � � NNð10Þ ð7Þ

where the symbol � denotes the fusion operator, and CGO the ensemble

classifier formed by fusing NN(3), NN(4), . . . , and NN(10).

The process of how the ensemble classifier CGO works is as follows.

Suppose the predicted classification results for the query protein P by the 8

individual classifiers in Eq. (7) are QGO
3 , QGO

4 ; . . . ;QGO
10 , respectively; i.e.,

fQGO
3 ;QGO

4 ; . . . ;QGO
10 g 2 fS1; S2; . . . ; S18g ð8Þ

where 2 is a symbol in the set theory meaning ‘‘member of’’,

S1; S2; � � � ; S18 represent the 18 subsets defined by the 18 subcellular

locations studied here (Fig. 1), and the voting score for the protein P

belonging to the u-th subset is defined by

YGO
u ¼

X10

i¼3

dðQGO
i ; SuÞ; ðu ¼ 1; 2; . . . ; 18Þ ð9Þ

where the delta function in Eq. (9) is given by

dðQGO
i ; SuÞ ¼ 1; if QGO

i 2 Su
0; otherwise

�
ð10Þ

thus the query protein P is predicted belonging to the subset (subcellular

location) with which its score of Eq. (9) is the highest.

The above fusion process can be straightforwardly extended to the

case of the NN(K,�)-PseAA predictor. However, since it has two pa-

rameters, the ensemble classifier for NN(K,�)-PseAA should be formed

by fusing many single classifiers with different K or �, respectively; i.e.,

the fusion process should involve a two dimensional process, as formu-

lated below.

For the similar reason as mentioned above regarding Eq. (5), we can

suppose

fKg ¼ f3; 4; . . . ; 10g; f�g ¼ f22; 24; . . . ; 58; 60g ð11Þ

represent two sets of possible numbers for K and �, then we have a set of

8� 20¼ 160 individual classifiers as formulated by

fNNðK;�Þg ¼

NNð3; 22Þ NNð3; 24Þ � � � NNð3; 60Þ
NNð4; 22Þ NNð4; 24Þ � � � NNð4; 60Þ

..

. ..
. . .

. ..
.

NNð10; 22Þ NNð10; 24Þ � � � NNð10; 60Þ

8>>><
>>>:

9>>>=
>>>;

ð12Þ

where NN(3,22) is the NN classifier trained with 3 nearest neighbors in

the 22-D PseAA space, NN(4,24) is the one trained with 4 nearest neigh-

bors in the 24-D PseAA space, and so forth. The ensemble classifier

formed by fusing such 160 individual classifiers is formulated by

CPse ¼ NNð3; 22Þ � NNð3; 24Þ � � � � � NNð10; 58Þ � NNð10; 60Þ
ð13Þ

where the fusion operator � has the same meaning as that of Eq. (7).

The process of how the ensemble classifier CPse works is as follows.

Suppose the predicted classification results for the query protein P by the

160 individual classifiers in Eq. (13) are

QPse
3;22 QPse

3;22 � � � QPse
3;22

QPse
4;24 QPse

4;24 � � � QPse
4;24

..

. ..
. . .

. ..
.

QPse
10;60 QPse

10;60 � � � QPse
10;60

8>>>><
>>>>:

9>>>>=
>>>>;

2 fS1; S2; . . . ; S18g ð14Þ

where S1; S2; . . . ; S18 have the same meaning as in Eq. (8), i.e., represent

the 18 subsets defined by the 18 subcellular locations studied here (Fig. 1),

and the voting score for the protein P belonging to the u-th subset is

defined by

YPse
u ¼

X10

i¼3

X30

j¼11

dðQPse
i;2j ; SuÞ; ðu ¼ 1; 2; . . . ; 18Þ ð15Þ

where the delta function in Eq. (15) is given by

dðQPse
i;2j ; SuÞ ¼

1; if QPse
i;2j 2 Su

0; otherwise

�
ð16Þ

thus the query protein P is predicted belonging to the subset (subcellular

location) with which its score of Eq. (15) is the highest.

The predictor thus found by hybridizing the fusion classifier CGO Eq. (7)

and fusion classifier CPse Eq. (13) is called ‘‘Euk-PLoc’’.

Finally, it should be pointed out that, although using GO database to

predict protein subcellular location has been explored by previous inves-

tigators (Chou and Cai, 2003, 2004), the predictors formulated there has

much less power than the current predictor owing to the following reasons.

(a) The GO approach in (Chou and Cai, 2003, 2004) was operated by the

nearest neighbor rule with K¼ 1 only, which is corresponding to NN(1)

according to the symbol used in this paper. As mentioned above, the

success rate obtained by NN(1) is much lower than the rate by NN(3),

NN(4), . . . , or NN(10), needless to say the rate by the ensemble classifier

CGO formed by fusing these classifiers as formulated in Eq. (7). A similar

difference also exists for the PseAA predictor part, in which the current

approach is even much more sophisticated because it involves a 2-dimen-

sional fusion problem as formulated by Eq. (13). (b) The dimension of
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the GO database space in Chou and Cai (2003, 2004) is 1930, but the

dimension of GO database space here is 10173, indicating the need to

catch up with the rapid development in GO. (c) The benchmark dataset

used in Chou and Cai (2003) only covers 4 subcellular locations with a

90% sequence identity cutoff, the dataset used in Chou and Cai (2004)

covers 12 subcellular locations with an 80% sequence identity cutoff,

while the dataset used here covers 18 subcellular locations with a 25%

sequence identity cutoff. Besides, it is through Tables 1 and 4 presented

here that the relationship between GO and Swiss-Prot is more clearly

elucidated than in the previous papers (Chou and Cai, 2003, 2004).

3. Results and discussion

For the proteins listed in the ‘‘Electronic Supplementary

Material’’ of this paper, we obtained the following results

according to Steps 1–2 of Materials and methods. Of the

4175 proteins in the current benchmark dataset, 4102 got

hits in the GO_compress database, and hence were de-

fined in the 10173-D GO_compress space (Eqs. 1–2), and

the remainder defined in the �-D PseAA space (Eq. 3).

Therefore, if the protein samples were represented only

based on the GO_compress database, 4175–4102¼ 73

proteins would have no definition, leading to a failure of

utilizing their information. Although most of proteins stud-

ied can be defined in the 10173-D GO_compress space, it

is better to hybridize with the PseAA approach, by which

not only a protein can always be defined but also a con-

siderable amount of sequence-order information can be

incorporated. Thus, the prediction process was operated

according to the following procedures: if a query protein

was defined in the 10173-D GO_compress space, then the

ensemble classifier CGO was used to predict its subcellu-

lar location; otherwise, the ensemble classifier CPse was

used to predict its subcellular location.

The prediction quality was examined by the 5-fold

cross-validation test and jackknife test, respectively. In

the jackknife test, each protein in the training dataset

was singled out in turn as a ‘‘test protein’’ and all the rule

parameters were calculated from the remaining N� 1 pro-

teins. In other words, the subcellular location of each

protein was predicted by the rules derived using all the

other proteins except the one that was being predicted.

During the jackknifing process, both the training and test-

ing dataset were actually open, and a protein was in turn

moving from one to the other. As we can see from the

above description, the jackknife test will take more com-

putational time, especially for the large-scale dataset.

Therefore, many chose to use the 5-fold cross-validation,

in which the benchmark set is randomly divided into 5

subsets, each containing nearly equal number of proteins.

These subsets are then grouped into a training set and a

testing set. The training set consists of 4 of the 5 subsets

and the testing set consists of the remaining one. This

procedure is repeated 5 times and each of the subsets is

used once for testing. The final prediction results are the

average of the five testing results. However, the results

obtained by the 5-fold cross-validation test have some sort

of arbitrariness, as discussed in Chou and Zhang (1995).

In statistical prediction, the independent dataset test,

5-fold test, and jackknife test are the three methods often

used to cross-validate the power of a predictor. Among

these three, the jackknife test is deemed the most rigor-

ous and objective one [see (Chou and Zhang, 1995) for a

comprehensive review about this], and hence have been

increasingly used by investigators in examining the power

of various prediction methods (Cao et al., 2006; Chen

et al., 2006; Chou, 2000b; Du et al., 2006; Feng, 2001,

2002; Gao et al., 2005a, b; Guo et al., 2006a, b; Liu et al.,

2005a, b; Luo et al., 2002; Shen and Chou, 2005; Shen

et al., 2005, 2006; Sun and Huang, 2006; Wang et al.,

2004, 2005a, b, 2006; Wen et al., 2006; Xiao et al.,

2005, 2006a, b; Zhang et al., 2006; Zhou, 1998; Zhou

and Assa-Munt, 2001).

The predicted results obtained by Euk-PLoc are given

in Table 5, from which we can see that the overall success

rate by 5-fold cross-validation test is 81.6%, and that by

the jackknife test 80.3%. For such a stringent and wide-

coverage benchmark dataset, if using the other methods,

such as the HSLPred (Garg et al., 2005) and the SVM-

based method (Matsuda et al., 2005), the corresponding

overall success rates were in the range of 30–40%, much

lower than the rates obtained by Euk-PLoc. From Table 5

we can also see that the overall success rate obtained by

the jackknife test is 1.3% lower than that by the 5-fold

cross-validation test, which is expected because the jack-

knife test is more strict than the 5-fold cross-validation

test as mentioned above.

Why the methods reported in Garg et al. (2005) and

Matsuda et al. (2005) could yield an overall success rate

Table 5. Overall success prediction rates by Euk-PLoc on the 4175

eukaryotic proteinsa among the 18 subcellular locations (Fig. 1) by

5-fold cross-validation and jackknife test

Test method Overall success rate

5-fold cross validation
3406

4175
¼ 81:6%

Jackknife
3352

4175
¼ 80:3%

a The accession numbers and sequences are given in the ‘‘Electronic

Supplementary Material’’ of this paper available under http:==dx.

doi.org=10.007=s00726-006-0478-8, where none of proteins included

has �25% sequence identity to any other in a same subset
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higher than 80%, but here these methods only yielded a

success rate within the range of 30–40%? The reasons are

as follows: (a) The benchmark datasets originally used by

these authors contained many homologous sequences in a

same subcellular location. For example, the dataset used

in Garg et al. (2005) and Matsuda et al. (2005) contained

proteins with up to 90% sequence identity. When predic-

tions were made by their methods on the current stringent

dataset in which none of protein has �25% sequence

identity to any other in a same subcellular location, the

success rates would of course decrease significantly.

(b) The success rate originally reported in Garg et al.

(2005) was derived from the prediction among cytoplasm,

mitochondria, nuclear, and plasma membrane, while that

in Matsuda et al. (2005) derived among cytoplasm, extra-

cellular, mitochondria, and nuclear. The benchmark data-

sets used in both cases cover only 4 subcellular locations,

in contrast to 18 as in the current stringent dataset. Let us

imagine: if the protein samples are completely randomly

distributed among 4 possible locations, the overall suc-

cess rate by random assignments would generally be

1=4¼ 25%; however, the corresponding rate would be re-

duced to 1=18’ 5.6% if the protein samples are distrib-

uted among 18 possible locations. That is why the more

the number of subcellular locations covered, the lower the

odds are in getting a higher success rate. (c) As a further

demonstration, let us compare Euk-Ploc with another

SVM-based MultiLoc predictor (Hoglund et al., 2006).

MultiLoc used a benchmark dataset including 5,959 pro-

teins and covering 11 eukaryotic subcellular locations,

i.e. chloroplast, cytoplasmic, endoplasmic reticulum, ex-

tracellular, Golgi, lysosomal, mitochondrial, nuclear,

peroxisomal, plasma membrane, and vacuolar. Their data-

set allows inclusion of protein sequences with up to 80%

sequence identity to one another. The dataset can be down-

loaded from http:==www-bs.informatik.uni-tuebingen.de=

Services=MultiLoc=information. As reported in Hoglund

et al. (2006), the overall success rate obtained by Multi-

Loc using 5-fold cross-validation test was about 75%.

To make the comparison under exactly the same condi-

tion, let us also use the same dataset and the same 5-fold

cross-validation procedure to test Euk-PLoc. As shown

in Table 6, not only the overall success rate obtained

by Euk-PLoc is significantly higher than that by Multi-

Loc, but the Matthews correlation coefficient (MCC)

obtained by Euk-PLoc for each of the eleven subcellular

locations is also remarkably higher than that by Multi-

Loc, indicating that Euk-PLoc is much more reliable

and stable.

4. Conclusion

Prediction of protein subcellular location is an impor-

tant but meanwhile very difficult problem. The more the

number of subcellular locations is considered, or the more

stringent condition is imposed to exclude the sequence

redundancy and homology bias, the more difficult for

us to get a higher success prediction rate. That is why

for the benchmark dataset investigated here, which in-

volves 18 subcellular locations and in which none of pro-

tein has �25% sequence identity to any others in a same

subcellular location, the success rates obtained by various

Table 6. Comparison between Euk-PLoc and MultiLoc in performing the 5-fold cross-validation test on

the dataset constructed by Hoglund et al. (2006)

Subcellular location MCC (Matthews, 1975) Overall success rate

Euk-PLoca MultiLocb Euk-PLoca MultiLocb

(1) chloroplast 0.91 0.85 90.8% 75%

(2) cytoplasm 0.84 0.69

(3) endoplasmic reticulum 0.78 0.61

(4) extracell 0.88 0.75

(5) Golgi apparatus 0.93 0.56

(6) lysosome 0.76 0.48

(7) mitochondrion 0.91 0.83

(8) nucleus 0.95 0.73

(9) peroxisome 0.85 0.43

(10) plasma membrane 0.95 0.77

(11) vacuole 0.78 0.42

a Predictor proposed in this paper
b Predictor proposed in Hoglund et al. (2006)
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powerful existing methods were only within the range of

30–40%.

To improve the prediction quality, we adopted the

strategy of (a) representing protein samples by hybridiz-

ing GO (Eq. 1) and PseAA (Eq. 3), and (b) introducing

the ensemble classifier that were formed by fusing many

basic individual classifiers operated according to the

nearest neighbor rule. Using GO to represent the sample

of a protein could effectively grasp its core features.

However, it was by no means a trivial use of the GO

annotations to assign the subcellular locations of query

proteins because for those proteins with ‘‘subcellular

location unknown’’ annotation in Swiss-Prot database,

most (more than 99%) of their corresponding GO num-

bers in GO database are also annotated with ‘‘cellular

component unknown’’. As a matter of fact, the informa-

tion useful for predicting subcellular locations of pro-

teins are actually ‘‘buried’’ into a series of GO numbers,

just like they are ‘‘buried’’ into a pile of complicated amino

acid sequences. Also, because the GO database is not com-

plete yet, many proteins might not be meaningfully repre-

sented in the GO system. For these proteins, the PseAA

representation was used because it could incorporate a

considerable amount of sequence order effects and yield

better predicted results than the conventional amino acid

composition representation.

In using the nearest neighbor rule, selecting different

number (K) of the nearest neighbors counted for prediction,

or using different dimension (�) of PseAA to represent

protein samples, might lead to a different result. It is both

tedious and time-consuming to find the optimal result by

testing different values of K and � one by one. The ensem-

ble classifier CGO formed by fusing a set of basic classifiers

with different K and the ensemble classifier �Pse formed by

fusing a set of basic classifiers with different K and � can

automatically solve the problem. Actually, it was observed

that the result predicted by the ensemble classifier was bet-

ter than the best of those by the individual classifiers. That is

why the approach by hybridizing the ensemble classifiers

CGOand CPse is so powerful, yielding over 80% success

rates even for the current stringent datasets in which none

of proteins has �25% sequence identity to any other in a

same subcellular location. These rates are 40–50% higher

than those by the other existing approaches. It is anticipated

that the powerful approach may become a useful high

throughput tool for many other relevant area in bioinfor-

matics, proteomics, and molecular biology.

A web-server has been designed for the powerful

predictor Euk-PLoc, and it is freely available at http:==

202.120.37.186=bioinf=euk to the public. Moreover, for

the convenience of people who are working in the relevant

fields, a downloadable file will be provided at the same

website to list the results predicted by Euk-PLoc for all

eukaryotic protein entries in Swiss-Prot database that are

not fragments and that have no subcellular location an-

notations or are annotated with uncertain terms such as

‘‘probable’’, ‘‘likely’’, or ‘‘by similarity’’.
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