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Summary. As more and more genomes have been discovered in recent

years, there is an urgent need to develop a reliable method to predict the

subcellular localization for the explosion of newly found proteins. How-

ever, many well-known prediction methods based on amino acid composi-

tion have problems utilizing the sequence-order information. Here, based

on the concept of Chou’s pseudo amino acid composition (PseAA), a new

feature extraction method, the multi-scale energy (MSE) approach, is in-

troduced to incorporate the sequence-order information. First, a protein

sequence was mapped to a digital signal using the amino acid index. Then,

by wavelet transform, the mapped signal was broken down into several

scales in which the energy factors were calculated and further formed into

an MSE feature vector. Following this, combining this MSE feature vector

with amino acid composition (AA), we constructed a series of MSEPseAA

feature vectors to represent the protein subcellular localization sequences.

Finally, according to a new kind of normalization approach, the MSEPseAA

feature vectors were normalized to form the improved MSEPseAA vec-

tors, named as IEPseAA. Using the technique of IEPseAA, C-support

vector machine (C-SVM) and three multi-class SVMs strategies, quite

promising results were obtained, indicating that MSE is quite effective

in reflecting the sequence-order effects and might become a useful tool for

predicting the other attributes of proteins as well.

Keywords: Multi-scale energy – Wavelet transform – Support vector

machines – Chou’s pseudo amino acid composition – Protein subcellular
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1. Introduction

One of the big challenges in the biological field concerns

structure and function classification in terms of protein

sequences. The function of a protein is closely correlated

with its subcellular localization (Chou, 2000; Chou and

Cai, 2002). During the last decade, many theoretical meth-

ods were developed in an attempt to predict the sub-

cellular localization of a query protein based on its se-

quence information. In 1994, Nakashima and Nishikawa

indicated that intracellular and extracellular proteins are

significantly different in amino acid composition (AA)

(Nakashima and Nishikawa, 1994). The subsequent stud-

ies showed that the AA is closely related to protein sub-

cellular localization (see, e.g., Chou and Elrod, 1999).

However, under the following conditions, two sequences

are completely different in function and localization but

they have a very similar AA, so similar that if the pre-

diction was only based on the AA, both of the proteins

would be predicted as belonging to the same region of the

cell. One of the reasons is that the AA method does not

consider the effects of sequence order and sequence

length. To solve this problem, Chou introduced a concept

of the pseudo amino acid composition (PseAA) to par-

tially incorporate the sequence-order effect of a protein

(Chou, 2001, 2005). Stimulated by this concept, a series

of powerful prediction algorithms and novel approaches

have been developed to predict protein subcellular locali-

zation (Chou and Cai, 2002; Cui et al., 2004; Gao et al.,

2005; Pan et al., 2003; Xiao et al., 2005a, b; Liu et al.,

2005; Shen and Chou, 2005a, b; Chou and Shen, 2006a, b,

c; Zhang et al., 2006). Here we attempt to develop a dif-

ferent PseAA, the so-called multi-scale energy (MSE)

approach, and combine it with AA to represent protein

sequence. MSE can effectively reflect the sequence-order

effect. With this new combined feature, multi-class SVM

is applied to predict protein subcellular localization.

2. Materials and methods

2.1 Database

The database used here was constructed by Chou, and it includes a train-

ing dataset and an independent testing dataset (Chou, 2001). The training

dataset consists of 2191 protein sequences, made up as follows: 145

chloroplast, 571 cytoplasm, 34 cytoskeleton, 49 endoplasmic reticulum,



24 extracellular, 25 Golgi apparatus, 37 lysosome, 84 mitochondria, 272

nucleus, 27 peroxisome, 699 plasma membrane and 24 vacuole proteins.

The independent dataset consists of 2494 protein sequences, made up as

follows: 112 chloroplast, 761 cytoplasm, 19 cytoskeleton, 106 endoplasmic

reticulum, 95 extracellular, 4 Golgi apparatus, 31 lysosome, 163 mitochon-

dria, 418 nucleuse, 23 peroxisome, and 762 plasma membrane proteins.

2.2 Discrete wavelet transform

Wavelet transform is based on the idea of mapping a signal onto a set

of basis functions. A set of wavelet basis functions can be generated

by scaling and shifting the mother wavelet, according to the following

formula:

Ca;b ¼
1ffiffiffi
a

p C
�
x� b

a

�
ð1Þ

where a is a positive real number and b is a real number, which indicate

the scale and the time shift of a basis function, respectively.

If we discretize the scale and the shift parameters to integer values,

namely a ¼ 2p, b ¼ 2p � q, then we can get discrete wavelet basis function

Cp;q defined as the following formula:

Cp;q ¼ 2
�p
2 Cð2�px� qÞ ð2Þ

Here, p ¼ 1; 2; . . . and q ¼ 0; 1; 2; . . . . The wavelet coefficients of the

signal f ðxÞ are obtained by following formula:

wp;q ¼ hf ðxÞ;Cp;qðxÞi ð3Þ

Now, we get the discrete wavelet transform (DWT). Actually, instead of

computing the inner product defined in formulation (3), there are several

computationally efficient algorithms to implement DWT. Here, Mallat’s

fast algorithm is used (Mallat, 1999). The basic idea of the fast algorithm

is to represent the mother wavelet as a set of high pass and low pass filter

banks. The signal is passed through the filter banks and decimated by a fac-

tor of 2. The outputs of the low pass filter are wavelet approximation co-

efficients, and those of the high pass filter are wavelet detail coefficients.

The filtering process mentioned above is just called discrete wavelet de-

composition, and we will use it to extract feature information of protein

subcellular localization in the following section.

2.3 Multi-scale energy feature

According to AA, the protein sequence pk can be characterized as a 20-D

feature vector:

AAk ¼ ½ck1; . . . ; cki ; . . . ; ck20�; k ¼ 1; . . . ;N ð4Þ

Here, cki ¼ ni=Lk is the normalized occurrence frequency of amino

acid ai, ni is the count of ai appearing in sequence pk ,

ai ¼ fA;C;D;E;F;G;H; I;K;L;M;N;P;Q;R; S;T ;V;W; Yg;

Lk is the length of the sequence pk .

It is not sufficient to characterize a specific protein sequence only on

the basis of AA; the position information of ai in the protein sequence and

the correlation information between amino acids should also be consid-

ered. For example, suppose we have two protein sequences p1: AAADDD

and p2: DDAA. According to the AA method, both of feature vectors are

represented as the following:

AA1 ¼ ½0:5; 0; 0:5; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0�T

AA2 ¼ ½0:5; 0; 0:5; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0�T

Obviously, both of AA1 and AA2 feature vectors are the same. We cannot

distinguish protein p1 from protein p2 only based on the AA method. So

we must develop other methods to distinguish between proteins. The

method of PseAA (Chou, 2001) is one of these methods. According to

the concept of PseAA, AA is always incorporated with some factors

reflecting sequence-order effects.

Since the sequence of a protein is a series of English letters, it is difficult

to apply the digital signal processing (DSP) method directly. In order to

apply DSP, each protein sequence should first be coded into a digital

signal; that is, the sequence of English letters should be translated into a

numerical sequence. As is well known, the hydrophilicity value of amino

acid is one of the most important physicochemical properties which play

a key role in the protein folding as well as function, particularly for sub-

cellular localization. Here, we choose the index HOPT810101 from the

amino acid index database (Kawashima et al., 1999) to map the residues to

the corresponding numerical value. Hence, such a coded protein sequence

can be treated as a digital signal and further processed by all existing tools

of DSP, such as wavelet transform.

Projecting the signal onto a set of wavelet basis functions with various

scales, the fine-scale and large-scale information of a protein hydrophilicity

signal can be simultaneously investigated. Here, the wavelet basis function

used is symlet wavelet. The features extracted from the wavelet-based

multi-resolution information (Pittner and Kamarthi, 1999) can distinguish

between different types of protein signals effectively. Consequently, se-

quence pk can be characterized as an (mþ 1)-D MSE feature vector:

MSEk ¼ ½dk1; . . . ; dkj ; . . . ; dkm; akm� ð5Þ

Here, m is the coarsest scale of decomposition, dkj is the root mean

square energy of the wavelet detail coefficients in the corresponding jth

scale, and akm is the root mean square energy of the wavelet approximation

coefficients in the scale m. The energy factors dkj and akm are defined as:

dkj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nj

XNj�1
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2
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Here, Nj is the number of the wavelet detail coefficients, Nm is the

number of the wavelet approximation coefficients, ukj ðnÞ is the nth detail

coefficient in the corresponding jth scale, and v kmðnÞ is the nth approxima-

tion coefficient in the scale m. For the protein sequence pk with length Lk ,

m equals INTð log 2ðLkÞÞ.

2.4 Improved pseudo amino acid composition

Obviously, MSE contains the approximate and detailed information of the

protein signal, which reflects sequence-order effects. Combining MSE

with AA, we can construct the following (20þmþ 1)-D feature vector

Xk to represent sequence pk.

Xk ¼ ½ck1; . . . ; cki ; . . . ; ck20; l
k
1; . . . ;l

k
j ; . . . ;l

k
m;l

k
mþ1�

T ð7Þ

Here, lkj ¼ dkj ;l
k
mþ1 ¼ akm; j ¼ 1; . . . ;m. Based on the property of the

dataset we are using, we choose m ¼ 11.

According to Chou’s PseAA, protein sequence pk can be represented as

following formula:

Xk ¼ ½xk1; . . . ; xki ; . . . ; xk20þmþ1�
T

xki ¼
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Here, wn is the weight factor of the nth MSE component.

In order to get better prediction results, different weights of MSE

components should be obtained by certain optimal processes or some

experimental approaches. These methods can work well for limited fac-

tors. When more and more components are integrated into PseAA, it is

very difficult to optimize their weights, and it will even become an NP-

Complete problem.
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To integrate more components into PseAA, we introduce another nor-

malization approach, described as follows:

fðx; iÞ ¼ xi � Vi
min

Vi
max � Vi

min

ð9Þ

Here, xi is the ith attribute of the feature vector x, Vi
max is the maximum

and Vi
min is the minimum of the ith attribute of the feature vector.

With such mapping functions ffðx; iÞg, all attributes of training or

testing samples can be scaled from their original ranges into [0, 1].

For example, suppose that the training samples contain the following

three feature vectors:

Trnð1Þ ¼ ½0:1; 0:5; 1; 10; 100; 1000�
Trnð2Þ ¼ ½0:2; 0:8; 3; 15; 90; 1090�
Trnð3Þ ¼ ½0:5; 0:3; 4; 8; 120; 800�

The testing feature vector is x ¼ ½0:3; 0:6; 2; 11; 100; 900�. When the

mapping is done, the feature vectors will be changed into the following

vectors, respectively:

Trn01 ¼ ½0:00; 0:40; 0:00; 0:29; 0:33; 0:69�
Trn02 ¼ ½0:25; 1:00; 0:67; 1:00; 0:00; 1:00�
Trn03 ¼ ½1:00; 0:00; 1:00; 0:00; 1:00; 0:00�

x0 ¼ ½0:50; 0:60; 0:33; 0:43; 0:33; 0:34�

Under this situation, we have no need to calculate all weights of com-

ponents which are mapped into the same range. Naturally, the weight is

chosen as 1.

This improved PseAA has two interesting properties: it can firstly avoid

the need to calculate all weights and is able to prevent the attributes of

greater numeric ranges from dominating those of smaller numeric ranges

during the process of calculation. Conveniently, we use the symbol IEP-

seAA to represent this Improved Pseudo Amino Acid Composition method.

2.5 Weighted SVM

For some classification problems, such as the prediction of protein sub-

cellular localization, numbers of data in different classes are imbalanced,

and the results naturally tend to favor the majority class. Hence, some

approaches of using different penalty parameters in the SVM formulation

have been proposed to address the so-called class imbalance problem

(Osuna et al., 1997). By introducing different penalty parameters, C-SVM

(Vapnik, 1998) becomes

min
w;b;x

1

2
wTwþ Cþ

X
yi¼1

xi þ C�
X
yi¼1

xi

subject to yiðwTfðxiÞ þ bÞ � 1 � xi
xi � 0; i ¼ 1; . . . ;N ð10Þ

Its dual is:

min
a

1

2
aTQaþ eTa

subject to 0�ai�Cþ; if yi ¼ 1

0�ai�C�; if yi ¼ �1

yTa ¼ 0 ð11Þ

Here, Cþ ¼ wþ � C;C� ¼ w� � C and C is the penalty parameter which

is same for all classes in the original C-SVM. For the�-class problem,wþ or

w� becomes wo which is the weight of oth class and defined as follows:

wo ¼ N=No; o ¼ 1; . . . ;�. No is the sample number of class o in the

training set and N is the total sample number in the training set.

2.6 Multi-class SVM

SVM has been proved to be a fruitful learning machine, especially for

classification (Vapnik, 1998). It was originally designed for binary classi-

fication. We can construct �-class SVMs to solve the �-class classification

problem based on the binary class SVM, which is an ongoing research

issue.

There are mainly two kinds of approaches for multi-class SVM. One

directly processes all data in one optimization formulation (Crammer and

Singer, 2001). The other decomposes multi-class into a series of binary

SVMs, including the ‘‘One-Versus-Rest’’ (OVR) strategy (Vapnik, 1998),

the ‘‘One-Versus-One’’ (OVO) strategy (Kreßel, 1999), and the ‘‘Directed

Acyclic Graph’’ (DAG) strategy (Platt et al., 2000). Extensive experiments

have shown that OVR, OVO and DAG are practical (Hsu and Lin, 2002;

Rifin and Klautau, 2004).

OVR is probably the earliest approach for multi-class SVM. For the �-

class problem, it constructs � binary SVMs. The ith binary SVM is trained

with all examples. The positive samples are taken from the ith class and

negative samples are taken from the other classes. For a given test sample,

all � binary SVMs are evaluated, and the test sample is labeled as the class

with the largest value of the decision functions.

OVO constructs �ð�� 1Þ=2 binary SVMs. Each binary SVM is trained

with the examples from two different classes. During the evaluation, each

of the �ð�� 1Þ=2 SVMs casts one vote for its most favored class, and

finally the class with the most votes wins (Kreßel, 1999).

DAG has the same training process as the OVO strategy, but it has a

different evaluation process. During the evaluation, DAG uses the directed

acyclic graph architecture to make a decision (Platt et al., 2000). The idea

of DAG is easily implemented. Let T ¼ 1; 2; . . . ;�, which is a list of class

labels. When a test sample is given, DAG first evaluates this sample with

the binary SVM, which corresponds to the first and last element in list T. If

the classifier prefers one of the two classes, then the other one will be

eliminated from the list. After each testing, one class label will be

excluded. Through �� 1 binary SVM evaluating, the last label remaining

in the list will be the answer.

Here, the SVM software we used is LIBSVM, which can be freely

downloaded from http:==www.csie.ntu.edu.tw=�cjlin=libsvm= for aca-

demic research (Hsu and Lin, 2002). The RBF kernel is applied in all

the following experiments.

2.7 System assessment

The jackknife test has been considered to be one of the most objective test

methods in examining the power of a prediction method, as illustrated in a

comprehensive review article (Chou and Zhang, 1995). It has been adopted

by more and more leading investigators to test the powers of various

predictors (see, e.g., Chou, 1995; Chou and Cai, 2004; Gao et al., 2005,

2006; Liu et al., 2005; Shen and Chou, 2005a, b, 2006; Shen et al., 2005,

2006; Sun and Huang, 2006; Wen et al., 2006; Xiao et al., 2005a, 2006b, c;

Zhang et al., 2006; Zhou, 1998). During the process of the jackknife test,

each protein in the training dataset is singled out in turn as a test sample,

and the remaining proteins are used as training samples. For an indepen-

dent test, proteins in the training dataset are used to train the rule param-

eters, and those in the independent test dataset are used as test samples.

The prediction for an independent test dataset is just for a demonstration of

practical application.

To assess the quality of the test, the total prediction accuracy and the

prediction accuracy of the each protein subcellular localization can be

defined as:

Total accuracy ¼ 1

N

X�
o¼1

pðoÞ ð12Þ

accuracyðoÞ ¼ pðoÞ
obsðoÞ ð13Þ

Here, N is the total number of proteins, � is the sum of the classes,

obs(o) is the number of proteins observed in class o and p(o) is the

number of proteins correctly predicted in class o.
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3. Results and discussion

3.1 Results of different prediction methods

The results of our IEPseAA approach using the C-SVM

and OVO multi-class SVM classification strategy are

shown in Table 1. With the same dataset constructed by

Chou, the results of other five methods (Chou, 2001; Pan

et al., 2003; Xiao et al., 2005a, b; Gao et al., 2005) are

also listed in Table 1.

From Table 1, we can see that the total accuracy of

IEPseAA in the jackknife and independent tests is 80.3

and 87.0%, respectively. These degrees of accuracy are

remarkably higher than those of the other methods listed

in Table 1. For example, in the jackknife test, the total

accuracy of IEPseAA is 12.6 and 6.7% higher than that of

Pan’s method (Pan et al., 2003) and Xiao’s method (Xiao

et al., 2005b), respectively. These results show that IEP-

seAA is effective and helpful for the prediction of protein

subcellular localization. MSE can extract more sequence-

order information.

3.2 Comparison of three multi-class SVM strategies

In order to make the comparison among three multi-class

SVMs (OVR, OVO and DAG), based on LIBSVM with

some modification of its source codes, we have also

adopted DAG and OVR strategies to predict protein sub-

cellular localization with C-SVM. The results are shown

in Table 2.

Table 2 shows that DAG, OVR and OVO have very

similar classification accuracy, and the difference among

them may be mainly focused on the number of support

vectors, the training time and the testing time. To validate

this guess further, we ran training and independent tests

10 times in the computer with Pentium IV 2.0G CPU and

256 Mb memories, respectively. The number of support

vectors (SV) and their maximum (Max) and minimum

(Min) time are listed in Table 3.

Although OVR only requires � binary SVMs, each

binary SVM is optimized on all the N training examples.

OVO or DAG has �ð�� 1Þ=2 binary SVMs to train;

however, the total training time of OVO or DAG is still

less than that of OVR. The reason is that the individual

binary SVM of OVO or DAG is only trained on the exam-

ples of two classes. In our experiments, OVR has a heavy

training computational burden, whose training time is al-

most 2.5 times that of OVO or DAG.

During the testing, we found that the testing time was

almost proportional to the number of support vectors, and

OVR takes much more time than OVO and DAG. In addi-

tion, DAG is a little faster than OVO in testing time, but it

occupies a little bit more memory than OVO because it

needs extra data structure to index the set of these binary

SVMs.

As described above, except for the training time,

DAG, OVO and OVR are very similar in terms of their

other performance. Hence, we think that DAG and OVO

may be more suitable for predicting protein subcellular

localization.

3.3 Effect of weighted SVM on the results

As is well known, C-SVM is often biased toward the class

with more examples in an imbalanced dataset. Chou’s

protein subcellular localization dataset is an imbalanced

database. In order to deal with this problem, the training

with weight factor is used to improve the prediction accu-

racy with a small sample size.

Table 1. Total accuracy (%) of IEPseAA and other methods on Chou’s

dataset (2001) by the jackknife and independent tests

Method Jackknife test Independent test

Chou’s (Chou, 2001) 1600=2191¼ 73.0% 2017=2494¼ 80.9%

Pan’s (Pan et al., 2003) 1483=2191¼ 67.7% 1842=2494¼ 73.9%

Xiao’s (Xiao et al.,

2005a)

1590=2191¼ 72.6% 1865=2494¼ 74.8%

Xiao’s (Xiao et al.,

2005b)

1612=2191¼ 73.6% 1990=2494¼ 79.8%

Gao’s (Gao et al., 2005) 1532=2191¼ 69.9% –

IEPseAA 1759=2191¼ 80.3% 2170=2494¼ 87.0%

Table 2. Total accuracy (%) of DAG, OVR and OVO with IEPseAA and

C-SVM

Multi-class

SVM strategy

Jackknife test Independent test

DAG 1760=2191¼ 80.3% 2167=2494¼ 86.9%

OVR 1764=2191¼ 80.5% 2163=2494¼ 86.7%

OVO 1759=2191¼ 80.3% 2170=2494¼ 87.0%

Table 3. The number of support vectors and the consumed time of DAG,

OVR and OVO with IEPseAA and C-SVM

Strategy Training Independent test

SV Max Min Max Min

DAG 1573 2.141 2.109 1.578 1.562

OVR 1686 4.875 4.843 1.785 1.766

OVO 1573 2.047 2.000 1.672 1.563
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Here, we apply weighted SVM to Chou’s dataset. The

prediction accuracies of 12-class subcellular localizations

are listed in Table 4.

From Table 4, we can see that: 1) With weighted SVM,

the accuracies of most classes which have small number

of samples can be improved. For example, the accuracies

of peroxisome, vacuole and Golgi apparatus of weighted

SVM, which have 27, 24 and 25 training examples, are

22.2, 25 and 28%, respectively in the jackknife test, and

these figures are 14.8, 8.3 and 8.0% higher than those

of C-SVM, respectively; 2) Compared with C-SVM, the

accuracies of the classes which have more samples will

fall only a little with weighted SVM. For example, the

accuracy of plasma membrane (whose training sample

number is 699) and cytoplasm (whose training sample

number is 571) with weighted SVM are 1 and 4.7% lower

than that with C-SVM, respectively, in the jackknife test.

The reason may be that the weighted factor wo selected

is not suitable. The question of how to select a suitable

weighted factor wo is our next research work.

4. Conclusion

A novel feature extraction method, the multi-scale energy

approach, which calculates the root mean square en-

ergy of the wavelet transform coefficients in different

scales to reflect sequence-order effects, was proposed

in this paper. Furthermore, a new kind of normalization

approach by combining MSE with AA to construct the

improved PseAA (IEPseAA) was formulated. On the

basis of such a frame, multi-class SVMs were adopted

to predict protein subcellular localization, and better

results were obtained.

Compared with the other PseAA approaches, the cur-

rent IEPseAA approach can more effectively reflect the

sequence-order effects for predicting protein subcellular

localization. Moreover, it is also indicated that the weighted

SVM can solve the problem of C-SVM biasing toward the

class with more samples in an imbalanced dataset.
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