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Summary. A newly synthesized secretory protein in cells bears a spe-

cial sequence, called signal peptide or sequence, which plays the role of

‘‘address tag’’ in guiding the protein to wherever it is needed. Such a unique

function of signal sequences has stimulated novel strategies for drug design

or reprogramming cells for gene therapy. To realize these new ideas and

plans, however, it is important to develop an automated method for fast and

accurately identifying the signal sequences or their cleavage sites. In this

paper, a new method is developed for predicting the signal sequence of a

query secretory protein by fusing the results from a series of global align-

ments through a voting system. The very high success rates thus obtained

suggest that the novel approach is very promising, and that the new method

may become a useful vehicle in identifying signal sequence, or at least serve

as a complementary tool to the existing algorithms of this field.
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1. Introduction

A signal sequence is a short peptide that functions as an

‘‘address tag’’ in directing a nascent protein to whereever

it is supposed to be. If the signal sequence in a nacent

protein was changed, the protein could end up in a wrong

cellular location causing various weird diseases. Therefore,

knowledge of signal sequences can be used to reprogram

cells in a desired way for future cell and gene therapy.

However, to realize this, the first important thing is to

identify the signal sequence for a nacent protein. Because

the number of nacent protein sequences entering into data-

banks has been increasing explosively in the post-genomic

era, to timely use them for basic research and drug discov-

ery (Chou, 2004; Lubec et al., 2005), it is highly desired

to develop a computational method for fast and reliably

identifying signal sequences. Actually, many efforts have

been made in this regards (Arrigo et al., 1991; Bendtsen

et al., 2004; Chou, 2001a, b, c; Emanuelsson et al., 1999;

Folz and Gordon, 1987; Ladunga et al., 1991; Liu et al.,

2005; McGeoch, 1985; Nielsen et al., 1997; Schneider

et al., 1993; Schneider and Wrede, 1993; von Heijne,

1986; Wang et al., 2005a). A brief introduction for most

of these methods can be found in some review papers

(see, e.g., Chou, 2002 and Nakai, 2000).

Given a protein sequence, the first step in predicting its

signal peptide is to identify whether it is a secretory pro-

tein or non-secretory protein. For the latter, no prediction

is needed at all because it contains no signal peptide. Most

of the existing methods are actually effective in classify-

ing proteins as secretory or non-secretory, as pointed out

in (Bendtsen et al., 2004). The present study was initiated

in an attempt to develop a powerful method for predicting

the signal peptide cleavage sites of secretory proteins.

2. Materials and methods

The benchmark dataset used in this paper is from SignalP (Nielsen et al.,

1997), which can be downloaded from http:==www.cbs.dtu.dk=ftp=signalp.

It contains 1939 secretory proteins, of which 1011 belong to eukaryotes,

105 to E. coli, 416 to human, 266 to Gram-negative, and 141 to Gram-

positive (Table 1). Because the signal sequences of secretory proteins are

located at the N-terminal, for simplifying the problem, the dataset con-

structed by Nielsen et al. only contains the sequence of the signal peptide

plus the first 30 amino acids of the mature protein for each of the secretory

proteins included.

As shown in Fig. 1 (Chou, 2001b), to predict the signal sequence of a

secretory protein, the key is to identify its cleavage site by the signal

peptidase. Once the cleavage site is determined, the corresponding signal

sequence is naturally clearly defined.

The length of signal sequence is varied for different secretory proteins.

A statistical analysis for the signal sequences in the aforementioned 1939

secretory proteins indicate that the shortest signal sequence contains eight



amino acid residues and the longest one contains 90 residues while the

majority have a length within 18–25 residues. Facing such a problem with

extreme variation in length and sequence, many investigators resorted

to the ‘‘scaled window’’ approach (see, e.g. Chou (2001b)). However, a

length-fixed window might not include sufficient information for an accu-

rate prediction. Moreover, the ‘‘scaled window’’ approach could not avoid

the imbalance situation with a small size of positive subset and very large

size of negative subset in training the predictor.

The hidden Markov model (HMM) (Baldi and Brunak, 1998; Durbin

et al., 1998) can be used to deal with this kind of the imbalance problem

caused by the ‘‘scaled window’’ approach. The advantage of HMM is that

it does not use windows of a fixed width, but threads an entire sequence

through a trained model. However, the HMM approach was effective in

discriminating signal peptides from signal anchors, but less effective for

the signal cleavage site prediction (Nielsen and Krogh, 1998).

To incorporate more sequence information for identifying the signal

cleavage site, we have developed a new global alignment algorithm based

on Needleman–Wunsch algorithm (Needleman and Wunsch, 1970). The

program can find the optimal match of any two sequences in spite of the

difference of their lengths. In the global alignment approach, a query se-

quence is aligned with all the sequences in the training dataset one-by-one.

Each of these alignments will leave a mark on the query sequence that is

corresponding to the cleavage site of the known signal sequence. The mark

is considered as a ‘‘conjectured cleavage site’’ for the query sequence. It is

assumed that the more similar the two sequences are, the more credible the

conjectured cleavage site will be.

According to Needleman–Wunsch algorithm (Needleman and Wunsch,

1970), finding the optimal alignment between two sequences is closely

correlated with the following two basic elements: (1) substitution matrix,

and (2) gap penalties.

The substitution matrices commonly used include BLOSUM, PAM, and

JOHNSON. It is hard to tell which one is better than the other as they each

has different suited occasion (Blake and Cohen, 2001). Among these three

BLOSUM has a good reputation in sequence alignment and sequence

query. BLOSUM50 means the alignment is generated using sequences

sharing no more than 50% identity. BLOSUM50 is the most popular

substitution matrix for pairwise alignment, providing the foundation

for a number of database search techniques including BLAST and

PSI-BLAST. In view of this, we choose BLOSUM50 in the current study.

For the gap penalties, the linear score and affine score are the two most

popular methods for the global alignment. However, we have found that

the affine score can improve the success rates for predicting the cleavage

sites of signal sequences. The affine score, g, can be formulated by the

following equation:

gðgÞ ¼ �d � ðg� 1Þe ð1Þ

where d is called the gap-open penalty, e called the gap-extension penalty,

and g stands for the sequence length. Because using different parameters

d and e for Needleman–Wunsch algorithm will result in different results,

below we shall use NW(d, e) to denote the algorithm. Suppose

S ¼ fS1; S2; . . . ; SNg ð2Þ

is a set of N secretory protein sequences each with known signal sequence.

For a query secretory protein sequence, its global alignment with each of the

sequences in Eq. (2) will generate N alignment pairs, as formulated below:

½½S;S�� ¼ f½½S; S1��; ½½S; S2��; . . . ; ½½S; SN ��g ð3Þ

Suppose D1 is the site in the query sequence S that corresponds to the

known cleavage site in S1 and regarded here as the deduced cleavage site

of S from the alignment ½½S; S1��, and D2 is the deduced cleavage site of S

from the alignment ½½S; S2��, and so forth. Thus, we have N deduced

cleavage sites according to Eq. (3); i.e.

fD1;D2; . . . ;DNg ) fY1; Y2; . . . ;YMg ð4Þ

However, many of these deduced cleavage sites Djðj ¼ 1; 2; . . . ;NÞ
may be overlapped with each other, therefore the number of different

deduced cleavage sites is much less than N, and can be expressed as

Yiði ¼ 1; 2; . . . ;M<NÞ, as shown on the right side of Eq. (4).

Now, let us define a score function given by

Qi ¼
XN

j¼1

�ðYi;DjÞ; ði ¼ 1; 2; . . . ;MÞ ð5Þ

where the delta function is given by

�ðYi;DjÞ ¼
1; if Yi ¼ Dj

0; otherwise

�
ð6Þ

The final decision is made by assigning Yk of Eq. (4) as the signal

sequence cleavage site for the query sequence S if

k ¼ ArgMaxifQig; ði ¼ 1; 2; . . . ;MÞ ð7Þ

where the operator ArgMaxi means taking the subscript with which the

score function Q is the maximum. If there is a tie among two or more

deduced cleavage sites, then the final predicted site will be randomly

assigned to one of their corresponding sites, although this kind of tie case

rarely happens and actually was not observed in the current study.

3. Results and discussion

As mentioned above, the alignment results by Needleman–

Wunsch algorithm depend on the parameters d and e. The

Fig. 1. A schematic drawing to show the signal sequence of a protein and

how it is cleaved by the signal peptidase. An amino acid in the signal part

is depicted as a black circle with a white number to indicate its sequential

position, while that in the mature protein depicted as an open circle with a

black number. The signal sequence contains LS residues, and the mature

protein Lm residues. The cleavage site is at the position (�1, þ1), i.e.

between the last residue of the signal sequence and the first residue of

the mature protein. Reproduced from Chou (2001b) with permission

Table 1. The success rate of predicting the signal sequence cleavage sites

by jackknife cross validation for the secretory proteins in each of the five

different species

Species Number of

secretory proteins

Number of

correct predictiona

Success

rate (%)

E. coli 105 103 98.1

Gram-negative 266 263 98.9

Gram-positive 141 139 98.6

Human 416 413 99.3

Eukaryotic 1011 1003 99.2

Overall 1939 1921 99.1

a During the global sequence alignments, the parameters d¼ 30 and e¼ 10

were used for NW(d, e)
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former controls the number of gaps, while the latter, the

gap-extension: the larger the d, the fewer the gaps are likely

to occur; the larger the e, the odds in generating continuous

gaps are lower. It is widely recognized that the gap-exten-

sion penalty e should be set to a value less than the gap-open

penalty d, allowing long insertions and deletions to be penal-

ized less than they would be by the linear gap cost (Durbin

and Dear, 1998; Durbin et al., 1998). Most investigators used

d¼ 8–12 and e¼ 1–2 by default. However, it was observed

through this study that an optimal result could be obtained

for predicting the cleavage sites of signal sequences by

selecting d¼ 30 and e¼ 10. As an illustration, some ex-

amples are given in Appendix A to show how the difference

of these parameters could affect the predicted results.

In statistical prediction, the following three cross-

validation tests are often used to examine the power of a

predictor: independent dataset test, sub-sampling test, and

jackknife test. Of these three, the jackknife test is thought

the most rigorous and objective one (see Chou and Zhang

(1995) for a comprehensive review), and hence has been

increasingly used by investigators (Chen et al., 2006; Chou

and Shen, 2006; Feng, 2001, 2002; Gao et al., 2005; Guo

et al., 2006; Liu et al., 2005; Luo et al., 2002; Niu et al.,

2006; Sun and Huang, 2006; Wang et al., 2005b; Wen et al.,

2006; Xiao et al., 2005, 2006a, b; Zhang et al., 2006; Zhou,

1998; Zhou and Doctor, 2003) in examining the power of

various prediction methods. Here the power of the current

method was therefore examined by the jackknife test as

well. During the jackknifing process, each of the secretory

protein sequences in the benchmark dataset is in turn taken

out as a test sample and the prediction rule is trained based

on the remaining sequences. The success rates thus obtained

in predicting the cleavage sites of signal sequences for the

5 subsets are listed in Table 1, from which we can see that

the success rates have been enhanced by 10–20% in com-

parison with rates by SignalP3.0 (Bendtsen et al., 2004),

indicating that the fusing global alignment approach as

proposed in this paper is indeed very powerful.

4. Conclusions

Predicting the signal peptide or sequence of a secretory

protein is very important to both basic research and drug

design, but it is also extremely difficult. It has been found

through this study that the approach by fusing the results

from a series of global alignments is very promising for

solving such a complicated problem.

Appendix A: sequence prediction

Here, let us give an example to show why selecting the

current parameters can improve the prediction quality.

Consider RNI_ECOLI, which can be expressed by the

following scheme:

53 RNI_ECOLI 23 RIBONUCLEASE I PRECURSOR

In the above scheme, S and M indicate that the corre-

sponding amino acids belong to the part of signal peptide

and that of mature chain, respectively; while C indicates

that the corresponding amino acid is located at the cleav-

age site. When d¼ 10, e¼ 2, the signal peptide cleavage

site of RNI_ECOLI was predicted at the sequence posi-

tion 25, which is false. But when d¼ 18, e¼ 6, the pre-

dicted cleavage site was at 23, which is correct.

To show how the two parameters affect the predicted

result, let us consider the alignment of RNI_ECOLI with

AMY1_ECOLO. The sequence scheme of the latter is

given by:

47 AMY1_ECOLI 17 ALPHA-AMYLASE PRECURSOR

It was found that, when d¼ 10, e¼ 2, the align-

ment between RNI_ECOLI and AMY1_ECOLI is as

follows:

As we can see from above, the cleavage site of AMY1_

ECOLI points to the 25th sequence position of RNI_

ECOLI, and hence leading to a wrong prediction.

However, when d¼ 18, e¼ 6, the corresponding align-

ment is given by:

M K A F W R N A A L L A V S L L P F S S A N A L A L Q A K Q A K Q . . .

S S S S S S S S S S S S S S S S S S S S S S S C M M M M M M M M M. . .

M K L A A C F L T L L P G F A V A A S W T S P G F P A F S E Q G T . . .

S S S S S S S S S S S S S S S S S C M M M M M M M M M M M M M M M. . .

M K A F W R N A A L L A V S L L P F S S A N A L A L Q A K Q A K Q . . .

M K L – – – – A A C F – L T L L P – – – G F A V A A S W T S P G – . . .

M K A F W R N A A L L A V S L L P F S S A N A L A L Q A K Q A K Q. . .

M K – – – – – L A A C F L T L L P – G F A V A A S W T S P G F P A. . .
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It can be seen from the above alignment that the

cleavage site of AMY1_ECOLI points to the 23rd se-

quence position of RNI_ECOLI, leading to a correct

prediction.

The reason why the alignments between two same

sequences with different parameters can lead to complete-

ly different results is due to the gaps inserted. Using dif-

ferent parameter values may generate different distribu-

tion of gaps. Therefore, selecting the optimal parameters

can improve the prediction quality.
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