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Summary. The pathogenesis of several neurodegenerative diseases, in-

cluding Alzheimer’s disease, has been linked to a condition of oxidative

and nitrosative stress, arising from the imbalance between increased reac-

tive oxygen species (ROS) and reactive nitrogen species (RNS) production

and antioxidant defences or efficiency of repair or removal systems. The

effects of free radicals are expressed by the accumulation of oxidative

damage to biomolecules: nucleic acids, lipids and proteins. In this review

we focused our attention on the large body of evidence of oxidative dam-

age to protein in Alzheimer’s disease brain and peripheral cells as well as

in their role in signalling pathways. The progress in the understanding of

the molecular alterations underlying Alzheimer’s disease will be useful in

developing successful preventive and therapeutic strategies, since available

drugs can only temporarily stabilize the disease, but are not able to block

the neurodegenerative process.
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1. Introduction

A large body of experimental research suggests an impor-

tant pathophysiological role of increased reactive oxygen

species (ROS) production leading to oxidative stress (Sies,

1985) as well as of increased reactive nitrogen species

(RNS) in aging (Polidori et al., 2001) and in neurode-

generative disorders (Calabrese et al., 2001) including

Alzheimer’s disease (Beal, 2000). Alzheimer’s disease is

the most common neurodegenerative disorder worldwide,

affecting approximately 4.5 million people in the United

States and 4.8 million people in the European Union.

Histopathologically, Alzheimer’s disease is characterized

by synaptic loss, nerve cell loss, extracellular deposition

of b-amyloid (Ab) protein (forming senile plaques) and

intracellular precipitation of hyperphosphorylated tau pro-

tein (forming neurofibrillary tangles).

2. Brain susceptibility to oxidation

In physiological conditions, most of the damaging effects

of free radicals are prevented by the action of enzymatic

and non-enzymatic compounds with various degrees of

antioxidant capacity (Frei, 1994). These antioxidants, how-

ever, might become themselves target of ROS damage as-

sociated with aging, thereby reducing their efficiency to

counteract free radical hyperproduction (Beckman and

Ames, 1998). Several clinical and epidemiological studies

have found an inverse relationship between some circu-

lating antioxidants and cognitive performance in healthy

adults and in aged subjects (Goodwin et al., 1983; Gale

et al., 1996; La Rue et al., 1997; Perrig et al., 1997; Short

et al., 1997; Schmidt et al., 1998; Riviere et al., 1998;

Berr et al., 2000) suggesting that some dietary antioxidants

may protect against cognitive impairment in older people.

Unfortunately, despite the convincing scientific evidence

supporting a role for oxidative stress in the pathogenesis

of Alzheimer’s disease, the overall data regarding concen-

trations of antioxidants in plasma and=or cerebral tissue in

Alzheimer’s disease remain conflicting. Similarly, the in-

terpretation of few clinical trials conducted to date in order

to assess the efficacy of antioxidant therapy in dementia



is still not clear (Sano et al., 1997; Pitchumoni and

Doraiswamy, 1998). This is due to a number of reasons,

including the lack of homogeneous methods of antioxidant

measurement among studies, and the fact that Alzheimer’s

disease patients and control subjects considered in different

studies have also different diet, age, smoking or alcohol

habits, drug therapies, comorbidities and social condition.

The brain is particularly vulnerable to oxygen radical

damage, through the prevalence of oxidizable polyunsat-

urated fatty acids in membranes, the presence of redox

active metal ions and the high metabolic requirement for

oxygen. Furthermore, the endothelium of the small blood

vessels in the brain is much less permeable than other

vascular endothelia; apart from essential molecules such

as glucose and most lipid-soluble small compounds, in nor-

mal conditions components such as peripheral phagocytes

are excluded from the brain by the blood–brain barrier.

Nonetheless, the brain is rich in microglial cells; an im-

portant source of oxygen and nitrogen radicals.

Free radicals produced during oxidative stress are thought

to play an early pathophysiological role in Alzheimer’s

disease, and oxidative modification to virtually all classes

of biomacromolecules has been described in association

with susceptible neurons in Alzheimer’s disease. Indeed,

high levels of 8-hydroxy-2-deoxyguanosine (8-OHdG)

indicating DNA oxidation have been shown in the aging

brain (Mecocci et al., 1993) as well as in the post-mortem

brain tissue from Alzheimer’s disease patients (Mecocci

et al., 1994; Wang et al., 2005), and high concentrations of

thiobarbituric acid reactive substances, malondialdehyde,

4-hydroxy-2-nonenal and isoprostanes in Alzheimer’s dis-

ease provide evidence of increased lipid peroxidation in

this disorder (Bassett and Montine, 2003).

If DNA oxidation and lipid peroxidation have been

consistently shown in a large number of well conducted

studies on Alzheimer’s disease, protein oxidation does not

constitute an exception. Increased brain protein oxida-

tion has been found in Alzheimer’s disease as well as in

other neurodegenerative disorders (Butterfield and Kansky,

2001). Oxidative damage of proteins in Alzheimer’s dis-

ease is indicated by high concentrations of several mod-

ified amino acids including protein carbonyls and nitrated

tyrosine residues. Differently from DNA oxidation prod-

ucts, oxidized amino acids are rarely repaired as mildly

oxidized proteins are usually degraded by the 20S protea-

some (Grune and Davies, 2003). The exception to this is

repair of oxidized methionine. Methionine has been sug-

gested to act as an antioxidant in proteins and peptides,

such as amyloid beta, by scavenging oxidizing species

and forming methionine sulphoxide (Hou et al., 2002).

This oxidized amino acid is specifically reduced in its na-

tive form by methionine sulphoxide reductase (Stadtman

et al., 2003). However, this enzyme activity has been re-

ported to decline in the superior and middle temporal gyri

and hippocampus in the brain of Alzheimer’s disease

patients resulting in a loss of antioxidant defence and in-

crease in oxidized methionine residues (Gabbita et al.,

1999). There has also been a suggestion that nitrotyrosine

may be repaired by a denitrase enzyme although this has

not been substantiated (Irie et al., 2003).

In this review we will focus on protein oxidation not

only because it results in functional disruption, but also

because the cross-linking of proteins by oxidative pro-

cesses may lead to the resistance of the lesions to intra-

cellular and extracellular removal, even though they are

extensively ubiquinated. Several studies have shown that

the proteasome is impaired in Alzheimer’s disease and

this has been suggested to reduce the clearance of intra-

cellular protein aggregates (Song and Jung, 2004). There-

fore, the accumulation of oxidized proteins in Alzheimer’s

disease is likely a consequence of imbalance in any one

of a number of different systems including free radical

generation, antioxidant defences or efficiency of oxidized

protein repair or removal. Furthermore, protein oxidation

appears not to be a random process but rather to be asso-

ciated with increased oxidation in specific proteins. This

latter aspect is being explored by means of the proteomic

approach, an emerging method for identification of pro-

teins possibly allowing the screening of a subset of pro-

teins within the brain proteome that might reflect the extent

of oxidative stress within the Alzheimer’s disease brain.

3. Protein modification by oxygen and nitrogen

free radicals in Alzheimer’s disease

In a post-mitotic environment such as neurons, oxidative

stress can be used as a marker of age-related deterioration

in cellular homeostatic mechanisms. Aging is the major

risk factor for Alzheimer’s disease, and the accumulation

of oxidized proteins in many tissues, particularly the ones

formed by cells with low mitotic rate such as brain or

muscle (Mecocci et al., 1999) is widely considered a hall-

mark of aging.

Neurons have a diminished capacity to deal with redox

imbalance, so that even minor stresses can lead to irrevers-

ible injury. Oxidative deamination of lysine and deguan-

idination of arginine results in protein-based aldehyde

groups that can be detected with 2,4-dinitrophenylhydra-

zine (DNPH). It appears that most of the DNPH-detectable

carbonyls found on proteins result from modification by
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bifunctional reactive aldehyde products of lipid and sugar

oxidation, thus acting as secondary toxins. These carbonyl

species, as described below, have been shown to play a

role in the pathophysiology of Alzheimer’s disease.

Most of the studies conducted in the aging brain con-

clude that the amount of oxidized protein does increase

with age. In the study from Smith et al. (1991), the

amount of protein oxidation was measured by a gen-

eral 2,4-dinitrophenylhydrazine assay of protein carbonyl

groups, formed as result of oxidation of several amino

acid residues in proteins. The results showed that there

was a general logarithmic increase in protein damage in

human cerebral cortex with age, and no significant differ-

ence was observed between aged controls and subjects

with Alzheimer’s disease. In this study not only protein

carbonyl levels, but also the activities of creatine kinase

and glutamine synthase were measured in the frontal and

occipital lobe regions as a function of age. While pro-

tein carbonyl content increased with age, the activities

of creatine kinase and glutamine synthase decreased, glu-

tamine synthase activity appeared to be selectively lost in

Alzheimer’s disease brains when the comparisons were

made between the latter and age-matched controls (Smith

et al., 1991). Other studies conducted in animal models of

aging brain showed that indices of protein oxidation such

as dityrosine and ortho-tyrosine-formed by the addition of

two free radicals of tyrosine and by hydroxyl free radical

reaction with tyrosine, respectively – had little relation-

ship with age (Leeuwenburgh et al., 1997; Cakatay et al.,

2001). Mitochondria, being the major source of ROS,

might be expected to have high levels of protein car-

bonyls; instead no age-related increase in the amount of

ortho- and meta-tyrosine and protein carbonyls was found

in the proteins from matrix and membrane fractions of

mitochondria isolated from liver, heart and brain of old

female rats compared to young animals (Davies et al.,

2001). This result probably reflects an efficient protease

activity in mitochondria able to remove oxidized proteins.

Hayn et al. (1996) found no difference in ortho-tyrosine

levels from the frontal cortex between controls and

patients with Alzheimer’s disease. Peroxynitrite, a power-

ful oxidant produced as a result of the diffusion-limited

reaction of superoxide with nitric oxide, is a source of

hydroxyl radical-like reactivity that directly oxidizes pro-

teins and other macromolecules, with resultant carbonyl

formation from side-chain and peptide-bond cleavage.

Peroxynitrite also causes the nitration of tyrosine residues,

which can be used as an index of peroxynitrite action. In

two reports, increased 3-nitrotyrosine was found in neu-

rons from Alzheimer’s disease patients both containing

neurofibrillary tangles and in those in which they were

absent (Smith et al., 1997; Su et al., 1997). In these stud-

ies, nitrotyrosine immunoreactivity in Alzheimer’s disease

was increased in the neuronal cytoplasm of the cerebral

cortex within regions of neurodegeneration, whereas it

was undetectable in the same brain regions of controls.

The distribution of nitrotyrosine found by Smith et al.

(1996) was essentially identical to the distribution of free

carbonyls. In another study, four biomarkers of neuronal

protein oxidation including phenylhydrazine-reactive pro-

tein carbonyl content were assessed in three brain regions

(cerebellum, inferior parietal lobule and hippocampus) of

Alzheimer’s disease patients and age-matched control

subjects (Hensley et al., 1995). Protein carbonyls were

significantly increased in both hippocampus and the infe-

rior parietal lobule, but unchanged in the cerebellum,

consistent with the regional pattern of histopathology in

Alzheimer’s disease and indicating that Alzheimer’s dis-

ease brain protein may be more oxidized than that of con-

trol subjects. Others also reported brain regional elevations

of modified tyrosines in Alzheimer’s disease: both dityro-

sine and 3-nitrotyrosine levels were elevated 5–8 fold

in the hippocampus, neocortex and ventricular CSF of

Alzheimer’s disease patients when compared with cogni-

tively normal controls (Hensley et al., 1998).

Due to the impossibility to assess protein oxidation

in vivo in Alzheimer’s disease brains, a recent report has

described elevated tyrosine and tryptophan modification

products in proteins within the CSF from Alzheimer’s

disease patients: the concentration of 3-nitrotyrosine, the

glycation product CML and the oxidized tryptophan moi-

ety, N-formyl kynurenine were significantly elevated in

AD where the mini mental state score showed an inverse

correlation with 3-nitrotyrosine levels. Moreover, after

removal of the CSF proteins using ultrafiltration techni-

ques, increased levels of free 3NT were recorded indicat-

ing that degradation of the nitrated proteins was occurring

(Ahmed et al., 2005).

Since it has been shown that oxidative stress in Alzhei-

mer’s disease can be also detected in peripheral cells and

not only in neuronal cells (Mecocci et al., 1998, 2002;

Cecchi et al., 1999; Vina et al., 2004), we decided to

evaluate the carbonyl and dityrosine content in immuno-

globulins from Alzheimer’s disease patients and control

subjects (Polidori et al., 2004). The choice of evaluating

the carbonyl and dityrosine content in immunoglobulins

rather than total oxidized proteins was based upon a num-

ber of considerations. First of all, and bearing in mind

that targets of protein oxidation are determined by prox-

imity to the source of reactive oxygen species, relative
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concentration and size, immunoglobulins are the second

most prevalent serum protein; in contrast, not only albu-

min is smaller, but it also carries lipids, thereby rendering

difficult the discrimination between primary and second-

ary oxidation. Furthermore, immunoglobulins have a half

life of 15 days, making them a good temporal indicator of

oxidative stress. In our study, the oxidative modification

of protein as formation of carbonyl groups was assessed

by ELISA using the method of Carty (Carty et al.,

2000). The analysis of protein oxidation as dityrosine

was performed by reverse-phase HPLC with UV detection

(Griffiths et al., 1992). Immunoglobulin levels of dityro-

sine but not of carbonyls were shown to be significantly

higher in demented patients as compared to controls in our

study, in disagreement with a previous report of increased

total amount of oxidatively modified proteins measured

by HPLC in plasma from Alzheimer’s disease patients as

compared to controls (Conrad et al., 2000).

Oxidative inactivation of enzymes is another index of

age-dependent oxidative damage to proteins, and in fact

Smith et al. (1991), as mentioned above, showed that glu-

tamine synthase activity is selectively lost in Alzheimer’s

disease brains. This implies, among others, that the activ-

ities of various antioxidant molecules that would normally

counteract the injurious effects of ROS are decreased.

The antioxidant enzymes superoxide dismutase, catalase,

glutathione peroxidase and glutathione reductase display

lowered activities in Alzheimer’s disease brains (Pappolla

et al., 1992). Sohal et al. (1993), who had initially shown

that in houseflies protein carbonyl content is associated

with life expectancy, also found that in the same model

mitochondrial aconitase, an enzyme in the citric acid

cycle, is a specific target during aging (Yan et al., 1997).

The oxidative damage detected immunochemically was

paralleled by a loss of catalytic activity of aconitase, that

contains an iron-sulfur cluster rendering it very sus-

ceptible to oxidative stress. While the potential serious

implications of impaired activity of aconitase have been

recently elegantly summarized (Shadel, 2005), we re-

cently observed that the activity of aconitase is de-

creased in both lymphocytes and purified mitochondria

from Alzheimer’s disease patients compared to controls

(Mecocci et al., unpublished data). Not only this is of

interest in light of the possibility to peripherally assess

biomarkers of oxidative stress in Alzheimer’s disease, but

also because the decrease of activity of aconitase in pa-

tients with Alzheimer’s disease markedly resembles that

of aconitase activity in subjects with mild cognitive

impairment (MCI), a prodromal stage of Alzheimer’s dis-

ease (for review on oxidative stress in MCI, see Mecocci,

2004). This suggests that mitochondrial dysfunction and

oxidative stress have chronological primacy in Alzhei-

mer’s disease. Interestingly, Keller et al. (2005) showed

a 25% increase of protein carbonyls in the superior and

middle temporal gyri of individuals with MCI and early

Alzheimer’s disease in comparison to controls.

The first use of proteomics to identify specifically mod-

ified proteins in Alzheimer’s disease brains indicated com-

pounds such as glutamine synthase or a-enolase, and also

posttranslationally modified proteins such as 3-nitrotyro-

sine (Butterfield and Castegna, 2003). Thus far, several

proteins have been identified by proteomics, and these

include proteins dealing with energy metabolism, excito-

toxicity, and the recycling of damaged proteins through

the proteasome (reviewed in Butterfield, 2004). Not only

age-associated oxidative changes of proteins (Poon et al.,

2005) but some of the hallmarks of Alzheimer’s disease,

such as the accumulation of aggregated and damaged

proteins, excess ubiquitination and shortened dendritic

lengths might be related to these oxidized proteins (Choi

et al., 2004). Proteomics appears to be an extremely help-

ful approach to study some of the processes rendering

synapses and axons vulnerable in Alzheimer’s disease,

including their high content of the disease-related proteins

APP (Amyloid-Precursor Protein), presenilins and tau (for

review see Ross and Poirier, 2004), and their metabolic

and oxidative loads. Protein nitration, for instance, seems

to be target-specific, as nitration of tyrosine residues with-

in the tau protein has been found in Alzheimer’s disease

(Horiguchi, 2003); it has been suggested that Alzheimer’s

disease, like other neurodegenerative disorders, might

have special features that contribute to the interaction be-

tween oxidative stress and specific protein misfolding

(Andersen, 2004). More recently, Reynolds et al. (2005)

have shown that tau polymerization is affected differ-

entially by oxidation or nitration, where peroxynitrite me-

diated cross-linking could facilitate tau aggregation in

Alzheimer’s disease.

Even if slowly, Alzheimer’s disease patients will inex-

orably experience loss of memory, cognitive, functional

and behavioral activities. Although drugs can temporarily

stabilize the disease, they cannot stop the neurodegen-

erative process at the moment. Therefore, improvement

in understanding the molecular alterations underlying

Alzheimer’s disease may help in developing effective pre-

ventive and therapeutic strategies. Exercise, cognitive stim-

ulation and dietary control may exert a beneficial effect

through similar mechanisms involving increased produc-

tion of brain-derived neurotrophic factor (BDNF). Recent-

ly, for instance a decreased number of oxidised proteins
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were observed in SHSY-5Y cells that had been exposed

to=hydrogen peroxide after ascorbate treatment, and the

induction of BDNF was demonstrated. BDNF was able to

protect the cells against oxidative attack which raises the

intriguing possibility that antioxidants such as ascorbate

might offer not only a mechanism to prevent damage to

proteins through radical scavenging but may also afford

prolonged benefit through altered gene expression pa-

tterns due to alterations in intracellular redox state (Grant

et al., 2005).

4. Oxidative stress and signalling pathway

in Alzheimer’s disease

There is increasing evidence that ROS and RNS are im-

portant mediators of signal transduction via several path-

ways including ras=raf, protein kinase C and MAP kinase

cascades (Jackson et al., 2002). The reduction=oxidation

(redox) state of the cell is a consequence of the balance

between the levels of oxidising equivalents and reducing

equivalents. A reducing intracellular environment is often

associated with cell survival; however, redox imbalance is

necessary since it represents a regulatory sensor for sev-

eral nuclear transcription factors. In effect, there is a pos-

sibility that external interferences with such signalling

pathways through antioxidants may contribute to failure

to adapt to oxidative stress or even failure to survive.

Evidence to support the concept that ‘‘antioxidants’’ can

attenuate the adaptation to exercise induced stress has

been shown recently in a supplementation study using

antioxidant vitamins C (ascorbic acid) and E (tocopherol)

as measured by the induction of the heat shock protein,

HSP72, in the skeletal muscle and in the circulation.

Modified gene expression and enzyme activity induced

by cellular oxidative stress are mediated through the inter-

play of several signalling pathways. The stress-activated

protein kinase (SAPK) pathways, for instance, are the

central mediators that propagate stress signals from the

membrane to the nucleus. In neuronal cells, stimuli-like

free radicals and ischemia cause an intracellular stress

response that either leads to apoptosis or to defensive-

protective adaptation. SAPKs and its downstream effec-

tors are the major molecules involved in this bipartite

response, which can accordingly lead to either neurode-

generation or to neuroprotection, depending on the cellu-

lar and environmental conditions as well as cooperation

with other signalling pathways (Zhu et al., 2004). It

has been suggested that oxidative stress, as an earlier event

in Alzheimer’s disease pathogenesis, may activate JNK=

SAPK and elevated levels of b-amyloid, as a later event,

contribute to further activation of JNK=SAPK (Zhu et al.,

2004).

Many transcription factors (e.g. NFkB, STAT, AP-1, Ets

and CREB) are subject to redox=thiol regulation. This

suggests that the controlled production of ROS is impor-

tant in cell activation, proliferation or programmed cell

death.

One of the upstream kinases in the JNK and p38 MAPK

modules is the apoptosis signal regulating kinase-1

(ASRK-1), that is maintained in an inactive state by bind-

ing reduced thioredoxin (Saitoh et al., 1998). Oxidation of

Trx by ROS releases ASRK1 permitting its activation and

allowing downstream signalling to apoptosis. The subtlety

of this effect is exemplified by the observation that cas-

pase 3, a downstream effector of apoptosis, is only active

when a critical thiol residue is reduced. Recent data sug-

gests that the cellular redox environment selectively reg-

ulates stress signalling through MEKK1 via glutathiola-

tion (Cross and Templeton, 2004). This can be viewed as a

simple redox controlled molecular switch in signal trans-

duction. Such switches could be turned off in inflamma-

tory conditions after exposure to a sustained source of

ROS or RNS that alters the redox balance (Fig. 1).

So, the influence that ROS=RNS have in modulating

many different signalling pathways might explain the

scarce efficacy of antioxidant supplementations in pre-

venting or treating Alzheimer’s disease although it cannot

be excluded that the lack of efficacy is due, instead, to the

use of high doses of a single antioxidant. In fact, epidemi-

ological studies on dietary intake of antioxidants showed

a higher efficacy than supplementation in preventing

Alzheimer’s disease, suggesting that the antioxidant mix-

ture contained in food is more effective (Engelhart et al.,

2002; Morris et al., 2002) although other studies did not

confirm these findings (Laurin et al., 2004).

Fig. 1. Redox-controlled molecular switch in signal transduction
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In conclusion, oxidative stress, as one of the earliest

events in AD pathogenesis, plays a significant role in

the development of AD pathology. Although the forma-

tion of highly reactive hydroxyl radicals poses a great

threat on neuronal cells by damaging important macro-

molecules, such as proteins, compensatory responses pro-

voked by ROS=RNS via the activation of different signal-

ling pathways and downstream adaptations such as induc-

tion of anti-oxidant enzymes, tau phosphorylation and

neurofibrillary tangles formation may provide some pro-

tective mechanisms to ensure neuronal cells do not suc-

cumb to such oxidative insults.
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