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Summary. Oxidative stress induces various post-translational modifi-

cations (PTM); some are reversible in vivo via enzymatic catalysis. The

present paper reviews specific procedures for the detection of oxidative

PTM in proteins, most of them including electrophoresis. Main topics are

carbonylated and glutathionylated proteins as well as modification of

selected amino acids (Cys, Tyr, Met, Trp, Lys).
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1. Introduction

In a previous study, our group has reviewed in vitro redox

modifications of proteins useful for an optimal resolution

of all components in a complex sample, or for the struc-

tural characterization of selected components=pure pro-

teins (Wait et al., 2005). Conversely, the present paper

reviews biochemical procedures for the detection, and in

some instances for the identification, of in vivo (post-

translationally) redox-modified proteins.

Reactions with proteins of a variety of free radicals and

reactive oxygen and nitrogen species (ROS and RNS) lead

to oxidative modifications such as formation of protein

hydroperoxides, hydroxylation of aromatic groups and ali-

phatic amino acid side chains, nitration of aromatic amino

acid residues, oxidation of sulfhydryl groups, oxidation of

methionine residues, conversion of some amino acid res-

idues into carbonyl groups, cleavage of the polypeptide

chain and formation of cross-linking bonds. Aromatic

and sulfur-containing residues are particularly susceptible

to oxidative modification, with formation of L-DOPA

from tyrosine, ortho-tyrosine from phenylalanine; sulph-

oxides and disulphides from methionine and cysteine; and

kynurenines from tryptophan. The occurrence of valine

and leucine hydroxides, reduced from hydroperoxide

intermediates, has been reported (key information in

Packer, 1984; Packer and Glazer, 1990; a recent review

in Griffiths, 2000).

Endogenous production of ROS is mainly linked to

the one-electron carriers in the mitochondrial respiratory

chain and to oxidase enzymes (including peroxidases

secreted by eosinophils and polymorphonuclear (PMN)

leukocytes that inactivate plasma proteinase inhibitors

and enhance the activity of PMN serine proteases in the

inflammatory foci) (Dean et al., 1997).

Adverse effects from exposure to UV light or ionizing

radiation and toxicity by a number of metals and xeno-

biotics, including drugs for therapeutic use, are linked to

production of free radicals=ROS (Berlett and Stadtman,

1997); for metals the mechanism involves redox-cycling

reactions, depletion of glutathione and bonding to sulfhy-

dryl groups (Valko et al., 2005).

Radical scavengers, such as nitric oxide, and antioxi-

dant enzymes, chiefly superoxide dismutase, catalase and

glutathione peroxidase, constitute the primary antioxidant

defense system of the organism (Dean et al., 1997). Part

of the oxidative damage to cysteine and methionine resi-

dues can be repaired by various enzymatic systems that



catalyze the reduction of cysteine disulfides, sulfenic and

sulfinic acids as well as of methionine sulfoxide (Mary

et al., 2004).

Unless repaired or removed from cells, these oxidized

proteins are often toxic and can threaten cell viability

(Berlett and Stadtman, 1997), as oxidatively modified pro-

teins can form large aggregates due to covalent cross-

linking or increased surface hydrophobicity as aromatic

and bulky aliphatic residues are exposed during the oxi-

dative rearrangement of secondary and tertiary protein

structure (Grune et al., 2003). Indeed, oxidatively dam-

aged proteins undergo selective proteolysis, primarily by

the 20S proteasome that recognizes hydrophobic amino

acid residues in an ubiquitin- and ATP-independent way.

However, HOIL-1 (heme-oxidized IRP2 ubiquitin ligase-1)

is an E3 ligase that recognizes a protein oxidized by iron

(Iwai, 2003). The 26S proteasome is not very effective in

degrading oxidized proteins. Relatively mild oxidative

stress rapidly (but reversibly) inactivates both the ubiqui-

tin activating=conjugating system and 26S proteasome

activity, but does not affect 20S proteasome. More severe

oxidative stress causes extensive protein oxidation, result-

ing in protein fragments, and cross-linked and aggregated

proteins, that become progressively resistant to proteolyt-

ic digestion and actually bind to the 20S proteasome to act

as irreversible inhibitors (Davies, 2001; Dunlop et al.,

2002; Grune et al., 2003).

Current investigation is addressing the issue of ‘redox

regulation’ by reversible oxidative PTM, namely the hy-

pothesis that under physiological conditions the ratio be-

tween various forms of cysteine oxidation (thiol-disulfide

balance but also oxidation to sulfinic and sulfenic acids,

and formation of mixed disulfides with small-molecular-

weight thiols, including cysteine and glutathione) in key

proteins may control signal transduction and metabolic

pathways (reviewed in Ghezzi et al., 2005). In this frame-

work, ROS would act as intracellular messengers and

redox-regulated proteins as redox sensors.

Conversely, a vast literature already exists on the harm-

ful effects of irreversible oxidative PTM as a result of

oxidative stress i.e. the production of ROS in excess to

tissue antioxidants. Oxidatively-modified proteins have

been shown to correlate with ageing (age of an organism

or its tissues; an increase in susceptibility to experimen-

tally induced protein oxidation depends on the maximum

lifespan potential of the species) (Linton et al., 2001).

Oxidative modifications of proteins leading to loss of their

function (enzymatic activity), accumulation and inhibition

of their degradation have been observed in several human

degenerative diseases (such as cancer (Valko et al., 2006),

atherosclerosis, Alzheimer’s dementia, Parkinson disease

and ALS (Moreira et al., 2005)). However, there is no

general consensus on whether excess ROS is cause or

consequence of tissue injury, or both (Juranek and Bezek,

2005). Very disappointing and intriguing, in contrast to in

vitro observations and to indirect evidence from epide-

miological=nutritional surveys, clinical tests of antioxi-

dant strategies i.e. diet supplementation with high doses

of vitamins and other natural antioxidant products, all

performed poorly (see e.g. Fisher and Naughton, 2005;

Frank and Gupta, 2005).

Electron spin resonance techniques directly evaluate

free radical activity (Jackson, 1999). More commonly,

the effects of ROS are assessed by quantitating the de-

gradation products of the affected structures. Various

measures of lipid oxidation (thiobarbituric acid reactive

substances, exhaled pentane=ethane, low-density lipopro-

tein resistance to oxidation, isoprostanes) and DNA oxi-

dation (oxidized DNA bases such as 8-OHdG, autoanti-

bodies to oxidized DNA, modified comet assay) are in

common use (Mayne, 2003). For proteins, a general

feature connected with oxidation is the induction of a

characteristic fluorescence (excitation 360 nm, emission

454 nm) (Jones and Lunec, 1987). Specialized techniques,

able to detect individual oxidative PTM and in some

instances allowing at the same time the identification of

the affected protein(s), will be dealt with in the following.

2. Specific procedures

2.1 Carbonylated proteins

Protein carbonyls are biomarkers of the presence and

the action of hydroxyl radicals. In the literature, ‘protein

oxidation’ appears to be used as a synonym for ‘protein

carbonylation’; a widely used commercial kit to detect

carbonylated proteins is indeed named OxyBlot+. g-Glu-

Fig. 1. Outline of the procedures for investigating carbonylated proteins in

a proteomic experiment. Italics denote analytical procedures, regular fonts

(micro) preparative procedures (allowing for MS-based identification)
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tamyl semialdehyde (GGS) and 2-amino-adipic semialde-

hyde (AAS) from arginine, proline and lysine are the main

products of the oxidation process.

For their study (Fig. 1), in most instances carbonyls are

derivatized with 2,4-dinitrophenylhydrazine (DNP), and

the resulting hydrazones are then detected via immuno-

logical procedures. Proteins are reacted with DNP before

electrophoresis (Talent et al., 1998) or better, for 2-DE

runs, after the IEF step (Reinheckel et al., 2000). After

electrophoresis and electroblotting, whole protein pattern

is stained with Ponceau Red (Rottoli et al., 2005), or other

photometric reagent (BLOT-FastStain+, with a lower de-

tection limit of approximately 0.3 ng=band) (Talent et al.,

1998) or with a fluorescent dye (Korolainen et al., 2002),

then carbonylated proteins are immunodetected with anti-

DNP antibodies.

The anti-DNP antibodies may also be used to immuno-

precipitate carbonylated proteins; proteins in the purified=

enriched fraction are then fractionated by 2-DE and

identified by MALDI-TOF MS fingerprinting (England

and Cotter, 2004). In a high-throughput approach the

DNP-tagged proteins are immunoprecipitated and di-

gested with trypsin. The peptides are separated by step-

wise ion exchange chromatography followed by reverse

phase chromatography (2D-LC), and analysed by nano-

HPLC coupled online to an ESI-Quad-TOF mass spectro-

meter (Kristensen et al., 2004).

An alternative tag to DNP is biotin: biotinylation of

carbonylated proteins is carried out with biotin-hydrazide

prior to 1-DE or 2-DE. The biotinylated species are then

detected using avidin-FITC affinity staining, affording a

sensitivity five times higher than silver staining, with a

detection limit of approximately 0.64 pmol of protein-

associated carbonyls (Yoo and Regnier, 2004). Biotin

may also be the basis for affinity enrichment using mono-

meric avidin affinity chromatography columns (Mirzaei

and Regnier, 2005); for high-throughput functional pro-

teomics, the hydrazide biotin-streptavidin methodology is

coupled with liquid chromatography tandem mass spec-

trometric (LC-MS=MS) analysis (Soreghan et al., 2003).

A further possibility is labelling carbonyls with digox-

igenin-hydrazide and detecting on blots with an anti-

digoxigenin antibody conjugated to alkaline phosphatase.

This assay covers a range of sensitivity from 1.26 to

126 pmoles of carbonyl groups (Bautista and Mateos-

Nevado, 1998).

2.2 Glutathionylated proteins

Different detection procedures are listed in Fig. 2. The

most general procedure for assessing protein glutathiony-

lation involves the metabolic labelling of the intracellular

glutathione pool with 35S-cysteine while inhibiting pro-

tein synthesis (Rokutan et al., 1991; Thomas et al., 1991).

After separation under non-reducing conditions, labelled

proteins are detected in dried 1-DE or 2-DE gels and

analyzed by MALDI-TOF (Fratelli et al., 2002, 2003).

This approach applies to in vitro cell culture studies, and

cannot be extended to ex vivo samples. Control experi-

ments include: evaluation of constitutive glutathionyla-

tion, i.e. in the absence of oxidative stress; reversibility

of labelling upon reduction with DTT; discrimination

from cysteinylation by showing that labelling is inhibited

by blocking GSH synthesis with BSO. Biotin-cysteine

may be used in in vitro cultures as an alternative to radio-

labelling (Humphries et al., 2002).

The use of biotin-labelled glutathione (Eaton et al.,

2002) or of its membrane-permeant analog, biotinylated

glutathione ethyl ester (Sullivan et al., 2000), does not

require protein synthesis inhibition, however target selec-

tivity based on tag size has been reported (Eaton et al.,

2002). Biotinylation of glutationylated proteins may be

obtained in vitro: glutaredoxin specifically reduces glu-

tathionylated protein thiols that can then be tagged with

N-ethylmaleimide-biotin; this approach is most suitable to

monitor baseline PTM (Lind et al., 2002). Glutaredoxin,

Fig. 2. Outline of the procedures for investigating glutathio-

nylated proteins in a proteomic experiment. Legend: same as

in Fig. 1
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however, has variable affinity for various S-glutathiolated

substrates (Chai et al., 2003). S-glutathionylation in bulk

may be measured biochemically by glutaredoxin-stimu-

lated release of GSH from precipitated proteins (Caruso

et al., 2005). GSH may be released chemically by NaBH4

treatment (Demasi et al., 2003).

Biotin-labelled proteins may be detected on blots with

streptavidin-HRP or may be affinity-purified with strepta-

vidin-agarose for analysis as highly enriched fraction. After

trypsinisation, avidin-affinity purification and analysis by

HPLC-MS=MS of the tagged peptides have been proposed

for high-throughput identification of the S-glutathionyla-

tion sites of proteins (Hamnell-Pamment et al., 2005).

Direct purification of glutathionylated proteins by affi-

nity chromatography on glutathione-agarose is also pos-

sible (Eaton et al., 2002; Niture et al., 2005).

On blots, S-glutathionylated proteins may be detected

by glutathione S-transferase (GST) overlay: biotinylated

GST binds to the glutathione moiety of S-glutathionylated

proteins (Cheng et al., 2005). Anti-glutathione antibodies

are commercially available, but suffer from aspecific

background staining.

2.3 Miscellaneous oxidation products

Cysteine

The redox balance �SH=-S-S- may be assessed with a

number of reagents. If N-ethylmaleimide is used to block

thiol proteins and dithiothreitol is then added to reduce

the disulfide proteins, labelling with 5-iodoacetamido-

fluorescein tags the oxidized forms (Baty et al., 2002).

Conversely, derivatization with monobromobimane tags

the reduced forms; the thioether derivatives are visualized

through their fluorescent emission (Awasthi et al., 1998).

Reagents unable to cross plasma cell membranes are of

special relevance for the evaluation of exofacial thiols;

examples of this class are the fluorochrome N-(7-di-

methyl-amino-4-methyl-coumarinyl) maleimide (DACM)

(Seppi et al., 1991) and N-(biotinoyl-N-(iodoacetyl)ethyl-

endiamine (BIAM) (Laragione et al., 2003).

Sulfinic=sulfonic acids produced from cysteine residues

under oxidative stress conditions may be identified by MS

after standard trypsin digestion (Rabilloud et al., 2002).

Overoxidation of cysteines however also introduces addi-

tional cleavage points for digestion with peptidyl-Asp

metalloendopeptidase (AspN). While the mass of the

novel N-terminus peptide is independent of the oxidation

state, the m=z of the C-terminus peptide varies with the

number of bound oxygen atoms (Wagner et al., 2002). For

the detection of sulfinylated peroxiredoxins an antibody

could be produced that recognizes both sulfinic and sul-

fonic forms of the protein and can be used in a simple

immunoblot assay (Woo et al., 2003); no such antibody

exists for the detection of cysteic acid in a context-inde-

pendent setting.

Tyrosine

3-Nitrotyrosine is considered a biomarker of peroxynitrite

exposure. An anti-nitrotyrosine antibody is commercially

available. However, to reveal false immunopositive spots,

blot membranes (PVDF) should be stripped and chemi-

cally reduced with sodium dithionite to convert nitrotyro-

sine to aminotyrosine, extensively washed and probed

again with the anti-nitrotyrosine antibody (Casoni et al.,

2005; Miyagi et al., 2002). Dityrosine is another product

of tyrosine oxidation (via a tyrosyl radical), and a specific

antibody is commercially available. The addition of tyr-

amine coupled to the succinimidyl ester of (fluorescein-5

(and-6)-carboxamido) hexanoic acid to a cell culture medi-

um under conditions of oxidative stress results in the for-

mation of dityrosine bonds. This is reflected by the link-

age of the fluorescent tyramine to proteins as detected by

immunoblotting with anti-fluorescein antibody (Czapski

et al., 2001). An alternative reagent for this protocol is

acetyl-tyramine-fluorescein (Sakharov et al., 2003).

Methionine

No antibody against methionine sulfoxide is available;

accumulations of MetO in proteins may be monitored as

inhibition of CNBr degradation (Moskovitz and Stadtman,

2003).

Tryptophane

The formation of N-formylkynurenine by dioxygenation

of tryptophane in proteins separated by 2DE is associated

with a significant peptide score using a Q-TOF mass spec-

trometer, with an increase in peptide mass of 32 mass

units, and a fragmentation pattern showing loss of oxi-

dized tryptophane (Moller and Kristensen, 2006).

Lysine adducts with aldehydes

Peroxidation of fatty acids containing three or more dou-

ble bonds produces malondialdehyde (MDA); that of o-6

polyunsaturated fatty acid produces 4-hydroxynonenal

(HNE). Adducts with lysine residues in proteins may be

detected by immunoblotting (Moreau et al., 2003; Tiku

et al., 2000).
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3. Conclusions

Solving the still open questions about redox regula-

tion and oxidative stress in the fields of physiology

and pathology is worth a compound strategy, relying

on classical techniques as well as on recent develop-

ments of proteomic procedures. The number of entries

in the body of this review spells the complexity of the

‘protein oxidation’ issue and of the technical approaches

to its study.
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