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Summary. As the potential drug targets, G-protein coupled receptors

(GPCRs) and nuclear receptors (NRs) are the focuses in pharmaceutical

research. It is of great practical significance to develop an automated and

reliable method to facilitate the identification of novel receptors. In this

study, a method of fast Fourier transform-based support vector machine

was proposed to classify GPCRs and NRs from the hydrophobicity of

proteins. The models for all the GPCR families and NR subfamilies were

trained and validated using jackknife test and the results thus obtained are

quite promising. Meanwhile, the performance of the method was evaluated

on GPCR and NR independent datasets with good performance. The good

results indicate the applicability of the method. Two web servers im-

plementing the prediction are available at http:==chem.scu.edu.cn=blast=

Pred-GPCR and http:==chem.scu.edu.cn=blast=Pred-NR.

Keywords: G-protein coupled receptors – Nuclear receptors – Hydro-
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Introduction

G-protein coupled receptors (GPCRs) belong to the largest

superfamily of cell-surface receptors and they are charac-

terized by seven transmembrane segments. They play a

key role in the basic cellular processes such as vision,

smell, taste, neurotransmission, and metabolism and so

on. They are major therapeutic targets of numerous pre-

scribed drugs and more than 50% of all medicines avail-

able today act through GPCR (Gudermann et al., 1995).

The sequences of thousands of GPCRs have been known

(Horn et al., 2003), however many receptors remain or-

phaned (i.e. with unknown ligand specificity), and to date

the crystal structure of only one GPCR (bovine rhodopsin)

is solved (Palczewski et al., 2000). So it is highly desir-

able to develop the computational methods to facilitate

the identification and characterization of novel receptors

only using sequence information.

Methods have been developed to predict GPCRs. The

covariant discriminant algorithm was proposed to predict

GPCRs (Chou, 2005a; Chou and Elrod, 2002; Elrod and

Chou, 2002), and support vector machines (SVMs) were

used to classify GPCRs at family and subfamily level

(Bhasin and Raghava, 2004a; Karchin et al., 2002). The

methods based on profile-hidden Markov model (HMM)

have been developed (Bateman et al., 2004; Papasaikas

et al., 2004; Qian et al., 2003), and there has been a meth-

od of bagging classification tree for the classification of

GPCRs (Huang et al., 2004).

Nuclear receptors (NRs) are important transcription

factors involved in many physiological functions like cell

growth, differentiation and homeostasis (Gronemeyer and

Laudet, 1995; Mangelsdorf et al., 1995). Many of them

are important drug targets in designing drugs for diseases

such as breast cancer and diabetes (Robinson-Rechavi and

Laude, 2003). The simple similarity-based search tools

like BLAST and FASTA (Altschul et al., 1990; Pearson

and Lipman, 1988) can easily distinguish NRs from the

genome sequences, but they are not always successful

in classifying the subfamilies of NRs. To overcome this

limitation, a SVM based method (Bhasin and Raghava,

2004b) has been developed for NR subfamily classifica-

tion, but only four subfamilies.

Based on the concept of pseudo amino acid composi-

tion (Chou, 2001), the Fourier transform spectra has been

used to predict membrane protein type (Liu et al., 2005a;

Wang et al., 2004), particularly their low-frequency parts



(Chou, 1988), have been used to predict membrane pro-

tein types. This paper describes a new combination of

fast Fourier transform with support vector machine for

the classification of all GPCR classes and NR subfami-

lies based on the hydrophobicity of proteins. The similar

method has been successfully used for the prediction

of GPCR subfamilies (Guo et al., 2005). The primary

amino acid sequences are translated into numerical

sequences using the hydrophobicity and then the nu-

merical series are transformed into uniform matrix ac-

cording to fast Fourier transform. Last, taking the pro-

tein power spectrum as input, SVM is used to construct

classifiers.

Materials and methods

Data set

On the basis of pharmacological knowledge, the GPCRDB and Nucle-

aRDB information systems (Horn et al., 2001) classify GPCRs into

six different families and NRs into eight subfamilies respectively. The

sequence data of GPCRs were collected from GPCRDB (release 9.0,

March 2005) and the data of NRs were obtained from NucleaRDB

(release 5.0, April 2005). All sequences denoted as ‘putative’, ‘hypothet-

ical’ or ‘orphan’ and fragmental sequences were removed. Meanwhile, it

was assured that none of the sequences was identical to others. Next, all

sequences are partitioned into two parts, the training dataset and the test

dataset. The newly publicized sequences that are marked as ‘new’ in the

two databases were used as the independent dataset. All the remaining

sequences were used as the training dataset. The final training dataset

contained 946 sequences belonging to the six GPCR families and 465

sequences belonging to the eight NR subfamilies. For Class A of

GPCRs, we chose 540 sequences randomly through equal interval selec-

tion (one in four), but for other classes of GPCRs, all the eligible

sequences were selected because of the fewer members. For all the

subfamilies of NRs, all the eligible sequences were chosen. Considering

the limited amount of data available for some classes, such as GPCR

Class E and NR Nerve Growth factor IB like subfamily, the proteins

with high sequence identity were not removed in order to provide

enough sequences to develop a wide-range predictive system that can

be applied to all GPCR families and NR subfamilies. The number of

sequences for each GPCR family and NR subfamily is listed in Tables 1

and 2, respectively.

Substitution models

Three kinds of substitution models: hydrophobicity model, electron-ion

interaction potential (EIIP) model (Cosic, 1994) and c-p-v model

(Grantham, 1974), representing three principal properties of hydrophobic-

ity, electronic property and bulk respectively, are used to transform the

protein sequences into numerical sequences. Hydrophobicity of proteins is

one of the most important factors in determining a protein’s structure and

function. However, with different experimental conditions, different

organic solvents and computing approaches, hydrophobicity value per

amino acid will be different. So, three hydrophobicity scales, including

KDH� (Kyte and Doolittle, 1982), MH� (Mandell et al., 1997) and FH�
(Fauch�eere and Pli�sska, 1983) were selected for optimization. EIIP value

describes the average energy states of all valence electron of amino acids

and c-p-v model includes the composition (c), polarity (p) and molecular

volume (v) of each amino acid.

Protein power spectrum

The Fourier transform (FT) has been commonly used in bioinformatics

(Hiramoto et al., 2002; Katoh et al., 2002; Shepherd et al., 2003; Trad

et al., 2002) because the frequency content of signals is often of great

importance. It is a good method in capturing the essence of data. In this

paper, fast Fourier transform (FFT) was used to transform proteins of

variable length into fixed length vectors. The power spectrum or power

spectral density, a measurement of the power at various frequencies was

taken as the input of SVMs by using 512-point FFT.

Support vector machine

The support vector machine (SVM) is a kind of learning machine based on

statistical learning theory. A brief and clear description for how to use

SVM to do classification has been given by Chou and Cai (see, e.g., Chou

and Cai, 2002; Cai et al., 2003). For a two-class classification problem,

only one SVM classifier needs to be constructed, but the classification of

GPCRs and NRs is a multi-class problem, so we used the ‘one versus rest’

method (Hua and Sun, 2001) to transfer it into a two-class problem.

The radial basis function (RBF) was selected as the kernel function. All

the parameters were kept constant except for C (regulatory parameter) and

� (kernel width parameter). In the training process, C and � were opti-

mized. The fixed length feature vector was obtained using the protein

power spectrum with the fixed number of frequency points.

Performance evaluation

The performance of all classifiers was examined by jackknife test because

it is the most rigorous and objective way to do cross-validation as elabo-

rated in a comprehensive review (Chou and Zhang, 1995), and nowadays it

has been adopted by more and more leading investigators in the area of

statistical prediction (see, e.g., Cai and Chou, 2005; Chou, 1995, 2005b;

Chou and Cai, 2004; Gao et al., 2005; Liu et al., 2005b; Shen and Chou,

2005a, b; Xiao et al., 2006; Zhou, 1998; Zhou and Assa-Munt, 2001; Zhou

and Doctor, 2003). Each receptor is selected as the test receptor and the

remaining receptors are used to train the SVMs. The prediction quality

was evaluated using accuracy, total accuracy and Matthew’s correlation

coefficient (MCC) (Matthews, 1975).

accuracyðiÞ ¼ pðiÞ
expðiÞ ð1Þ

total accuracy ¼
PK

i pðiÞ
expðiÞ ð2Þ

MCC ¼ pðiÞnðiÞ � uðiÞoðiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpðiÞ þ uðiÞÞðpðiÞ þ oðiÞÞðnðiÞ þ uðiÞÞðnðiÞ þ oðiÞÞ

p ð3Þ

Here, K is the class number, N is the total number of sequences, exp(i) is

the number of sequences observed in class i, p(i) is the number of correctly

predicted sequences of class i, n(i) is the number of correctly predicted

sequences not of class i, u(i) is the number of under-predicted sequences,

and o(i) is the number of over-predicted sequences.

The measurement of prediction reliability is absolutely necessary when

using the machine learning approaches for prediction. Here the index

indicating the reliability of prediction (R) (Novic and Zupan, 1995) was

used, as given by:

RðiÞ ¼ 2ðaccuracyðiÞ � errorðiÞÞ
1 þ jaccuracyðiÞ � errorðiÞj ð4Þ

where, errorðiÞ ¼ oðiÞ
nðiÞþoðiÞ

The reliability value R(i) ranges from 1 to �1. In the best case, when all

the receptors are correctly predicted, R(i) is maximal (equal to 1), that is
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when accuracy(i)¼ 1 and error(i)¼ 0. And R(i) is �1 in the worst case

when accuracy(i)¼ 0 and error(i)¼ 1.

Results and discussion

All the results of the following experiments are obtained

from the datasets in which proteins with high sequence

identity were not removed.

Selecting the optimal substitution model

To select the optimal substitution model for GPCRs and

NRs, the performances of this method based on the three

kinds of models were evaluated by two-fold cross valida-

tion respectively. For GPCRs, the total accuracies of this

method based on the FH�, KDH�, MH�, c-p-v and EIIP

models are 93.4%, 92.6%, 90.0%, 90.7%, 82.7% respec-

tively, and for NRs, 95.1%, 92.9%, 91.2%, 91.6%, 92.6%

respectively. We can see from the results that the method

perform well on GPCRs and NRs using any one of the

three hydrophobicity scales with all accuracies of �90.0%,

but the method based on FH� achieves the highest accu-

racy. So in this work, the scheme FH� was chosen as

coding scheme for GPCRs and NRs.

Model training and testing

Fourteen SVMs were constructed for six GPCR families

and eight NR subfamilies using FH�. Each SVM was

trained and validated using jackknife test. The results are

summarized in Tables 1 and 2 respectively.

From Tables 1 and 2, the total results from the jackknife

test are quite promising and prove the good performance

of this method. Moreover, we can see that different

classes have different prediction accuracies. For GPCRs

and NRs, there is no apparent direct relationship between

the prediction accuracy and class size. From Table 1,

cAMP, the smallest family of GPCR that only contains

5 sequences, achieves the highest accuracy among all the

families of GPCR. However, Fungal pheromone family

that contains 21 sequences achieves the lowest accuracy

(81.0%). From Table 2, 0A Knirps-like and 0B DAX-like

both contain 7 receptors, but accuracies are 42.9% and

71.4% respectively. The smallest subfamily of NR is Germ

cell nuclear factor-like that only contain 2 sequences, but

it gives the highest accuracy. Nerve Growth factor IB-like

subfamily contains 5 sequences, but only one sequence is

incorrectly predicted.

Recognition of GPCRs from non-GPCR

transmembrane proteins and NRs

The dataset of 1090 non-GPCR transmembrane protein se-

quences was collected from the Swiss-Prot (Release 46.5,

2005) and TrEMBL (Release 29.5, 2005). This dataset was

excluded the sequences marked as ‘putative’, ‘hypothetical’

and ‘fragment’ but also contained proteins with high se-

quence identity. We constructed two SVM models based

on hydrophobicity scale FH� for identifying GPCRs from

non-GPCR transmembrane proteins and from NRs sepa-

rately. The performance of each model was validated with

5-fold cross-validation test.

This method can differentiate GPCRs from non-GPCR

transmembrane proteins with the accuracy, MCC and R

of 95.0%, 0.88, 0.94, respectively and from NRs, 99.5%,

0.98, 0.99 respectively. Theoretically for GPCRs, select-

ing hydrophobicity of amino acids as the coding scheme

seems only to stress the features of hydrophobic segments

Table 1. The performance of the method in classifying the six families of

GPCRs using jackknife test based on hydrophobicity scale, FH�

GPCR family No. of

sequences

Accuracy

(%)

MCC R

Rhodopsin-like

(Class A)

540 97.0 0.93 0.97

Secretin-like

(Class B)

187 96.3 0.94 0.95

Metabotropic glutamate

(Class C)

103 94.2 0.95 0.95

Fungal pheromone

(Class D)

21 81.0 0.92 0.90

cAMP receptors

(Class E)

5 100 1.0 1.0

Frizzled=smoothened

(Class F)

90 95.6 0.94 0.94

Total 946 96.1 – –

Table 2. The performance of the method in classifying the eight sub-

families of NRs using jackknife test based on hydrophobicity scale, FH�

NR subfamily No. of

sequences

Accuracy

(%)

MCC R

Thyroid hormone-like 165 95.8 0.95 0.97

HNF4-like 114 97.4 0.96 0.96

Estrogen-like 130 97.7 0.96 0.98

Fushitarazu-F1 like 35 94.3 0.97 0.97

Nerve growth factor IB-like 5 80.0 0.89 0.89

Germ cell nuclear receptor 2 100 1.0 1.0

0A Knirps-like 7 42.9 0.65 0.60

0B DAX-like 7 71.4 0.84 0.83

Total 465 95.3 – –
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and not to cover the features of extracellular domains. But

the high accuracy of this method in classifying GPCRs

and non-GPCR transmembrane proteins indicates that

choosing hydrophobicity is reasonable in spite of the fact

that GPCRs respond to a variety of ligands through their

extracellular and transmembrane domains.

Performance on the independent dataset

and comparison with other methods

It is necessary to check the practical application of the

method using an independent dataset. From GPCRDB

(release 9.0, March 2005) and NucleaRDB (release 5.0,

April 2005), the newly publicized sequences (denoted as

‘new’) were collected as the independent datasets for

unbiased evaluation of this method and Bhasin and

Raghava’s method (Bhasin and Raghava, 2004a, b) and

Papasaikas et al.’s method (Papasaikas et al., 2004). There

are 458 GPCRs and 128 NRs for the independent datasets.

These sequences are not contained in the training datasets.

We chose dipeptide composition based approach devel-

oped by Bhasin and Raghava (2004b) to predict the new

NR sequences. The results are listed in Tables 3 and 4.

Table 3 indicates that this method can correctly predict

440 out of 458 sequences of GPCRs. Not only the largest

family (Class A) but also other five smaller families are

predicted with high accuracy. For the anterior five families

(Class A–E), 421 out of 439 GPCRs are correctly pre-

dicted by this method. Bhasin and Raghava’s method and

Papasaikas et al.’s method also achieve good performance.

Table 4 shows that both this method and Bhasin and

Raghava’s method can predict the anterior four subfami-

lies of NR well. Moreover this method predicts success-

fully 125 out of 128 NRs belonging to the anterior six

subfamilies. For all GPCR families and NR subfamilies,

we can draw a conclusion from the good prediction results

obtained by our method that this method is not overfitted

and has powerful prediction ability.

Table 3. Performance of our method, as compared to Bhasin and Raghava (2004a) and Papasaikas et al. (2004) on the GPCR

independent dataset at class level

GPCR families Total

sequences

Correctly predicted sequences

This study Bhasin and Raghava (2004a) Papasaikas et al. (2004)

Rhodopsin-like 345 332 (96.2%) 345 (100%) 275 (79.7%)

Secretin-like 35 32 (91.4%) 26 (74.3%) 18 (51.4%)

Metabotropic glutamate 23 22 (95.7%) 13 (56.5%) 16 (69.6%)

Fungal pheromone 34 34 (100%) 14 (41.2%) 15 (44.1%)

cAMP receptors 2 1 (50%) 1 (50%) 1 (50%)

Total 439 421 (95.9%) 399 (91.7%) 325 (71.0%)

Frizzled=Smootened 19 19 (100%) – –

Total 458 440 (96.1%) – –

Table 4. Performance of our method and Bhasin and Raghava’s method on the NR independent dataset at

subfamily level

NR subfamilies Total

sequences

Correctly predicted sequences

This study Bhasin and Raghava (2004)

Thyroid hormone-like 40 38 39

HNF4-like 35 35 35

Estrogen-like 41 41 38

Fushitarazu-F1-like 3 3 3

Total 118 116 (98.3%) 114 (96.6%)

Nerve Growth factor IB-like 9 8 –

Germ cell nuclear factor-like 1 1 –

0A Knirps-like 0 0 –

0B DAX-like 0 0 –

Total 128 125 (97.7%) –
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Conclusion

This paper describes a new method of FFT-based SVM for

the classification of GPCRs and NRs. The information

about the features of a protein is extracted from the power

spectrum of FFT based on the hydrophobicity of proteins.

The prediction results illustrate the powerful ability of the

method to classify GPCRs and NRs, which testifies the at-

tempt to try to mine the frequency-power features of pro-

teins is feasible and successful.

The hydrophobic value sequences of variable length are

transformed into the fixed-length vectors using FFT,

which meets the requirement of SVM. In this study, we

also selected the c-p-v model and EIIP model to transform

the amino acid sequences into numerical sequences, but

the prediction results were not comparable with those of

the hydrophobicity scale. It is obvious that the substitution

model will affect the prediction performance. So it is

anticipant to develop the better substitution models for

GPCRs and NRs. However, the establishment of such an

accurate prediction method will facilitate the recognition

of the novel GPCRs and NRs.
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