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Summary. The existing interrelation in metabolic pathways of L-arginine

to polyamines, nitric oxide (NO) and urea synthesis could be affected in

sepsis, inflammation, intoxication and other conditions. The role of poly-

amines and NO in the toxic effect of mercury chloride on rat liver function

was studied. Administration of mercury chloride for 24 h led to significantly

elevated plasma activities of Alanine transaminase (ALT) and Aspartate

transaminase (AST). Malondyaldehyde (MDA) levels were unaffected

(p>0.05) and arginase activity was significantly decreased (p<0.05) while

nitrate=nitrite production was significantly elevated (p<0.001) in liver tis-

sue. Polyamine oxidase (PAO) and diamine oxidase (DAO) activities,

enzymes involved in catabolism of polyamines, were decreased. L-arginine

supplementation to intoxicated rats potentiated the effect of mercury chlo-

ride on NO production and it was ineffective on arginase activity.

Results obtained in this study show that mercury chloride-induced

toxicity leads to abnormally high levels of ALT and AST that may

indicate liver damage with the involvement of polyamine catabolic

enzymes and NO.
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Introduction

Exposure to numerous chemical forms of mercury, includes

pure element, mercury vapor, inorganic compounds such

as mercury chloride, and organic mercury (Fitzgerald and

Clarkson, 1991). All forms of mercury cause toxic effects

in a number of tissues and organ depending on the chemi-

cal form of mercury. Mercury has been used commer-

cially and medically as a common constituent of many

medical instruments such as thermometers, barometers and

blood-pressure cuffs. It is constituent in batteries, switches,

and fluorescent lamps. For mankind, major sources to

exposure are dental amalgams, fish consumption, and

vaccines. Clinical signs of toxicity dependent on doses

and duration of exposure. Dental amalgam emits mercury

vapor that is inhaled and absorbed. The amalgam consists

of approximately 50 percent mercury. Long-term exposure

to low concentrations of mercury vapor from amalgams

may be a reason for developing of neurodegenerative

diseases such as amyotrophic lateral sclerosis, multiple

sclerosis, Alzheimer’s disease and Parkinson’s disease.

Fish and fungicides are the main sources of methyl mer-

cury (Molin et al., 1990; Clarkson et al., 2003; Block et al.,

2004). Acrodynia, a childhood disease, is caused by mer-

curic and mercurous salts (Warkany and Hubbard, 1953).

Babies are exposed to ethyl mercury, which is the active

ingredient of the preservative thimerosal, through vacci-

nation (Ball et al., 2001).

Different mechanisms are involved in the toxic effect of

mercury chloride that leads to changes in cell functions. It

occurs as results of direct toxic effect of mercury or its

ions binding to thiol groups in some proteins, glutathione

and enzymes (Johnson, 1982; Lash et al., 1998).

Arginine is a common substrate for the synthesis of

urea, nitric oxide, agmatine, polyamines, creatine, pro-

line and glutamate. L-ornithine, as a product of arginase

activity, is necessary for the production of polyamines

and proline (Wu and Morris, 1998). Arginine is con-

verted to urea and ornithine by catalytic activity argi-

nase. Arginase activity is linked with cell growth and

connective tissue formation, which is related with poly-

amines and proline and in ammonia detoxication. Two

separate isozymes of the enzyme arginase exist: type I is

found in the liver and contributes the vast majority of



hepatic arginase activity, while type II is inducible and

found in extrahepatic tissues.

Polyamines (putrescine, spermidine and spermine) are

polycationic compounds derived from ornithine by activ-

ity of ornithine decarboxylase (ODC) and catabolized by

DAO and PAO. Polyamines are essential to the growth and

proliferation of mammalian cells. A lot of cellular func-

tions of polyamines are still unknown (Pegg and McCann,

1982; Wallance et al., 2003).

Nitric oxide (NO) is the metabolite of L-arginine in the

reaction catalyzed by nitric oxide synthase activity (NOS).

This is a simple short-living molecule with different cell

functions. NO is a highly reactive vasodilator, neuromod-

ulator, imunomodulator (Wu and Morris, 1998; Ignarro

et al., 2001). The aim of this study is the investigation of

the role of polyamines and NO, metabolites of L-arginine,

on liver function in acute toxicity induced by mercury

chloride. In the evaluation of possible interrelation among

the enzymes involved in the metabolism of L-arginine we

have focused our attention to arginase, NOS, and poly-

amine catabolic enzymes, PAO and DAO activities. To

study this relationship between polyamine and L-arginine

metabolites, we checked the liver function indexes, ALT

and AST, which reflect the severity of hepatocellular dam-

age (Bass, 2003).

Material and methods

Experiments were performed on male Sprague Dawley rats weighing

about 250 g. The animals were divided into 4 groups: 1 – control, treated

with saline, 2 – mercury chloride treated group (3 mg=kg intraperi-

toneally), 3 – treated with L-arginine (250 mg=kg intraperitoneally) and

4 – treated with arginine one hour before mercury chloride in same doses.

Animals were killed 24 h after mercury chloride administration. Blood

plasma and liver homogenate were prepared and stored on �70 �C.

In evaluation of liver function we measured plasma activities of ALT

and AST by standard biochemical analysis. Lipid peroxidation level, as

MDA was evaluated in liver tissue homogenate by thiobarbituric acid

reaction (Stroev and Makarova, 1989). Arginase activity was assayed on

the basis of the release of ornithine detected by ninhydrine color reaction

(Porembska and Kedra, 1975). PAO and DAO were measured in liver

homogenate according to the method of Bachrach and Reches (1966).

Tissue protein level was determined according to Lowry et al. (1951).

NOS was determined as nitrate=nitrite levels by the Griess reaction

(Cortas and Wakid, 1990).

Statistical significance among groups was determined by Student-t test.

P<0.05 was used as statistically significant.

Results

Since liver enzymes, ALT and AST were elevated in blood

plasma of mercury chloride-treated rats (P<0.001)

(Table 1), our finding shows that administration of mer-

cury chloride leads to liver damage.

The levels of lipid peroxidation in liver, expressed as

nmoles=mg of plasma proteins of MDA are shown in

Table 2. There is no statistical significance for MDA level

among the four experimental groups (p>0.05).

On the contrary, liver arginase activity in mercury

chloride-treated rat was significantly (p<0.05) decreased

(Fig. 1, group 2).

Nitrate and nitrite levels were significantlly elevated

(p<0.001), in treated rats compared to control (Fig. 2,

group 2). Treatment with arginine one hour before mercury

chloride shows that L-arginine administration to intoxi-

cated rats is ineffective (Fig. 1, group 4) but probabily

Table 1. Alanine transaminase (ALT) and Aspartate transaminase (AST)

activity in blood plasma

Treatments ALT (U=L) AST (U=L)

Control 34.5 � 8.0 103 � 17

HgCl2 127.5 � 21.1��� 266.5 � 13��
L-arginine 67.3 � 4.2 112 � 04

HgCl2þL-arginine 118.80 � 8.0��� 405 � 30���

�� p<0.05
��� p<001

Table 2. MDA levels in liver tissue

Treatments MDA levels in liver

(nmol=mg � protein)

Control 2.15 � 0.08

HgCl2 2.12 � 0.085

L-arginine 2.05 � 0.07

HgCl2þL-arginine 2.18 � 0.065

Fig. 1. Activity of liver arginase expressed as mmoles=mg of proteins: 1

Control; 2 animal treated with HgCl2 (3 mg=kg itraperitoneally); 3 ani-

mal pretreated with L-arginine (250 mg=kg intraperitoneally); 4 animal

pretreated with L-arginine (250 mg=kg intraperitoneally) and after 1 h

treated with HgCl2 (3 mg=kg intraperitoneally). Data are the mean of 4

experiments � S.D
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increase NOS activity leading to higher production of

nitrate=nitrite levels (Fig. 2, group 4).

Polyamine catabolic enzymes, PAO (Fig. 3, group 2)

and DAO, (Fig. 4, group 2) were significantly decreased

compared to control group (PAO, p<0.001), and DAO,

(p<0.01).

Discussion

Arginase is one of six enzymes that play a role in the

breakdown and removal of nitrogen from the body by

the urea cycle. It is the enzyme that hydrolyses L-arginine

to urea and L-ornithine. The main function of arginase in

the liver is the detoxification of ammonia. Arginase activ-

ity is expressed at other sites, but its exact role in extra-

hepatic tissues is not well understood. In mammals, two

arginase isoforms are expressed: the cytosolic Arginase-1

and the mitochondrial Arginase-2. The isoforms catalyze

the same reaction, but are encoded by different genes and

differ in their tissue distribution. Arginase-1 is an essen-

tial enzyme of the urea cycle and is expressed at high

levels in hepatocytes. In mercury-chloride-treated rats

the activity of this enzyme was only slightly affected.

Unfortunately, the usefulness of arginase as a biomarker

in clinical situations is debatable because a variety of fac-

tors, including diabetes, liver disease and ingestion of high

protein diets, can affect arginase activity (Morris, 1992).

Polyamines are ubiquitous organic cations of low mo-

lecular weight. The cellular functions of polyamines, pu-

trescine, spermidine and spermine, is related to the growth

and proliferation of mammalian cells. Recent studies indi-

cated that these polycationic compounds might have addi-

tional importance in cell functions. Cellular polyamine

homeostasis is achieved through balance between bio-

synthesis, degradation, and uptake. Two amino acids,

L-ornithine and L-methionine, are precursor for poly-

amine synthesis. ODC (EC 4.1.1.17) leads to formation

of putrescine from ornithine. In reactions catalyzed by the

activities of spermine and spermidine synthase and by aden-

osine methionine decarboxylase spermidine or spermine

can be produced (J€aanne et al., 2004).

Polyamines are catabolized via two distinct pathways:

the terminal catabolic pathway and the introversion path-

way (Pegg and McCann, 1982). The terminal catabolic

pathway involves the oxidative deamination of poly-

amines by copper-containing amine oxidases, generating

compounds that cannot be reconverted into polyamines.

The interconversion pathway involves DAO (EC 1.4.3.6)

which catabolyzes putrescine and PAO (EC 1.5.3.3.),

which convert high molecular weight polyamine into

low molecular weight amines. Both pathways generate

Fig. 3. Activity of liver diamine oxidase (DAO) expressed as units=mg

of proteins: 1 Control; 2 animal treated with HgCl2 (3 mg=kg itraperito-

neally); 3 animal pretreated with L-arginine (250 mg=kg intraperitone-

ally); 4 animal pretreated with L-arginine (250 mg=kg intraperitoneally)

and after 1 h treated with HgCl2 (3 mg=kg intraperitoneally). Data are the

mean of 4 experiments � S.D

Fig. 2. Nitrate=nitrite levels in liver tissue expressed as mmoles=mg of

proteins: 1 Control; 2 animal treated with HgCl2 (3 mg=kg intraperitone-

ally); 3 animal pretreated with L-arginine (250 mg=kg intraperitoneally);

4 animal pretreated with L-arginine (250 mg=kg intraperitoneally) and

after 1 h treated with HgCl2 (3 mg=kg intraperitoneally). Data are the mean

of 4 experiments � S.D

Fig. 4. Activity of liver polyamine oxidase (PAO) expressed as

units=mg of proteins: 1 Control; 2 animal treated with HgCl2 (3 mg=kg

kg itraperitoneally); 3 animal pretreated with L-arginine (250 mg=kg

intraperitoneally); 4 animal pretreated with L-arginine (250 mg=kg in-

traperitoneally) and after 1 h treated with HgCl2 (3 mg=kg intraperitone-

ally). Data are the mean of 4 experiments � S.D
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potentially toxic aldehydes, hydrogen peroxide and am-

monia, that can damage proteins, DNA, and lipids (Gaugas

and Dewey, 1981; Brunton et al., 1991; Silva, 1996). The

presence of an amine oxidase activity is likely essential

for the apoptotic effect of polyamines on normal and neo-

plastic cells (Facchiano et al., 2001).

Polyamine biosynthesis was more investigated than

polyamines degradation (Seiler, 2004). Recent findings

show that polyamine catabolic enzymes activity could be

of importance for the regulation of cell function (Nikolic

et al., 2003).

The present study show that decreases of arginase

activity directs arginine utilization to NO formation. NO

is an important second messenger involved in a variety of

physiological processes. NO signal transduction pathways

include response to infection, apoptosis, cell proliferation

and adhesion, smooth muscle tone, platelet activation,

cardiac and skeletal muscle, respiration, neurotransmis-

sion and hormone secretion; NO is also a regulator of

the activity of many enzymes (Moncada et al., 1991).

A number of regulatory mechanisms exist and interact

in metabolic pathways of L-arginine. Arginase modulates

NO production in activated macrophages (Chang et al.,

1998; Li et al., 2001). N-omega-hydroxy-L-arginine, an

intermediary in the production of NO from arginine is a

potent inhibitor of arginase activity (Boucher et al., 1994).

Agmatine exerts inhibitory effects on both NOS and

polyamine pathways, increasing polyamine degradation.

Agmatine and NO directly inhibit ODC activity (Szabâao

et al., 1994; Schwartz et al., 1997; Satriano et al., 1998;

Vargiu et al., 1999). The effects of polyamines are both

induction and inhibition of biosynthetic and catabolic en-

zyme activities that associated with increased and de-

creased apoptosis. The cells may undergo apoptosis when

the polyamine pools are essentially depleted or increased

(Gaugas and Dewey, 1981; Schipper et al., 2000; Yu et al.,

2003). These controversial results may derive from the

recent finding that inhibitors of polyamine oxidation or

inhibitors of transglutaminases activity prevented poly-

amine-induced apoptosis (Facchiano et al., 2001).

Free radical production, enzyme inhibition, binding and

dysfunction of thiol-containing proteins are more inves-

tigated parameters in mechanisms of mercury chloride

toxicity.

The results of our study show increase of NO-synthase

activity, which leads to elevation of NO in the liver of

intoxicated rats. As is known, NO inhibits cell prolifera-

tion by inhibition of ODC, limiting enzyme in polyamine

synthesis, in the reaction of NO with Cys360 – nitrosyla-

tion reaction (Bauer et al., 2001; Hillary and Pegg, 2003).

Our findings suggest that the increases of plasma liver

enzymes, ALT and AST may imply liver damage by mer-

cury chloride. On the other hand the decreases of arginase

activity, together with the elevation of nitrate and nitrite

levels in liver tissue suggest that arginine is preferentially

directed to nitric oxide production. Depletion of ornithine

level and possible inhibition of ODC by increased level of

NO may result in depletion of tissue levels of polyamine.

The observed depressed activity of polyamine catabolic

enzymes, PAO and DAO, may be a compensatory re-

sponse to mercury chloride toxicity in promotion of cell

reparation and regeneration. Finally our results indicate

that L-arginine and its metabolites have an important role

in the regulation of polyamine levels in mercury chloride-

induced hepatotoxicity.
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